Prediction Model for Tumor Budding Status Using the Radiomic Features of F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Cervical Cancer
<p>F-18 fluorodeoxyglucose positron emission tomography/computed tomography radiomic feature selection performed by the least absolute shrinkage and selection operator (Lasso) regularization method. (<b>A</b>) Area under the curve was drawn versus log (λ) by the 5-fold cross-validation. The vertical dotted line defines the optimal λ value. The optimal λ of 0.0012, with log (λ) of −6.7061 was selected; (<b>B</b>) Lasso coefficient profiles of the 48 potential PET features as selected by the <span class="html-italic">t</span>-test. Twenty-seven features were selected with the optimal λ.</p> "> Figure 2
<p>Receiver operating characteristic curves of the prediction models constructed by the random forest, support vector machine, and neural network algorithms using conventional metabolic parameters only (<b>A</b>) and conventional metabolic parameters + radiomic features (<b>B</b>) in the test dataset.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Histopathological Evaluation
2.3. 18F-FDG PET/CT Image Acquisition
2.4. Image Interpretation and PET Image Analysis
2.5. Statistical Analysis
2.6. Radiomic Analysis
3. Results
3.1. Clinicopathologic Features and Treatment Outcomes
3.2. Comparison of Metabolic Parameters and Radiomic Features of 18F-PET/CT According to TB Status
3.3. Multiple Logistic Regression Analysis for ITB Status
3.4. Predicting Model for ITB Status Using Radiomic Features of 18F-FDG PET/CT
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lugli, A.; Kirsch, R.; Ajioka, Y.; Bosman, F.; Cathomas, G.; Dawson, H.; Zimaity, H.E.; Fléjou, J.-F.; Hansen, T.P.; Hartmann, A.; et al. Recommendations for reporting tumor budding in colorectal cancer based on the International Tumor Budding Consensus Conference (ITBCC) 2016. Mod. Pathol. 2017, 30, 1299–1311. [Google Scholar] [CrossRef]
- Graham, R.P.; Vierkant, R.A.; Tillmans, L.S.; Wang, A.H.; Laird, P.W.; Weisenberger, D.J.; Lynch, C.F.; French, A.J.; Slager, S.L.; Raissian, Y.; et al. Tumor Budding in Colorectal Carcinoma: Confirmation of Prognostic Significance and Histologic Cutoff in a Population-based Cohort. Am. J. Surg. Pathol. 2015, 39, 1340–1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almangush, A.; Karhunen, M.; Hautaniemi, S.; Salo, T.; Leivo, I. Prognostic value of tumour budding in oesophageal cancer: A meta-analysis. Histopathology 2016, 68, 173–182. [Google Scholar] [CrossRef]
- Almangush, A.; Salo, T.; Hagström, J.; Leivo, I. Tumour budding in head and neck squamous cell carcinoma—A systematic review. Histopathology 2014, 65, 587–594. [Google Scholar] [CrossRef]
