Imaging Modalities Employed in Diabetic Retinopathy Screening: A Review and Meta-Analysis
<p>Forest plot presenting the technical failure of the analyzed techniques. Overall values for mydriatic fundus photography: 3.4% (95% CI: 2.3–4.6%, I<sup>2</sup> = 82.7%), for non-mydriatic fundus imaging: 12.1% (95% CI: 5.4–18.7%, I<sup>2</sup> = 98.6%), smartphone-based imaging: 5.3% (1.5–9.0%; I<sup>2</sup> = 87.7%), ultrawide-field imaging: 2.2% (0.3–4.0%; I<sup>2</sup> = 89.5%). Overall, for all techniques: 6.6% (4.9–8.3%; I<sup>2</sup> = 97.2%). Weights are calculated from random effects analysis.</p> "> Figure 2
<p>Forest plots for the sensitivity and specificity of mydriatic, non-mydriatic and smartphone-based imaging fundus imaging.</p> "> Figure 3
<p>Forest plots for the sensitivity and specificity of mydriatic fundus photography.</p> "> Figure 4
<p>Forest plots for the sensitivity and specificity of non-mydriatic fundus photography.</p> "> Figure 5
<p>Forest plots for the sensitivity and specificity of smartphone-based fundus imaging.</p> "> Figure 6
<p>Receiver operating characteristic curve for mydriatic fundus imaging.</p> "> Figure 7
<p>Receiver operating characteristic curve for non-mydriatic fundus imaging.</p> "> Figure 8
<p>Receiver operating characteristic curve for smartphone-based imaging.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Statistical Analysis
3. Results
3.1. Technical Failure Rate
3.2. Sensitivity and Specificity in Cases without Technical Failure
4. Discussion
4.1. Fundus Examination vs. Retinal Photography
4.2. Monoscopic vs. Stereoscopic Fundus Photography
4.3. DR Grading
4.4. Mydriatic Versus Non-Mydriatic Fundus Photography
4.5. Single vs. Multiple-Field Imaging
4.6. Handheld and Smartphone-Based Devices
4.7. Ultrawide-Field Imaging
4.8. Multimodal Imaging Techniques and Potential Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Appendix A. Search Strategy
Appendix A.1. PubMed Search (Publication Date 1/10/11–06/30/2021)
Appendix A.2. Web of Science Search (Publication Date 1/10/11–6/30/2021)
References
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global Estimates of Diabetes Prevalence for 2013 and Projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC) Worldwide Trends in Diabetes since 1980: A Pooled Analysis of 751 Population-Based Studies with 4.4 Million Participants. Lancet 2016, 387, 1513–1530. [CrossRef] [Green Version]
- World Health Organization. Global Report on Diabetes 2016. Available online: https://www.who.int/publications/i/item/9789241565257 (accessed on 15 March 2021).
- International Diabetes Federation (IDF) IDF Diabetes Atlas 7th Edition. Available online: http://www.diabetesatlas.org/ (accessed on 13 October 2017).
- Yau, J.W.Y.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.-J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.; Wong, T.Y.; Sabanayagam, C. Epidemiology of Diabetic Retinopathy, Diabetic Macular Edema and Related Vision Loss. Eye Vis. 2015, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Diabetes Care and Research in Europe: The Saint Vincent Declaration. Diabet. Med. 1990, 7, 360. [CrossRef]
- Javitt, J.C.; Aiello, L.P. Cost-Effectiveness of Detecting and Treating Diabetic Retinopathy. Ann. Intern. Med. 1996, 124, 164–169. [Google Scholar] [CrossRef]
- Rohan, T.E.; Frost, C.D.; Wald, N.J. Prevention of Blindness by Screening for Diabetic Retinopathy: A Quantitative Assessment. BMJ 1989, 299, 1198–1201. [Google Scholar] [CrossRef] [Green Version]
- Schachat, A.P.; Hyman, L.; Leske, M.C.; Connell, A.M.; Hiner, C.; Javornik, N.; Alexander, J. Comparison of Diabetic Retinopathy Detection by Clinical Examinations and Photograph Gradings. Barbados (West Indies) Eye Study Group. Arch. Ophthalmol. 1993, 111, 1064–1070. [Google Scholar] [CrossRef]
- Augustin, A.J.; Bopp, S.; Fechner, M.; Holz, F.; Sandner, D.; Winkgen, A.-M.; Khoramnia, R.; Neuhann, T.; Warscher, M.; Spitzer, M.; et al. Three-Year Results from the Retro-IDEAL Study: Real-World Data from Diabetic Macular Edema (DME) Patients Treated with ILUVIEN (0.19 Mg Fluocinolone Acetonide Implant). Eur. J. Ophthalmol. 2020, 30, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.Y.; Sun, J.; Kawasaki, R.; Ruamviboonsuk, P.; Gupta, N.; Lansingh, V.C.; Maia, M.; Mathenge, W.; Moreker, S.; Muqit, M.M.K.; et al. Guidelines on Diabetic Eye Care: The International Council of Ophthalmology Recommendations for Screening, Follow-Up, Referral, and Treatment Based on Resource Settings. Ophthalmology 2018, 125, 1608–1622. [Google Scholar] [CrossRef] [Green Version]
- Abràmoff, M.D.; Folk, J.C.; Han, D.P.; Walker, J.D.; Williams, D.F.; Russell, S.R.; Massin, P.; Cochener, B.; Gain, P.; Tang, L.; et al. Automated Analysis of Retinal Images for Detection of Referable Diabetic Retinopathy. JAMA Ophthalmol. 2013, 131, 351–357. [Google Scholar] [CrossRef] [Green Version]
- Bragge, P.; Gruen, R.L.; Chau, M.; Forbes, A.; Taylor, H.R. Screening for Presence or Absence of Diabetic Retinopathy: A Meta-Analysis. Arch. Ophthalmol. 2011, 129, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Chen, R.; Lu, Y.; Dou, X.; Ye, B.; Cai, Z.; Pu, Z.; Mou, L. Single-Field Non-Mydriatic Fundus Photography for Diabetic Retinopathy Screening: A Systematic Review and Meta-Analysis. Ophthalmic Res. 2019, 62, 61–67. [Google Scholar] [CrossRef]
- Pugh, J.A.; Jacobson, J.M.; Van Heuven, W.A.; Watters, J.A.; Tuley, M.R.; Lairson, D.R.; Lorimor, R.J.; Kapadia, A.S.; Velez, R. Screening for Diabetic Retinopathy. The Wide-Angle Retinal Camera. Diabetes Care 1993, 16, 889–895. [Google Scholar] [CrossRef]
- Harding, S.P.; Broadbent, D.M.; Neoh, C.; White, M.C.; Vora, J. Sensitivity and Specificity of Photography and Direct Ophthalmoscopy in Screening for Sight Threatening Eye Disease: The Liverpool Diabetic Eye Study. BMJ 1995, 311, 1131–1135. [Google Scholar] [CrossRef] [Green Version]
- Joannou, J.; Kalk, W.J.; Mahomed, I.; Ntsepo, S.; Berzin, M.; Joffe, B.I.; Raal, F.J.; Sachs, E.; van der Merwe, M.T.; Wing, J.R. Screening for Diabetic Retinopathy in South Africa with 60 Degrees Retinal Colour Photography. J. Intern. Med. 1996, 239, 43–47. [Google Scholar] [CrossRef]
- Stellingwerf, C.; Hardus, P.L.; Hooymans, J.M. Two-Field Photography Can Identify Patients with Vision-Threatening Diabetic Retinopathy: A Screening Approach in the Primary Care Setting. Diabetes Care 2001, 24, 2086–2090. [Google Scholar] [CrossRef] [Green Version]
- Olson, J.A.; Strachan, F.M.; Hipwell, J.H.; Goatman, K.A.; McHardy, K.C.; Forrester, J.V.; Sharp, P.F. A Comparative Evaluation of Digital Imaging, Retinal Photography and Optometrist Examination in Screening for Diabetic Retinopathy. Diabet. Med. 2003, 20, 528–534. [Google Scholar] [CrossRef]
- Scanlon, P.H.; Malhotra, R.; Thomas, G.; Foy, C.; Kirkpatrick, J.N.; Lewis-Barned, N.; Harney, B.; Aldington, S.J. The Effectiveness of Screening for Diabetic Retinopathy by Digital Imaging Photography and Technician Ophthalmoscopy. Diabet. Med. 2003, 20, 467–474. [Google Scholar] [CrossRef]
- Scanlon, P.H.; Malhotra, R.; Greenwood, R.H.; Aldington, S.J.; Foy, C.; Flatman, M.; Downes, S. Comparison of Two Reference Standards in Validating Two Field Mydriatic Digital Photography as a Method of Screening for Diabetic Retinopathy. Br. J. Ophthalmol. 2003, 87, 1258–1263. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.G. The Accuracy of Digital-Video Retinal Imaging to Screen for Diabetic Retinopathy: An Analysis of Two Digital-Video Retinal Imaging Systems Using Standard Stereoscopic Seven-Field Photography and Dilated Clinical Examination as Reference Standards. Trans. Am. Ophthalmol. Soc. 2004, 102, 321–340. [Google Scholar] [PubMed]
- Murgatroyd, H.; Ellingford, A.; Cox, A.; Binnie, M.; Ellis, J.D.; MacEwen, C.J.; Leese, G.P. Effect of Mydriasis and Different Field Strategies on Digital Image Screening of Diabetic Eye Disease. Br. J. Ophthalmol. 2004, 88, 920–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aptel, F.; Denis, P.; Rouberol, F.; Thivolet, C. Screening of Diabetic Retinopathy: Effect of Field Number and Mydriasis on Sensitivity and Specificity of Digital Fundus Photography. Diabetes Metab. 2008, 34, 290–293. [Google Scholar] [CrossRef]
- Molina Fernández, E.; Valero Moll, M.S.; Pedregal González, M.; Calvo Lozano, J.; Sánchez Ramos, J.L.; Díaz Rodríguez, E.; Uceda Torres, R. Validation of the electronic mailing of retinographs of diabetic patients in order to detect retinopathy in primary care. Aten. Primaria 2008, 40, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, A.S.; Rothschuh, A.; Ulbig, M.W.; Blum, M. Digital Fundus Image Grading with the Non-Mydriatic Visucam(PRO NM) versus the FF450(plus) Camera in Diabetic Retinopathy. Acta Ophthalmol. 2008, 86, 177–182. [Google Scholar] [CrossRef]
- Baeza, M.; Orozco-Beltrán, D.; Gil-Guillen, V.F.; Pedrera, V.; Ribera, M.C.; Pertusa, S.; Merino, J. Screening for Sight Threatening Diabetic Retinopathy Using Non-Mydriatic Retinal Camera in a Primary Care Setting: To Dilate or Not to Dilate? Int. J. Clin. Pract. 2009, 63, 433–438. [Google Scholar] [CrossRef]
- Sengupta, S.; Sindal, M.D.; Baskaran, P.; Pan, U.; Venkatesh, R. Sensitivity and Specificity of Smartphone-Based Retinal Imaging for Diabetic Retinopathy: A Comparative Study. Ophthalmol Retina 2019, 3, 146–153. [Google Scholar] [CrossRef]
- Lois, N.; Cook, J.A.; Wang, A.; Aldington, S.; Mistry, H.; Maredza, M.; McAuley, D.; Aslam, T.; Bailey, C.; Chong, V.; et al. Evaluation of a New Model of Care for People with Complications of Diabetic Retinopathy: The EMERALD Study. Ophthalmology 2021, 128, 561–573. [Google Scholar] [CrossRef]
- Williams, R.; Nussey, S.; Humphry, R.; Thompson, G. Assessment of Non-Mydriatic Fundus Photography in Detection of Diabetic Retinopathy. Br. Med. J. 1986, 293, 1140–1142. [Google Scholar] [CrossRef] [Green Version]
- Peters, A.L.; Davidson, M.B.; Ziel, F.H. Cost-Effective Screening for Diabetic Retinopathy Using a Nonmydriatic Retinal Camera in a Prepaid Health-Care Setting. Diabetes Care 1993, 16, 1193–1195. [Google Scholar] [CrossRef]
- Siu, S.C.; Ko, T.C.; Wong, K.W.; Chan, W.N. Effectiveness of Non-Mydriatic Retinal Photography and Direct Ophthalmoscopy in Detecting Diabetic Retinopathy. Hong Kong Med. J. 1998, 4, 367–370. [Google Scholar] [PubMed]
- Taylor, D.J.; Fisher, J.; Jacob, J.; Tooke, J.E. The Use of Digital Cameras in a Mobile Retinal Screening Environment. Diabet. Med. 1999, 16, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Bursell, S.E.; Cavallerano, J.D.; Cavallerano, A.A.; Clermont, A.C.; Birkmire-Peters, D.; Aiello, L.P.; Aiello, L.M. Joslin Vision Network Research Team Stereo Nonmydriatic Digital-Video Color Retinal Imaging Compared with Early Treatment Diabetic Retinopathy Study Seven Standard Field 35-Mm Stereo Color Photos for Determining Level of Diabetic Retinopathy. Ophthalmology 2001, 108, 572–585. [Google Scholar] [CrossRef]
- Maberley, D.; Cruess, A.F.; Barile, G.; Slakter, J. Digital Photographic Screening for Diabetic Retinopathy in the James Bay Cree. Ophthalmic Epidemiol. 2002, 9, 169–178. [Google Scholar] [CrossRef]
- Lin, D.Y.; Blumenkranz, M.S.; Brothers, R.J.; Grosvenor, D.M. The Sensitivity and Specificity of Single-Field Nonmydriatic Monochromatic Digital Fundus Photography with Remote Image Interpretation for Diabetic Retinopathy Screening: A Comparison with Ophthalmoscopy and Standardized Mydriatic Color Photography. Am. J. Ophthalmol. 2002, 134, 204–213. [Google Scholar] [CrossRef]
- Perrier, M.; Boucher, M.C.; Angioi, K.; Gresset, J.A.; Olivier, S. Comparison of Two, Three and Four 45 Degrees Image Fields Obtained with the Topcon CRW6 Nonmydriatic Camera for Screening for Diabetic Retinopathy. Can. J. Ophthalmol. 2003, 38, 569–574. [Google Scholar] [CrossRef]
- Herbert, H.M.; Jordan, K.; Flanagan, D.W. Is Screening with Digital Imaging Using One Retinal View Adequate? Eye 2003, 17, 497–500. [Google Scholar] [CrossRef]
- Phiri, R.; Keeffe, J.E.; Harper, C.A.; Taylor, H.R. Comparative Study of the Polaroid and Digital Non-Mydriatic Cameras in the Detection of Referrable Diabetic Retinopathy in Australia. Diabet. Med. 2006, 23, 867–872. [Google Scholar] [CrossRef]
- Lopez-Bastida, J.; Cabrera-Lopez, F.; Serrano-Aguilar, P. Sensitivity and Specificity of Digital Retinal Imaging for Screening Diabetic Retinopathy. Diabet. Med. 2007, 24, 403–407. [Google Scholar] [CrossRef]
- Vujosevic, S.; Benetti, E.; Massignan, F.; Pilotto, E.; Varano, M.; Cavarzeran, F.; Avogaro, A.; Midena, E. Screening for Diabetic Retinopathy: 1 and 3 Nonmydriatic 45-Degree Digital Fundus Photographs vs. 7 Standard Early Treatment Diabetic Retinopathy Study Fields. Am. J. Ophthalmol. 2009, 148, 111–118. [Google Scholar] [CrossRef]
- Gupta, V.; Bansal, R.; Gupta, A.; Bhansali, A. Sensitivity and Specificity of Nonmydriatic Digital Imaging in Screening Diabetic Retinopathy in Indian Eyes. Indian J. Ophthalmol. 2014, 62, 851. [Google Scholar] [CrossRef] [PubMed]
- Ryan, M.E.; Rajalakshmi, R.; Prathiba, V.; Anjana, R.M.; Ranjani, H.; Narayan, K.M.V.; Olsen, T.W.; Mohan, V.; Ward, L.A.; Lynn, M.J.; et al. Comparison among Methods of Retinopathy Assessment (CAMRA) Study: Smartphone, Nonmydriatic, and Mydriatic Photography. Ophthalmology 2015, 122, 2038–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajalakshmi, R.; Arulmalar, S.; Usha, M.; Prathiba, V.; Kareemuddin, K.S.; Anjana, R.M.; Mohan, V. Validation of Smartphone Based Retinal Photography for Diabetic Retinopathy Screening. PLoS ONE 2015, 10, e0138285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, A.; Morescalchi, F.; Costagliola, C.; Delcassi, L.; Semeraro, F. Comparison of Smartphone Ophthalmoscopy with Slit-Lamp Biomicroscopy for Grading Diabetic Retinopathy. Am. J. Ophthalmol. 2015, 159, 360–364.e1. [Google Scholar] [CrossRef] [PubMed]