- Park, J.Y.; Hong, D.G.; Chong, G.O.; Park, J.Y. Tumor Budding is a Valuable Diagnostic Parameter in Prediction of Disease Progression of Endometrial Endometrioid Carcinoma. Pathol. Oncol. Res. 2019, 25, 723–730. [Google Scholar] [CrossRef]
- Park, J.Y.; Chong, G.O.; Park, J.Y.; Chung, D.; Lee, Y.H.; Lee, H.J.; Hong, D.G.; Han, H.S.; Lee, Y.S. Tumor budding in cervical cancer as a prognostic factor and its possible role as an additional intermediate-risk factor. Gynecol. Oncol. 2020, 159, 157–163. [Google Scholar] [CrossRef]
- Wong, T.Z.; Jones, E.L.; Coleman, R.E. Positron emission tomography with 2-deoxy-2-[(18)F]fluoro-D-glucose for evaluating local and distant disease in patients with cervical cancer. Mol. Imaging Biol. 2004, 6, 55–62. [Google Scholar] [CrossRef]
- Han, L.; Wang, Q.; Zhao, L.; Feng, X.; Wang, Y.; Zou, Y.; Li, Q. A Systematic Review and Meta-Analysis of the Prognostic Impact of Pretreatment Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Parameters in Patients with Locally Advanced Cervical Cancer Treated with Concomitant Chemoradiotherapy. Diagnostics 2021, 11, 1258. [Google Scholar] [CrossRef]
- Kim, D.H.; Jung, J.H.; Son, S.H.; Kim, C.Y.; Hong, C.M.; Oh, J.R.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Ahn, B.C. Prognostic Significance of Intratumoral Metabolic Heterogeneity on 18F-FDG PET/CT in Pathological N0 Non-Small Cell Lung Cancer. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 2051–2057. [Google Scholar] [CrossRef]
- Tixier, F.; Le Rest, C.C.; Hatt, M.; Albarghach, N.; Pradier, O.; Metges, J.P.; Corcos, L.; Visvikis, D. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J. Nucl. Med. 2011, 52, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.M.; Fang, Y.H.; Chang, J.T.; Huang, C.G.; Tsan, D.L.; Ng, S.H.; Wang, H.M.; Lin, C.Y.; Liao, C.T.; Yen, T.C. Textural features of pretreatment 18F-FDG PET/CT images: Prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J. Nucl. Med. 2013, 54, 1703–1709. [Google Scholar] [CrossRef] [Green Version]
- Chong, G.O.; Lee, W.K.; Jeong, S.Y.; Park, S.H.; Lee, Y.H.; Lee, S.W.; Hong, D.G.; Kim, J.C.; Lee, Y.S. Prognostic value of intratumoral metabolic heterogeneity on F-18 fluorodeoxyglucose positron emission tomography/computed tomography in locally advanced cervical cancer patients treated with concurrent chemoradiotherapy. Oncotarget 2017, 8, 90402–90412. [Google Scholar] [CrossRef]
- Reuzé, S.; Orlhac, F.; Chargari, C.; Nioche, C.; Limkin, E.; Riet, F.; Escande, A.; Haie-Meder, C.; Dercle, L.; Gouy, S.; et al. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget 2017, 27, 43169–43179. [Google Scholar] [CrossRef] [Green Version]
- Li, X.R.; Jin, J.J.; Yu, Y.; Wang, X.H.; Guo, Y.; Sun, H.Z. PET-CT radiomics by integrating primary tumor and peritumoral areas predicts E-cadherin expression and correlates with pelvic lymph node metastasis in early-stage cervical cancer. Eur. Radiol. 2021, 31, 5967–5979. [Google Scholar] [CrossRef]