- Toy, B.C.; Myung, D.J.; He, L.; Pan, C.K.; Chang, R.T.; Polkinhorne, A.; Merrell, D.; Foster, D.; Blumenkranz, M.S. Smartphone-based dilated fundus photography and near visual acuity testing as inexpensive screening tools to detect referral warranted diabetic eye disease. Retina 2016, 36, 1000–1008. [Google Scholar] [CrossRef]
- Kim, T.N.; Myers, F.; Reber, C.; Loury, P.J.; Loumou, P.; Webster, D.; Echanique, C.; Li, P.; Davila, J.R.; Maamari, R.N.; et al. A Smartphone-Based Tool for Rapid, Portable, and Automated Wide-Field Retinal Imaging. Transl. Vis. Sci. Technol. 2018, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajalakshmi, R.; Subashini, R.; Anjana, R.M.; Mohan, V. Automated Diabetic Retinopathy Detection in Smartphone-Based Fundus Photography Using Artificial Intelligence. Eye 2018, 32, 1138–1144. [Google Scholar] [CrossRef]
- Silva, P.S.; Cavallerano, J.D.; Sun, J.K.; Noble, J.; Aiello, L.M.; Aiello, L.P. Nonmydriatic Ultrawide Field Retinal Imaging Compared with Dilated Standard 7-Field 35-Mm Photography and Retinal Specialist Examination for Evaluation of Diabetic Retinopathy. Am. J. Ophthalmol. 2012, 154, 549–559.e2. [Google Scholar] [CrossRef]
- Szeto, S.K.H.; Wong, R.; Lok, J.; Tang, F.; Sun, Z.; Tso, T.; Lam, T.C.H.; Tham, C.C.; Ng, D.S.; Cheung, C.Y. Non-Mydriatic Ultrawide Field Scanning Laser Ophthalmoscopy Compared with Dilated Fundal Examination for Assessment of Diabetic Retinopathy and Diabetic Macular Oedema in Chinese Individuals with Diabetes Mellitus. Br. J. Ophthalmol. 2019, 103, 1327–1331. [Google Scholar] [CrossRef]
- Manjunath, V.; Papastavrou, V.; Steel, D.H.W.; Menon, G.; Taylor, R.; Peto, T.; Talks, J. Wide-Field Imaging and OCT vs Clinical Evaluation of Patients Referred from Diabetic Retinopathy Screening. Eye 2015, 29, 416–423. [Google Scholar] [CrossRef]
- Horton, M.B.; Silva, P.S.; Cavallerano, J.D.; Aiello, L.P. Operational Components of Telemedicine Programs for Diabetic Retinopathy. Curr. Diab. Rep. 2016, 16, 128. [Google Scholar] [CrossRef] [PubMed]
- Horton, M.B.; Silva, P.S.; Cavallerano, J.D.; Aiello, L.P. Clinical Components of Telemedicine Programs for Diabetic Retinopathy. Curr. Diab. Rep. 2016, 16, 129. [Google Scholar] [CrossRef] [PubMed]
- Obuchowski, N.A.; Graham, R.J.; Baker, M.E.; Powell, K.A. Ten Criteria for Effective Screening: Their Application to Multislice CT Screening for Pulmonary and Colorectal Cancers. AJR Am. J. Roentgenol. 2001, 176, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Edwards, R.T. Diabetic Retinopathy Screening: A Systematic Review of the Economic Evidence. Diabet. Med. 2010, 27, 249–256. [Google Scholar] [CrossRef]
- Burns-Cox, C.J.; Hart, J.C. Screening of Diabetics for Retinopathy by Ophthalmic Opticians. Br. Med. J. 1985, 290, 1052–1054. [Google Scholar] [CrossRef] [Green Version]
- Hulme, S.A.; Tin-U, A.; Hardy, K.J.; Joyce, P.W. Evaluation of a District-Wide Screening Programme for Diabetic Retinopathy Utilizing Trained Optometrists Using Slit-Lamp and Volk Lenses. Diabet. Med. 2002, 19, 741–745. [Google Scholar] [CrossRef]
- Kleinstein, R.N.; Roseman, J.M.; Herman, W.H.; Holcombe, J.; Louv, W.C. Detection of Diabetic Retinopathy by Optometrists. J. Am. Optom. Assoc. 1987, 58, 879–882. [Google Scholar]
- Schmid, K.L.; Swann, P.G.; Pedersen, C.; Schmid, L.M. The Detection of Diabetic Retinopathy by Australian Optometrists. Clin. Exp. Optom. 2002, 85, 221–228. [Google Scholar] [CrossRef]
- Reenders, K.; de Nobel, E.; van den Hoogen, H.; van Weel, C. Screening for Diabetic Retinopathy by General Practitioners. Scand. J. Prim. Health Care 1992, 10, 306–309. [Google Scholar] [CrossRef] [Green Version]
- Verma, L.; Prakash, G.; Tewari, H.K.; Gupta, S.K.; Murthy, G.V.S.; Sharma, N. Screening for Diabetic Retinopathy by Non-Ophthalmologists: An Effective Public Health Tool. Acta Ophthalmol. Scand. 2003, 81, 373–377. [Google Scholar] [CrossRef]
- Moss, S.E.; Klein, R.; Kessler, S.D.; Richie, K.A. Comparison between Ophthalmoscopy and Fundus Photography in Determining Severity of Diabetic Retinopathy. Ophthalmology 1985, 92, 62–67. [Google Scholar] [CrossRef]
- Forrest, R.D.; Jackson, C.A.; Yudkin, J.S. Screening for Diabetic Retinopathy—Comparison of a Nurse and a Doctor with Retinal Photography. Diabetes Res. 1987, 5, 39–42. [Google Scholar]
- Taylor, R.; Lovelock, L.; Tunbridge, W.M.; Alberti, K.G.; Brackenridge, R.G.; Stephenson, P.; Young, E. Comparison of Non-Mydriatic Retinal Photography with Ophthalmoscopy in 2159 Patients: Mobile Retinal Camera Study. BMJ 1990, 301, 1243–1247. [Google Scholar] [CrossRef] [Green Version]
- Sundling, V.; Gulbrandsen, P.; Straand, J. Sensitivity and Specificity of Norwegian Optometrists’ Evaluation of Diabetic Retinopathy in Single-Field Retinal Images—A Cross-Sectional Experimental Study. BMC Health Serv. Res. 2013, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Yogesan, K.; Kumar, S.; Goldschmidt, L.; Cuadros, J. Teleophthalmology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; ISBN 9783540705154. [Google Scholar]
- Lee, V.S.; Kingsley, R.M.; Lee, E.T.; Lu, M.; Russell, D.; Asal, N.R.; Bradford, R.H., Jr.; Wilkinson, C.P. The Diagnosis of Diabetic Retinopathy. Ophthalmology 1993, 100, 1504–1512. [Google Scholar] [CrossRef]
- Klein, R.; Klein, B.E.; Neider, M.W.; Hubbard, L.D.; Meuer, S.M.; Brothers, R.J. Diabetic Retinopathy as Detected Using Ophthalmoscopy, a Nonmydriatic Camera and a Standard Fundus Camera. Ophthalmology 1985, 92, 485–491. [Google Scholar] [CrossRef]
- Emanuele, N.; Klein, R.; Moritz, T.; Davis, M.D.; Glander, K.; Anderson, R.; Reda, D.; Duckworth, W.; Abraira, C. VADT Study Group Comparison of Dilated Fundus Examinations with Seven-Field Stereo Fundus Photographs in the Veterans Affairs Diabetes Trial. J. Diabetes Complicat. 2009, 23, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Kinyoun, J.L.; Martin, D.C.; Fujimoto, W.Y.; Leonetti, D.L. Ophthalmoscopy versus Fundus Photographs for Detecting and Grading Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 1992, 33, 1888–1893. [Google Scholar]
- Diabetic Retinopathy Study Report Number 6. Design, Methods, and Baseline Results. Report Number 7. A Modification of the Airlie House Classification of Diabetic Retinopathy. Prepared by the Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 1981, 21, 1–226.
- Allen, L. Ocular fundus photography: Suggestions for achieving consistently good pictures and instructions for stereoscopic photography. Am. J. Ophthalmol. 1964, 57, 13–28. [Google Scholar] [CrossRef]
- United States. Public Health Service Symposium on the Treatment of Diabetic Retinopathy; United States: Washington, DC, USA, 1969. [Google Scholar]
- Early Treatment Diabetic Retinopathy Study Research Group. Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs—An Extension of the Modified Airlie House Classification: ETDRS Report Number 10. Ophthalmology 1991, 98, 786–806. [Google Scholar] [CrossRef]
- Li, H.K.; Hubbard, L.D.; Danis, R.P.; Esquivel, A.; Florez-Arango, J.F.; Krupinski, E.A. Monoscopic versus Stereoscopic Retinal Photography for Grading Diabetic Retinopathy Severity. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3184–3192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.V.; Vigil, E.M.; Hassan, M.; Halim, M.S.; Baluyot, S.C.; Guzman, H.A.; Afridi, R.; Do, D.V.; Sepah, Y.J. Comparison of Montage with Conventional Stereoscopic Seven-Field Photographs for Assessment of ETDRS Diabetic Retinopathy Severity. Int. J. Retina Vitreous 2019, 5, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kernt, M.; Hadi, I.; Pinter, F.; Seidensticker, F.; Hirneiss, C.; Haritoglou, C.; Kampik, A.; Ulbig, M.W.; Neubauer, A.S. Assessment of Diabetic Retinopathy Using Nonmydriatic Ultra-Widefield Scanning Laser Ophthalmoscopy (Optomap) Compared with ETDRS 7-Field Stereo Photography. Diabetes Care 2012, 35, 2459–2463. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, M.L.; Broe, R.; Frydkjaer-Olsen, U.; Olsen, B.S.; Mortensen, H.B.; Peto, T.; Grauslund, J. Comparison between Early Treatment Diabetic Retinopathy Study 7-Field Retinal Photos and Non-Mydriatic, Mydriatic and Mydriatic Steered Widefield Scanning Laser Ophthalmoscopy for Assessment of Diabetic Retinopathy. J. Diabetes Complicat. 2015, 29, 99–104. [Google Scholar] [CrossRef]
- Rudnisky, C.J.; Tennant, M.T.S.; de Leon, A.R.; Hinz, B.J.; Greve, M.D.J. Benefits of Stereopsis When Identifying Clinically Significant Macular Edema via Teleophthalmology. Can. J. Ophthalmol. 2006, 41, 727–732. [Google Scholar] [CrossRef]
- Sapkota, R.; Chen, Z.; Zheng, D.; Pardhan, S. The Profile of Sight-Threatening Diabetic Retinopathy in Patients Attending a Specialist Eye Clinic in Hangzhou, China. BMJ Open Ophthalmol. 2019, 4, e000236. [Google Scholar] [CrossRef]
- Scanlon, P.H. Update on Screening for Sight-Threatening Diabetic Retinopathy. Ophthalmic Res. 2019, 62, 218–224. [Google Scholar] [CrossRef]
- Davies, E.G.; Petty, R.G.; Kohner, E.M. Long Term Effectiveness of Photocoagulation for Diabetic Maculopathy. Eye 1989, 3 Pt 6, 764–767. [Google Scholar] [CrossRef]
- Chew, E.Y.; Ferris, F.L., 3rd; Csaky, K.G.; Murphy, R.P.; Agrón, E.; Thompson, D.J.S.; Reed, G.F.; Schachat, A.P. The Long-Term Effects of Laser Photocoagulation Treatment in Patients with Diabetic Retinopathy: The Early Treatment Diabetic Retinopathy Follow-up Study. Ophthalmology 2003, 110, 1683–1689. [Google Scholar] [CrossRef]
- Elman, M.J.; Qin, H.; Aiello, L.P.; Beck, R.W.; Bressler, N.M.; Ferris, F.L., 3rd; Glassman, A.R.; Maturi, R.K.; Melia, M.; Diabetic Retinopathy Clinical Research Network. Intravitreal Ranibizumab for Diabetic Macular Edema with Prompt versus Deferred Laser Treatment: Three-Year Randomized Trial Results. Ophthalmology 2012, 119, 2312–2318. [Google Scholar] [CrossRef] [Green Version]
- Wells, J.A.; Glassman, A.R.; Ayala, A.R.; Jampol, L.M.; Bressler, N.M.; Bressler, S.B.; Brucker, A.J.; Ferris, F.L.; Hampton, G.R.; Jhaveri, C.; et al. Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema: Two-Year Results from a Comparative Effectiveness Randomized Clinical Trial. Ophthalmology 2016, 123, 1351–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivaprasad, S.; Toby Prevost, A.; Vasconcelos, J.C.; Riddell, A.; Murphy, C.; Kelly, J.; Bainbridge, J.; Tudor-Edwards, R.; Hopkins, D.; Hykin, P.; et al. Clinical Efficacy of Intravitreal Aflibercept versus Panretinal Photocoagulation for Best Corrected Visual Acuity in Patients with Proliferative Diabetic Retinopathy at 52 Weeks (CLARITY): A Multicentre, Single-Blinded, Randomised, Controlled, Phase 2b, Non-Inferiority Trial. Lancet 2017, 389, 2193–2203. [Google Scholar] [PubMed] [Green Version]
- Gross, J.G.; Glassman, A.R.; Liu, D.; Sun, J.K.; Antoszyk, A.N.; Baker, C.W.; Bressler, N.M.; Elman, M.J.; Ferris, F.L., 3rd; Gardner, T.W.; et al. Five-Year Outcomes of Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. JAMA Ophthalmol. 2018, 136, 1138–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Diabetes Control and Complications Trial Research Group. The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. Retina 1994, 14, 286–287. [Google Scholar] [CrossRef]
- Stratton, I.M.; Kohner, E.M.; Aldington, S.J.; Turner, R.C.; Holman, R.R.; Manley, S.E.; Matthews, D.R. UKPDS 50: Risk Factors for Incidence and Progression of Retinopathy in Type II Diabetes over 6 Years from Diagnosis. Diabetologia 2001, 44, 156–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferris, F.L., 3rd; Nathan, D.M. Preventing Diabetic Retinopathy Progression. Ophthalmology 2016, 123, 1840–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chase, H.P.; Garg, S.K.; Jackson, W.E.; Thomas, M.A.; Harris, S.; Marshall, G.; Crews, M.J. Blood Pressure and Retinopathy in Type I Diabetes. Ophthalmology 1990, 97, 155–159. [Google Scholar] [CrossRef]
- Kohner, E.M.; Stratton, I.M.; Aldington, S.J.; Holman, R.R.; Matthews, D.R.; Uk Prospective Diabetes Study ukpds Group. Relationship between the Severity of Retinopathy and Progression to Photocoagulation in Patients with Type 2 Diabetes Mellitus in the UKPDS (UKPDS 52). Diabet. Med. 2001, 18, 178–184. [Google Scholar] [PubMed]