- Cook, G.J.R.; Azad, G.; Owczarczyk, K.; Siddique, M.; Goh, V. Challenges and Promises of PET Radiomics. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Zlobec, I.; Lugli, A. Epithelial mesenchymal transition and tumor budding in aggressive colorectal cancer: Tumor budding as oncotarget. Oncotarget 2010, 1, 651–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiery, J.P.; Sleeman, J.P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 2006, 7, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Pecorelli, S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int. J. Gynaecol. Obstet. 2009, 105, 103–104. [Google Scholar] [CrossRef]
- Ziai, P.; Hayeri, M.R.; Salei, A.; Salavati, A.; Houshmand, S.; Alavi, A.; Teytelboym, O.M. Role of Optimal Quantification of FDG PET Imaging in the Clinical Practice of Radiology. Radiographics 2016, 36, 481–496. [Google Scholar] [CrossRef] [Green Version]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J. Nucl. Med. 2009, 50 (Suppl. 1), 122S–150S. [Google Scholar] [CrossRef] [Green Version]
- Nioche, C.; Orlhac, F.; Boughdad, S.; Reuzé, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res. 2018, 78, 4786–4789. [Google Scholar] [CrossRef] [Green Version]
- Valdora, F.; Houssami, N.; Rossi, F.; Calabrese, M.; Tagliafico, A.S. Rapid review: Radiomics and breast cancer. Breast Cancer Res. Treat. 2018, 169, 217–229. [Google Scholar] [CrossRef]
- Junttila, M.R.; de Sauvage, F.J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013, 501, 346–354. [Google Scholar] [CrossRef]
- Lugli, A.; Vlajnic, T.; Giger, O.; Karamitopoulou, E.; Patsouris, E.S.; Peros, G.; Terracciano, L.M.; Zlobec, I. Intratumoral budding as a potential parameter of tumor progression in mismatch repair-proficient and mismatch repair-deficient colorectal cancer patients. Hum. Pathol. 2011, 42, 1833–1840. [Google Scholar] [CrossRef]
- Karpathiou, G.; Gavid, M.; Prevot-Bitot, N.; Dhomps, A.; Dumollard, J.M.; Vieville, M.; Lelonge, Y.; Prades, J.M.; Froudarakis, M.; Peoc’h, M. Correlation between Semiquantitative Metabolic Parameters after PET/CT and Histologic Prognostic Factors in Laryngeal and Pharyngeal Carcinoma. Head Neck Pathol. 2020, 14, 724–732. [Google Scholar] [CrossRef]
- Cozzi, L.; Dinapoli, N.; Fogliata, A.; Hsu, W.C.; Reggiori, G.; Lobefalo, F.; Kirienko, M.; Sollini, M.; Franceschini, D.; Comito, T.; et al. Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy. BMC Cancer 2017, 17, 829. [Google Scholar] [CrossRef] [Green Version]
Variables | N (Range) |
---|---|
Age (years) | |
Mean ± SD | 47.95 ± 10.73 |
Median (range) | 49 (25–74) |
FIGO stage (n, %) | |
IB1 | 43, 56.6 |
IB2 | 14, 18.4 |
IIA | 9, 11.9 |
IIB | 10, 13.2 |
Histology (n, %) | |
Squamous cell carcinoma | 54, 71.1 |
Adenocarcinoma/adenosquamous carcinoma | 22, 28.9 |
Tumor size (cm) | |