- Benbassat, J.; Polak, B.C.P. Reliability of Screening Methods for Diabetic Retinopathy. Diabet. Med. 2009, 26, 783–790. [Google Scholar] [CrossRef]
- Natarajan, S.; Jain, A.; Krishnan, R.; Rogye, A.; Sivaprasad, S. Diagnostic Accuracy of Community-Based Diabetic Retinopathy Screening With an Offline Artificial Intelligence System on a Smartphone. JAMA Ophthalmol. 2019, 137, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Grzybowski, A.; Kanclerz, P. Methods for Achieving Adequate Pupil Size in Cataract Surgery. Curr. Opin. Ophthalmol. 2020, 31, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Grzybowski, A.; Kanclerz, P.; Huerva, V.; Ascaso, F.J.; Tuuminen, R. Diabetes and Phacoemulsification Cataract Surgery: Difficulties, Risks and Potential Complications. J. Clin. Med. Res. 2019, 8, 716. [Google Scholar] [CrossRef] [Green Version]
- Hreidarsson, A.B. Pupil Motility in Long-Term Diabetes. Diabetologia 1979, 17, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.A.; Smith, S.E. Evidence for a Neuropathic Aetiology in the Small Pupil of Diabetes Mellitus. Br. J. Ophthalmol. 1983, 67, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Alio, J.; Hernandez, I.; Millan, A.; Sanchez, J. Pupil Responsiveness in Diabetes Mellitus. Ann. Ophthalmol. 1989, 21, 132–137. [Google Scholar]
- Huber, M.J.; Smith, S.A.; Smith, S.E. Mydriatic Drugs for Diabetic Patients. Br. J. Ophthalmol. 1985, 69, 425–427. [Google Scholar] [CrossRef]
- Williams, G.A.; Scott, I.U.; Haller, J.A.; Maguire, A.M.; Marcus, D.; McDonald, H.R. Single-Field Fundus Photography for Diabetic Retinopathy Screening: A Report by the American Academy of Ophthalmology. Ophthalmology 2004, 111, 1055–1062. [Google Scholar] [CrossRef]
- Panwar, N.; Huang, P.; Lee, J.; Keane, P.A.; Chuan, T.S.; Richhariya, A.; Teoh, S.; Lim, T.H.; Agrawal, R. Fundus Photography in the 21st Centur—A Review of Recent Technological Advances and Their Implications for Worldwide Healthcare. Telemed. J. E. Health 2016, 22, 198–208. [Google Scholar] [CrossRef]
- Molina-Casado, J.M.; Carmona, E.J.; García-Feijoó, J. Fast Detection of the Main Anatomical Structures in Digital Retinal Images Based on Intra- and Inter-Structure Relational Knowledge. Comput. Methods Programs Biomed. 2017, 149, 55–68. [Google Scholar] [CrossRef]
- Lau, H.C.; Voo, Y.O.; Yeo, K.T.; Ling, S.L.; Jap, A. Mass Screening for Diabetic Retinopathy—A Report on Diabetic Retinal Screening in Primary Care Clinics in Singapore. Singapore Med. J. 1995, 36, 510–513. [Google Scholar]
- Scanlon, P.H. The English National Screening Programme for Diabetic Retinopathy 2003–2016. Acta Diabetol. 2017, 54, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Massin, P.; Aubert, J.-P.; Erginay, A.; Bourovitch, J.C.; BenMehidi, A.; Audran, G.; Bernit, B.; Jamet, M.; Collet, C.; Laloi-Michelin, M.; et al. Screening for Diabetic Retinopathy: The First Telemedical Approach in a Primary Care Setting in France. Diabetes Metab. 2004, 30, 451–457. [Google Scholar] [CrossRef]
- Quellec, G.; Bazin, L.; Cazuguel, G.; Delafoy, I.; Cochener, B.; Lamard, M. Suitability of a Low-Cost, Handheld, Nonmydriatic Retinograph for Diabetic Retinopathy Diagnosis. Transl. Vis. Sci. Technol. 2016, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Tran, K.; Mendel, T.A.; Holbrook, K.L.; Yates, P.A. Construction of an Inexpensive, Hand-Held Fundus Camera through Modification of a Consumer “Point-and-Shoot” Camera. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7600–7607. [Google Scholar] [CrossRef]
- Teichman, J.C.; Sher, J.H.; Ahmed, I.I.K. From iPhone to eyePhone: A Technique for Photodocumentation. Can. J. Ophthalmol. 2011, 46, 284–286. [Google Scholar] [CrossRef]
- Lord, R.K.; Shah, V.A.; San Filippo, A.N.; Krishna, R. Novel Uses of Smartphones in Ophthalmology. Ophthalmology 2010, 117. [Google Scholar] [CrossRef]
- Haddock, L.J.; Kim, D.Y.; Mukai, S. Simple, Inexpensive Technique for High-Quality Smartphone Fundus Photography in Human and Animal Eyes. J. Ophthalmol. 2013, 2013, 518479. [Google Scholar] [CrossRef] [Green Version]
- Bastawrous, A. Smartphone Fundoscopy. Ophthalmology 2012, 119, 432–433.e2. [Google Scholar] [CrossRef] [Green Version]
- Toslak, D.; Ayata, A.; Liu, C.; Erol, M.K.; Yao, X. Wide-field smartphone fundus video camera based on miniaturized indirect ophthalmoscopy. Retina 2018, 38, 438–441. [Google Scholar] [CrossRef]
- Vilela, M.A.; Valença, F.M.; Barreto, P.K.; Amaral, C.E.; Pellanda, L.C. Agreement between Retinal Images Obtained via Smartphones and Images Obtained with Retinal Cameras or Fundoscopic Exams—Systematic Review and Meta-Analysis. Clin. Ophthalmol. 2018, 12, 2581–2589. [Google Scholar] [CrossRef] [Green Version]
- Myung, D.; Jais, A.; He, L.; Blumenkranz, M.S.; Chang, R.T. 3D Printed Smartphone Indirect Lens Adapter for Rapid, High Quality Retinal Imaging. J. Mob. Technol. Med. 2014, 3, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, C.A.; Murthy, S.I.; Pappuru, R.R.; Jais, A.; Myung, D.J.; Chang, R.T. A Novel Smartphone Ophthalmic Imaging Adapter: User Feasibility Studies in Hyderabad, India. Indian J. Ophthalmol. 2016, 64, 191–200. [Google Scholar]
- Sharma, A.; Subramaniam, S.D.; Ramachandran, K.I.; Lakshmikanthan, C.; Krishna, S.; Sundaramoorthy, S.K. Smartphone-Based Fundus Camera Device (MII Ret Cam) and Technique with Ability to Image Peripheral Retina. Eur. J. Ophthalmol. 2016, 26, 142–144. [Google Scholar] [CrossRef]
- Maamari, R.N.; Keenan, J.D.; Fletcher, D.A.; Margolis, T.P. A Mobile Phone-Based Retinal Camera for Portable Wide Field Imaging. Br. J. Ophthalmol. 2014, 98, 438–441. [Google Scholar] [CrossRef]
- Nazari Khanamiri, H.; Nakatsuka, A.; El-Annan, J. Smartphone Fundus Photography. J. Vis. Exp. 2017. [Google Scholar] [CrossRef] [Green Version]
- Adam, M.K.; Brady, C.J.; Flowers, A.M.; Juhn, A.T.; Hsu, J.; Garg, S.J.; Murchison, A.P.; Spirn, M.J. Quality and Diagnostic Utility of Mydriatic Smartphone Photography: The Smartphone Ophthalmoscopy Reliability Trial. Ophthalmic Surg. Lasers Imaging Retina 2015, 46, 631–637. [Google Scholar] [CrossRef]
- Kim, Y.; Chao, D.L. Comparison of Smartphone Ophthalmoscopy vs Conventional Direct Ophthalmoscopy as a Teaching Tool for Medical Students: The COSMOS Study. Clin. Ophthalmol. 2019, 13, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Friberg, T.R.; Pandya, A.; Eller, A.W. Non-Mydriatic Panoramic Fundus Imaging Using a Non-Contact Scanning Laser-Based System. Ophthalmic Surg. Lasers Imaging 2003, 34, 488–497. [Google Scholar] [CrossRef]
- Ghasemi Falavarjani, K.; Tsui, I.; Sadda, S.R. Ultra-Wide-Field Imaging in Diabetic Retinopathy. Vis. Res. 2017, 139, 187–190. [Google Scholar] [CrossRef]
- Kirkpatrick, J.N.; Manivannan, A.; Gupta, A.K.; Hipwell, J.; Forrester, J.V.; Sharp, P.F. Fundus Imaging in Patients with Cataract: Role for a Variable Wavelength Scanning Laser Ophthalmoscope. Br. J. Ophthalmol. 1995, 79, 892–899. [Google Scholar] [CrossRef]
- Silva, P.S.; Cavallerano, J.D.; Sun, J.K.; Soliman, A.Z.; Aiello, L.M.; Aiello, L.P. Peripheral Lesions Identified by Mydriatic Ultrawide Field Imaging: Distribution and Potential Impact on Diabetic Retinopathy Severity. Ophthalmology 2013, 120, 2587–2595. [Google Scholar] [CrossRef]
- Price, L.D.; Au, S.; Chong, N.V. Optomap Ultrawide Field Imaging Identifies Additional Retinal Abnormalities in Patients with Diabetic Retinopathy. Clin. Ophthalmol. 2015, 9, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.S.; Cavallerano, J.D.; Haddad, N.M.N.; Tolls, D.; Thakore, K.; Patel, B.; Sehizadeh, M.; Tolson, A.M.; Sun, J.K.; Aiello, L.P. Comparison of Nondiabetic Retinal Findings Identified With Nonmydriatic Fundus Photography vs Ultrawide Field Imaging in an Ocular Telehealth Program. JAMA Ophthalmol. 2016, 134, 330–334. [Google Scholar] [CrossRef]
- Wessel, M.M.; Aaker, G.D.; Parlitsis, G.; Cho, M.; D’Amico, D.J.; Kiss, S. Ultra-Wide-Field Angiography Improves the Detection and Classification of Diabetic Retinopathy. Retina 2012, 32, 785–791. [Google Scholar] [CrossRef]
- Rajalakshmi, R.; Prathiba, V.; Arulmalar, S.; Usha, M. Review of Retinal Cameras for Global Coverage of Diabetic Retinopathy Screening. Eye 2021, 35, 162–172. [Google Scholar] [CrossRef]
- Lim, W.S.; Grimaldi, G.; Nicholson, L.; Basheer, K.; Rajendram, R. Widefield Imaging with Clarus Fundus Camera vs Slit Lamp Fundus Examination in Assessing Patients Referred from the National Health Service Diabetic Retinopathy Screening Programme. Eye 2021, 35, 299–306. [Google Scholar] [CrossRef]
- Hirano, T.; Imai, A.; Kasamatsu, H.; Kakihara, S.; Toriyama, Y.; Murata, T. Assessment of Diabetic Retinopathy Using Two Ultra-Wide-Field Fundus Imaging Systems, the Clarus® and OptosTM Systems. BMC Ophthalmol. 2018, 18, 332. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Dang, S.; Chung, M.M.; Ramchandran, R.S.; Bessette, A.P.; DiLoreto, D.A.; Kleinman, D.M.; Sridhar, J.; Wykoff, C.C.; Kuriyan, A.E. Quantitative Comparison of Fundus Images by 2 Ultra-Widefield Fundus Cameras. Ophthalmol. Retina 2021, 5, 450–457. [Google Scholar] [CrossRef]
- Aiello, L.P.; Odia, I.; Glassman, A.R.; Melia, M.; Jampol, L.M.; Bressler, N.M.; Kiss, S.; Silva, P.S.; Wykoff, C.C.; Sun, J.K.; et al. Comparison of Early Treatment Diabetic Retinopathy Study Standard 7-Field Imaging With Ultrawide-Field Imaging for Determining Severity of Diabetic Retinopathy. JAMA Ophthalmol. 2019, 137, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi Falavarjani, K.; Wang, K.; Khadamy, J.; Sadda, S.R. Ultra-Wide-Field Imaging in Diabetic Retinopathy; an Overview. J. Curr. Ophthalmol. 2016, 28, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Kanclerz, P.; Hecht, I.; Tuuminen, R. Re: Lois et Al.: Evaluation of a New Model of Care for People with Complications of Diabetic Retinopathy: The EMERALD Study (Ophthalmology. 2021;128:561-573). Ophthalmology 2021, 128, e45–e46. [Google Scholar] [CrossRef]
- Strøm, C.; Sander, B.; Larsen, N.; Larsen, M.; Lund-Andersen, H. Diabetic Macular Edema Assessed with Optical Coherence Tomography and Stereo Fundus Photography. Investig. Ophthalmol. Vis. Sci. 2002, 43, 241–245. [Google Scholar]
- Davis, M.D.; Bressler, S.B.; Aiello, L.P.; Bressler, N.M.; Browning, D.J.; Flaxel, C.J.; Fong, D.S.; Foster, W.J.; Glassman, A.R.; Hartnett, M.E.R.; et al. Comparison of Time-Domain OCT and Fundus Photographic Assessments of Retinal Thickening in Eyes with Diabetic Macular Edema. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1745–1752. [Google Scholar] [CrossRef]
- Salas, M.; Drexler, W.; Levecq, X.; Lamory, B.; Ritter, M.; Prager, S.; Hafner, J.; Schmidt-Erfurth, U.; Pircher, M. Multi-Modal Adaptive Optics System Including Fundus Photography and Optical Coherence Tomography for the Clinical Setting. Biomed. Opt. Express 2016, 7, 1783–1796. [Google Scholar] [CrossRef] [Green Version]
- Kocaoglu, O.P.; Uhlhorn, S.R.; Hernandez, E.; Juarez, R.A.; Will, R.; Parel, J.-M.; Manns, F. Simultaneous Fundus Imaging and Optical Coherence Tomography of the Mouse Retina. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1283–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, K.; Pakzad-Vaezi, K. Multimodal Imaging of Diabetic Retinopathy. Curr. Opin. Ophthalmol. 2018, 29, 566–575. [Google Scholar] [CrossRef]