Mean ± SD | 3.01 ± 1.67 |
Median (range) | 3 (0–8.5) |
Lymphovascular invasion (n, %) | 59, 77.6 |
Deep stromal invasion (n, %) | 46, 60.5 |
Parametrial invasion (n, %) | 28, 36.8 |
Lymph node metastasis (n, %) | 22, 28.9 |
Tumor budding characteristics | |
Intratumor budding counts | |
Mean ± SD | 6.40 ± 9.61 |
Median (range) | 3.5 (0–40) |
Peritumoral budding counts | |
Mean ± SD | 7.49 ± 9.42 |
Median (range) | 4 (0–44) |
Intratumoral budding (n, %) | 47, 61.8 |
Peritumoral budding (n, %) | 62, 81.6 |
Total (n = 76) | Intratumor Budding | Peritumoral Budding | |||||
---|---|---|---|---|---|---|---|
Valuables | Yes (n = 47) | No (n = 29) | p | Yes (n = 62) | No (n = 14) | p | |
Conventional metabolic parameters | |||||||
SUVmax | 0.0406 | 0.8828 | |||||
Mean ± SD | 12.30 ± 7.84 | 12.73 ± 6.48 | 11.60 ± 9.75 | 12.11 ± 7.69 | 13.11 ± 8.76 | ||
Median (range) | 10.64 (3.28–48.94) | 11.35 (5.25–39.79) | 8.37 (3.28–48.94) | 10.50 (4.13–48.94) | 13.34 (3.28–35.52) | ||
MTV | 0.2548 | 0.8723 | |||||
Mean ± SD | 20.64 ± 29.09 | 23.18 ± 34.60 | 16.52 ± 16.45 | 20.78 ± 30.78 | 20.05 ± 20.82 | ||
Median (range) | 13.79 (2.15–220.0) | 15.21 (2.44–220.00) | 10.73 (2.15–76.79) | 14.49 (2.15–220.00) | 11.79 (6.51–76.79) | ||
TLG | 0.0606 | 0.8407 | |||||
Mean ± SD | 170.65 ± 478.22 | 219.30 ± 600.25 | 91.81 ± 101.10 | 179.81 ± 526.27 | 130.08 ± 132.62 | ||
Median (range) | 78.75 (11.16–4118.4) | 85.97 (15.76–4118.40) | 57.09 (11.16–488.82) | 78.74 (11.16–4118.40) | 77.05 (19.25–488.82) | ||
Radiomic features | |||||||
GLCM | 0.0111 | 0.8500 | |||||
Entropy GLCM | |||||||
Mean ± SD | 7.68 ± 1.30 | 7.98 ± 1.10 | 7.21 ± 1.46 | 7.70 ± 1.19 | 7.62 ± 1.76 | ||
Median (range) | 7.662 (4.89–10.22) | 7.78 (5.85–10.22) | 6.99 (4.89–9.88) | 7.57 (4.98–10.22) | 8.10 (4.89–9.88) | ||
NGLDM | 0.0497 | 0.7276 | |||||
Coarseness | |||||||
Mean ± SD | 0.0204 ± 0.0157 | 0.0170 ± 0.0128 | 0.0258 ± 0.0186 | 0.0194 ± 0.0138 | 0.0249 ± 0.0225 | ||
Median (range) | 0.0140 (0.0002–0.0757) | 0.0129 (0.0002–0.0514) | 0.0239 (0.0025–0.0757) | 0.0147 (0.0002–0.0560) | 0.0125 (0.0054–0.0757) | ||
GLRLM | 0.0189 | 0.0939 | |||||
Low Gray-level Run Emphasis | |||||||
Mean ± SD | 0.0073 ± 0.0040 | 0.0065 ± 0.0034 | 0.0087 ± 0.0044 | 0.0068 ± 0.0034 | 0.0096 ± 0.0054 | ||
Median (range) | 0.0071 (0.0013–0.0213) | 0.0057 (0.0013–0.0160) | 0.0081 (0.0020–20.0213) | 0.0062 (0.0013–0.0160) | 0.0081 (0.0020–0.0213) | ||
Long-Run Low Gray-level Emphasis | 0.0101 | 0.1266 | |||||
Mean ± SD | 0.0098 ± 0.0064 | 0.0085 ± 0.0056 | 0.0120 ± 0.0071 | 0.0090 ± 0.0054 | 0.0134 ± 0.0093 | ||
Median (range) | 0.0087 (0.0014–0.0322) | 0.0069 (0.0014–0.0299) | 0.0099 (0.0022–0.0322) | 0.0084 (0.0014–0.0299) | 0.0101 (0.0022–0.0322) | ||
GLZLM | 0.0137 | 0.2547 | |||||
Low Gray-level Zone Emphasis | |||||||
Mean ± SD | 0.0079 ± 0.0051 | 0.0069 ± 0.0045 | 0.0096 ± 0.0061 | 0.0074 ± 0.0040 | 0.0104 ± 0.0081 | ||