- Querques, G.; Lattanzio, R.; Querques, L.; Del Turco, C.; Forte, R.; Pierro, L.; Souied, E.H.; Bandello, F. Enhanced Depth Imaging Optical Coherence Tomography in Type 2 Diabetes. Investig. Ophthalmol. Vis. Sci. 2012, 53, 6017–6024. [Google Scholar] [CrossRef] [Green Version]
- Regatieri, C.V.; Branchini, L.; Carmody, J.; Fujimoto, J.G.; Duker, J.S. Choroidal Thickness in Patients with Diabetic Retinopathy Analyzed by Spectral-Domain Optical Coherence Tomography. Retina 2012, 32, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.T.; Lee, D.H.; Joe, S.G.; Kim, J.-G.; Yoon, Y.H. Changes in Choroidal Thickness in Relation to the Severity of Retinopathy and Macular Edema in Type 2 Diabetic Patients. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3378–3384. [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, T.; Kitaya, N.; Sugawara, R.; Yokota, H.; Mori, F.; Hikichi, T.; Fujio, N.; Yoshida, A. Alteration of Choroidal Circulation in the Foveal Region in Patients with Type 2 Diabetes. Br. J. Ophthalmol. 2004, 88, 1060–1063. [Google Scholar] [CrossRef] [Green Version]
- Nesper, P.L.; Scarinci, F.; Fawzi, A.A. Adaptive Optics Reveals Photoreceptor Abnormalities in Diabetic Macular Ischemia. PLoS ONE 2017, 12, e0169926. [Google Scholar] [CrossRef] [Green Version]
- Tiedeman, J.S.; Kirk, S.E.; Srinivas, S.; Beach, J.M. Retinal Oxygen Consumption during Hyperglycemia in Patients with Diabetes without Retinopathy. Ophthalmology 1998, 105, 31–36. [Google Scholar] [CrossRef]
- Cole, E.D.; Novais, E.A.; Louzada, R.N.; Waheed, N.K. Contemporary Retinal Imaging Techniques in Diabetic Retinopathy: A Review. Clin. Experiment. Ophthalmol. 2016, 44, 289–299. [Google Scholar] [CrossRef] [Green Version]
Technique | Study | Number of Eyes | Imaging Details and Device | Pupil Dilation | Technical Failure Rate [%] | Reference Standard, (Testing Accuracy Analyzed for) | Sensitivity [%] (95% CI) * | Specificity [%] (95% CI) * | Kappa (95% CI) |
---|---|---|---|---|---|---|---|---|---|
Mydriatic digital fundus photography | Pugh et al. 1993 [16] | 352 | 3-field 45° (Canon CR3) | Y | 3.7 | 7-field 30° Zeiss, any DR | 61 | 85 | 0.74 (0.66–0.82) |
Harding et al. 1995 [17] | 320 | 3-field 45° (Canon CR4-45NM) | Y | 1.8 | Slit-lamp biomicroscopy, VTDR | 89 (80–98) | 86 (82–90) | ||
Joannou et al. 1996 [18] | 663 | 60° photography (Canon CF-60) | Y | N/A | Dilated ophthalmoscopy, any DR | 93 | 89 | ||
Stellingwerf et al. 2001 [19] | 469 | 2-field 50° (Canon CF-60) | Y | 2 | 7-field 30°, any DR | 83 | 88 | 0.71 | |
Stellingwerf et al. 2001 [19] | 469 | 2-field 50° (Canon CF-60) | Y | 2 | 7-field 30°, VTDR | 95 | 99 | 0.71 | |
Olson et al. 2003 [20] | 586 | 2-field 50° (digital Topcon camera, manual assessment) | Y | 4.4 | Dilated ophthalmoscopy, any DR | 83 (77–89) | 79 (75–83) | ||
Olson et al. 2003 [20] | 586 | 1-field 50° (digital Topcon camera, manual assessment) | Y | 4.4 | Dilated ophthalmoscopy, any DR | 80 (74–86) | 88 (84–91) | ||
Scanlon et al. 2003 [21] | 1549 | 2-field 45° (Topcon NRW5S) | Y | 3.7 | Slit-lamp biomicroscopy, VTDR | 87.8 | 86.1 | 0.67–0.75 | |
Scanlon et al. 2003 [22] | 239 | 2-field 45° (Canon CR6) | Y | 1.5 | 7-field 30°, referrable DR | 87.4 (83.5–91.5) | 94.9 (91.5–98.3) | 0.8 | |
Lawrence et al. 2004 [23] | 151 | 3-field 45° (Topcon TRC-NW5SF) | Y | N/A | 7-field 30°, any DR | 66 | 86 | ||
Lawrence et al. 2004 [23] | 103 | 3-field 45° (Topcon TRC-NW6S) | Y | N/A | 7-field 30°, any DR | 85 | 81 | ||
Murgatroyd et al. 2004 [24] | 750 | 1-field 45° (Topcon TRC-NW6S) | Y | 7 | Slit-lamp ophthalmoscopy, “Referrable DR” | 81 (76–87) | 92 (90–94) | 0.86 | |
Murgatroyd et al. 2004 [24] | 752 | 3-field 45° (Topcon TRC-NW6S) | Y | 6.5 | Slit-lamp ophthalmoscopy “Referrable DR” | 83 (78–88) | 93 (91–96) | 0.88 | |
Aptel et al. 2008 [25] | 158 | 1-field 45° | Y | N/A | Indirect ophthalmoscopy, any DR | 89.74 | 98.3 | 0.9 | |
Aptel et al. 2008 [25] | 158 | 3-field 45° | Y | N/A | Indirect ophthalmoscopy, any DR | 97.44 | 98.3 | 0.95 | |
Molina Fernández et al. 2008 [26] | 99 | 3-field 45° (Topcon TRC-50 EX) | Y | 17.2 | Ophthalmological Examination, referrable DR | 85 (62.1–96.8) | 96.4 (85.1–98.9) | ||
Neubauer et al. 2008 [27] | 128 | 1-field 45° (Zeiss VisucamPRO NM) | Y | N/A | 7-field 30° Zeiss FF450plus images, ETDRS level 35 | 99 (94–100) | 92 (73–99) | 0.87 (0.81–0.92) | |
Baeza et al. 2009 [28] | 432 | 1-field 45° (Topcon CRW6S) | Y | 1.4 | 7-field 30°, any DR | 77 (71–83) | 98 (96–99) | 0.77 | |
Baeza et al. 2009 [28] | 432 | 2-field 45° (Topcon CRW6S) | Y | 1.6 | 7-field 30°, any DR | 86 (81–91) | 95 (92–98) | 0.82 | |
Baeza et al. 2009 [28] | 432 | 3-field 45° (Topcon CRW6S) | Y | 2.1 | 7-field 30°, any DR | 85 (80–90) | 94 (91–97) | 0.81 | |
Baeza et al. 2009 [28] | 432 | 1-field 45° (Topcon CRW6S) | Y | 1.4 | 7-field 30°, VTDR | 82 (72–92) | 99 (97–100) | 0.84 | |
Baeza et al. 2009 [28] | 432 | 2-field 45° (Topcon CRW6S) | Y | 1.6 | 7-field 30°, VTDR | 95 (89–100) | 98 (97–100) | 0.91 | |
Baeza et al. 2009 [28] | 432 | 3-field 45° (Topcon CRW6S) | Y | 2.1 | 7-field 30°, VTDR | 95 (89–100) | 98 (96–99) | 0.89 | |
Sengupta et al. 2019 [29] | 233 | 3-field 45 degree images (Topcon TRC-50DX) | N | 2.6–4.3 | Dilated fundus examination, any DR | (92.6–94.9) | (85.5–98.2) | 0.68 (0.67–0.73) | |
Lois et al. 2021 [30] | 281 | 7-field imaging (Not specified) | 6.0 | Clinical examination, proliferative DR | 85 (77–91) | 38 (41–56) | |||
Non-mydriatic digital fundus photography | Williams et al. 1986 [31] | 120 | 1-field 45° (Kowa or Canon CR3 camera) | N | N/A (excluded) | Dilated fundus examination, any DR | 96 | 98 | N/A |