Median (range) | 0.0071 (0.0014–0.0327) | 0.0060 (0.0014–0.0206) | 0.0085 (0.0021–0.0327) | 0.0070 (0.0014–0.0206) | 0.0079 (0.0021–0.0327) | ||
Short-Zone Low Gray-level Emphasis | 0.0154 | 0.2177 | |||||
Mean ± SD | 0.0045 ± 0.0026 | 0.0039 ± 0.0019 | 0.0054 ± 0.0033 | 0.0042 ± 0.0020 | 0.0058 ± 0.0043 | ||
Median (range) | 0.0039 (0.0008–0.0183) | 0.0036 (0.0011–0.0100) | 0.0047 (0.0084–0.0183) | 0.0038 (0.0008–0.0100) | 0.0043 (0.0016–0.0183) | ||
Zone Length Nonuniformity Zone | 0.0056 | 0.2492 | |||||
Mean ± SD | 12.95 ± 11.89 | 15.47 ± 13.76 | 8.88 ± 6.28 | 13.53 ± 12.55 | 10.42 ± 8.22 | ||
Median (range) | 9.63 (1.88–80.85) | 11.86 (3.40–80.85) | 7.55 (1.88–32.24) | 9.63 (1.88–80.85) | 8.58 (2.77–32.24) | ||
Shape and Size | 0.0065 | 0.9040 | |||||
Sphericity | |||||||
Mean ± SD | 5208.48 ± 4024.88 | 5676.9 ± 4507.4 | 3963.1 ± 2723.4 | 5238.6 ± 4203.5 | 5075.1 ± 3244.7 | ||
Median (range) | 4249.8 (714.7–26258.1) | 4894.7 (1227.2–26258.8) | 3319.1 (714.7–11649.2) | 4362.1 (1122.0–26258.8) | 4005.5 (714.7–11649.2) | ||
Compacity | 0.0108 | 0.4859 | |||||
Mean ± SD | 4.44 ± 1.32 | 4.75 ± 1.34 | 3.95 ± 1.16 | 4.42 ± 1.34 | 4.52 ± 1.29 | ||
Median (range) | 4.27 (2.27–8.88) | 4.58 (2.76–8.88) | 3.77 (2.27–6.28) | 4.23 (2.39–8.88) | 4.35 (2.27–6.28) | ||
Histogram | 0.7682 | ||||||
Kurtosis | |||||||
Mean ± SD | 3.00 ± 0.94 | 2.81 ± 0.68 | 3.30 ± 1.21 | 2.94 ± 0.80 | 3.25 ± 1.42 | ||
Median (range) | 2.72 (1.76–7.47) | 2.63 (1.76–5.05) | 2.84 (2.12–7.47) | 2.72 (1.76–5.96) | 2.69 (2.15–7.47) | ||
EntropyHist | 0.9706 | ||||||
Mean ± SD | 4.33 ± 0.76 | 4.50 ± 0.63 | 4.06 ± 0.88 | 4.33 ± 0.69 | 4.34 ± 1.05 | ||
Median (range) | 4.40 (2.68–5.74) | 4.50 (3.18–5.74) | 4.01 (2.68–5.49) | 4.36 (2.68–5.74) | 4.77 (2.71–5.49) | ||
EnergyHist | 0.7579 | ||||||
Mean ± SD | 0.0685 ± 0.0403 | 0.0591 ± 0.0320 | 0.0836 ± 0.0478 | 0.0670 ± 0.0372 | 0.0749 ± 0.0534 | ||
Median (range) | 0.0576 (0.0212–0.1820) | 0.0518 (0.0212–0.1816) | 0.0722 (0.0244–0.1820) | 0.0603 (0.0212–0.1820) | 0.0474 (0.0244–0.1685) |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variables | Odds Ratio | 95% CI | p | Odds Ratio | 95% CI | p |
Conventional metabolic parameters | ||||||
SUVmax (>8.858) | 3.3393 | 1.2685–8.7908 | 0.0146 | 2.4973 | 0.8933–6.9810 | 0.0810 |
MTV (cm3, >16.3) | 2.5385 | 0.9092–7.0869 | 0.0753 | |||
TLG (>32.0247) | 4.4211 | 1.3282–14.7159 | 0.0154 | |||
Radiomic features | ||||||
GLCM | ||||||
EntropyGLCM (>7.1782) | 5.3554 | 1.9520–14.6928 | 0.0011 | 0.6139 | 0.0708–5.3208 | 0.6579 |
NGLDM | ||||||
Coarseness (≤0.0254) | 3.9407 | 1.4085–11.0251 | 0.0090 | 1.0604 | 0.2057–5.4660 | 0.9441 |
GLRLM | ||||||
Low Gray-level Run Emphasis (≤0.0081) | 3.4533 | 1.2588–9.4739 | 0.0161 | |||
Long-Run Low Gray-level Emphasis (≤0.0094) | 3.3393 | 1.2685–8.7908 | 0.0146 | 1.6936 | 0.4822–5.9481 | 0.4111 |
GLZLM | ||||||
Low Gray-level Zone Emphasis (≤0.0074) | 4.0533 | 1.5196–10.8155 | 0.0052 | |||
Short-Zone Low Gray-level Emphasis (≤0.005) | 3.9407 | 1.4085–11.0251 | 0.0090 | |||
Zone Length Nonuniformity Zone (>14.1652) | 9.1607 | 1.9444–43.1600 | 0.0051 | 5.3971 | 0.9464–30.7790 | 0.0577 |
Shape and Size | ||||||
Sphericity (>4160.0834) | 6.0893 | 2.1463–17.2763 | 0.0007 | |||
Compacity (>3.4057) | 8.7344 | 2.4798–30.7648 | 0.0007 | 5.0047 | 1.1636–21.5253 | 0.0305 |
Histogram | ||||||
Kurtosis (≤3.1264) | 3.9609 | 1.3783–11.3826 | 0.0106 | |||
EntropyHist (>4.0608) | 5.9815 | 2.1219–16.8615 | 0.0007 | |||
EnergyHist (≤0.0688) | 5.9815 | 2.1219–16.8615 | 0.0007 | 2.9011 | 0.4526–18.5937 | 0.2611 |
Model | AUC (95% CI) | NRI (95% CI) | p | IDI (95% CI) | p |
---|---|---|---|---|---|
Conventional metabolic parameters | |||||
RF | 0.673 (0.454–0.893) | Reference | – | Reference | – |
SVM | 0.719 (0.488–0.950) | Reference | – | Reference | – |
NN | 0.712 (0.469–0.956) | Reference | – | Reference | – |
Conventional metabolic parameters + radiomic features | |||||
RF | 0.752 (0.561–0.943) | 0.183 (−0.115–0.482) | 0.229 | 0.183 (−0.129–0.495) | 0.250 |
SVM | 0.784 (0.576–0.993) | 0.105 (−0.334–0.543) | 0.640 | 0.105 (−0.359–0.543) | 0.658 |
NN | 0.752 (0.561–0.942) | 0.275 (−0.158–0.707) | 0.214 | 0.275 (−0.178–0.727) | 0.234 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chong, G.O.; Park, S.-H.; Jeong, S.Y.; Kim, S.J.; Park, N.J.-Y.; Lee, Y.H.; Lee, S.-W.; Hong, D.G.; Park, J.Y.; Han, H.S. Prediction Model for Tumor Budding Status Using the Radiomic Features of F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Cervical Cancer. Diagnostics 2021, 11, 1517. https://doi.org/10.3390/diagnostics11081517
Chong GO, Park S-H, Jeong SY, Kim SJ, Park NJ-Y, Lee YH, Lee S-W, Hong DG, Park JY, Han HS. Prediction Model for Tumor Budding Status Using the Radiomic Features of F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Cervical Cancer. Diagnostics. 2021; 11(8):1517. https://doi.org/10.3390/diagnostics11081517
Chicago/Turabian StyleChong, Gun Oh, Shin-Hyung Park, Shin Young Jeong, Su Jeong Kim, Nora Jee-Young Park, Yoon Hee Lee, Sang-Woo Lee, Dae Gy Hong, Ji Young Park, and Hyung Soo Han. 2021. "Prediction Model for Tumor Budding Status Using the Radiomic Features of F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Cervical Cancer" Diagnostics 11, no. 8: 1517. https://doi.org/10.3390/diagnostics11081517
APA StyleChong, G. O., Park, S.-H., Jeong, S. Y., Kim, S. J., Park, N. J.-Y., Lee, Y. H., Lee, S.-W., Hong, D. G., Park, J. Y., & Han, H. S. (2021). Prediction Model for Tumor Budding Status Using the Radiomic Features of F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Cervical Cancer. Diagnostics, 11(8), 1517. https://doi.org/10.3390/diagnostics11081517