Pugh et al. 1993 [16] | 352 | 1-field 45° (Canon CR3) | N | 14 | 7-field 30° Zeiss, any DR | 81 | 97 | 0.62 (0.54-0.70) | |
Peters et al. 1993 [32] | 1044 | 1-field 45° (Canon CR4) | N | 32 | Ophthalmological exam, VTDR | 100 | 82 | N/A | |
Siu et al. 1998 [33] | 150 | 1-field 45° (Canon CR-45UAF) | N | N/A | Indirect ophthalmoscopy, any DR | 64 (43–85) | 90 (84–96) | ||
Taylor et al. 1999 [34] | 222 | 1-field 45° (Canon CR5) | N | N/A | 7-field 30° Zeiss, any DR | 74 (68–80) | 96 (94–98) | N/A | |
Taylor et al. 1999 [34] | 222 | 1-field 45° (Canon CR5 Digital) | N | N/A | 7-field 30° Zeiss, VTDR | 85 (80–90) | 98 (96–100) | N/A | |
Bursell et al. 2001 [35] | 108 | 3-field 45°, Joslin Vision Network Technology protocol (Topcon TRC NW-5S) | N | 2.8 | 7-field 30° Zeiss FF4 camera, any DR | 89 | 97 | 0.87 | |
Maberley et a. 2003 [36] | 200 | 1-field 45° (Topcon TRC NW5SF) | N | 1.0 | Slit-lamp ophthalmoscopy, any DR | 84.4 (79–90) | 79.2 (74.1–84.3) | 0.85 (0.78–0.92) | |
Lin et al. 2002 [37] | 197 patients | 2-field, 640 × 480 px black-and-white images (Canon CR5-45NM) | N | 8.1 | 7-field 30° Zeiss FF4 camera, referrable DR | 78 | 86 | 0.4 | |
Scanlon et al. 2003 [21] | 1549 | 1-field 45° Topcon NRW5S) | N | 19.7 | Slit-lamp biomicroscopy, VTDR | 86.0 | 76.7 | 0.67–0.75 | |
Perrier et al. 2003 [38] | 196 | 2-field 45° (Topcon CRW6) | N | 14.2 | 7-field 30°, any DR | 95.7 | 78.1 | 0.76 | |
Perrier et al. 2003 [38] | 196 | 3-field 45° (Topcon CRW6) | N | 18.4 | 7-field 30°, any DR | 97.6 | 71.9 | 0.71 | |
Perrier et al. 2003 [38] | 196 | 4-field 45° (Topcon CRW6) | N | 18.4 | 7-field 30°, any DR | 97.6 | 65.6 | 0.65 | |
Herbert et al. 2003 [39] | 288 | 1-field 45° (Topcon TRC-NW5S) | N | 4 | Slit-lamp ophthalmoscopy, any DR) | 38.0 | 95.0 | 0.84 | |
Lawrence et al. 2004 [23] | 151 | 1-field 45° (Topcon TRC-NW5SF) | N | N/A | 7-field 30°, any DR | 66 | 66 | ||
Lawrence et al. 2004 [23] | 103 | 1-field 45° (Topcon TRC-NW6S) | N | N/A | 7-field 30°, any DR | 76 | 45 | ||
Murgatroyd et al. 2004 [24] | 585 | 1-field 45° (Topcon TRC-NW6S) | N | 36 | Slit-lamp ophthalmoscopy (referrable DR) | 77 (71–84) | 95 (93–97) | 1.0 | |
Phiri et al. 2006 [40] | 325 | 1-field 45° (digital Canon CR6) | N | 14.0 | 7-field 30°, referrable DR | 84.1 (65.5–93.7) | 71.2 (58.1–81.1) | 0.65 | |
Lopez-Bastida et al. 2007 [41] | 1546 | 1-field 45° (Topcon TRC-NW6S) | N | 7.2 (required pupil dilation) | Slit-lamp ophthalmoscopy (VTDR) | 100 | 100 | 1 | |
Lopez-Bastida et al. 2007 [41] | 1546 | 1-field 45° (Topcon TRC-NW6S) | N | 7.2 (required pupil dilation) | Slit-lamp ophthalmoscopy (any DR) | 92 (90–94) | 96 (95–98) | 0.89 | |
Aptel et al. 2008 [25] | 158 | 1-field 45° (Topcon TRC-NW6S) | N | 11.4 | Indirect ophthalmoscopy, any DR | 76.9 | 99.2 | 0.82 | |
Aptel et al. 2008 [25] | 158 | 3-field 45° (Topcon TRC-NW6S) | N | 13.3 | Indirect ophthalmoscopy, any DR | 92.3 | 97.5 | 0.9 | |
Molina Fernández et al. 2008 [26] | 247 | 3-field 45° (Topcon TRC-50 EX) | N | 38.4 | Ophthalmological Examination, referrable DR | 66.7 (41–86.7%) | 98 (89.1–99.9) | ||
Molina Fernández et al. 2008 [26] | 135 | 3-field 45° (Topcon TRC-50 EX) | N (not routine, in selected cases) | 27.4 | Ophthalmological Examination, referrable DR | 76.9 (56.4–91) | 93.4 (84.1–99.2) | ||
Vujosevic et al. 2009 [42] | 108 | 3-field, 1392 × 1040 px (Nidek) | N | N/A | 7-field 30° Topcon TRC 50IA, referrable DR | 82 | 92 | 0.74 (0.61–0.87) | |
Vujosevic et al. 2009 [42] | 108 | 1-field, 1392 × 1040 px (Nidek) | N | N/A | 7-field 30° Topcon TRC 50IA, referrable DR | 71 | 96 | 0.67 (0.5– 0.80) | |
Baeza et al. 2009 [28] | 432 | 1-field 45° (Topcon CRW6S) | Y | 15.3 | 7-field 30°, any DR | 68 (60–75) | 98 (96–100) | 0.68 | |
Baeza et al. 2009 [28] | 432 | 2-field 45° (Topcon CRW6S) | Y | 17.1 | 7-field 30°, any DR | 76 (70–83) | 94 (90–98) | 0.77 | |
Baeza et al. 2009 [28] | 432 | 3-field 45° (Topcon CRW6S) | Y | 17.6 | 7-field 30°, any DR | 79 (73–86) | 94 (90–98) | 0.77 | |
Baeza et al. 2009 [28] | 432 | 1-field 45° (Topcon CRW6S) | Y | 15.3 | 7-field 30°, VTDR | 67 (54–80) | 99 (98–100) | 0.75 | |
Baeza et al. 2009 [28] | 432 | 2-field 45° (Topcon CRW6S) | Y | 17.1 | 7-field 30°, VTDR | 80 (69–91) | 99 (98–100) | 0.85 | |
Baeza et al. 2009 [28] | 432 | 3-field 45° (Topcon CRW6S) | Y | 17.6 | 7-field 30°, VTDR | 82 (81–92) | 99 (98–100) | 0.86 | |
Gupta et al. 2014 [43] | 1000 | 3-field, Zeiss Visupac 450+ | N | 25.6 | Dilated fundoscopy, VTDR | 91.1 | 99.3 | 0.92 | |
Smartphone-based imaging | Ryan et al. 2015 [44] | 600 | iPhone 5 + 20D lens | N | 1.5 | 7-field dilated fundus photography, any DR | 81 (75–86) | 94 (92–96) | 0.76 (0.71–0.82) |
Ryan et al. 2015 [44] | 600 | iPhone 5 + 20D lens | N | 1.5 | 7-field dilated fundus photography, VTDR | 54 (40–67) | 99 (98–100) | 0.64 (0.52–0.76) | |
Rajalakshmi et al. 2015 [45] | 602 | Android Phone + Remidio Fundus on Phone imaging system (4-field) | Y | N/A | 7-field dilated fundus photography, any DR | 92.7 (87.8–96.1) | 98.4 (94.3–99.8) | 0.90 (0.85–0.95) | |
Rajalakshmi et al. 2015 [45] | 602 | Android Phone + Remidio Fundus on Phone imaging system (4-field) | Y | N/A | 7-field dilated fundus photography, VTDR | 87.9 (83.2–92.9) | 94.9 (89.7–98.2) | 0.80 (0.71–0.89) | |
Russo et al. 2015 [46] | 240 | iPhone 5 + D-Eye Adapter (5-field) | Y | 3.7 | Slit-lamp biomicroscopy, no apparent DR | 96 (90–98) | 90 (83–95) | 0.78 (0.71–0.84) | |
Ryan et al. 2015 [44] | 600 | iPhone 5 + 20 D lens | Y | 1.8 | 7-field dilated fundus photography, any DR | 50 (43–56) | 94 (92–97) | 0.48 (0.41–0.56) | |
Ryan et al. 2015 [44] | 600 | iPhone 5 + 20 D lens | Y | 1.8 | 7-field dilated fundus photography, VTDR | 59 (46–72) | 100 (99–100) | 0.71 (0.6–0.82) | |
Toy et al. 2016 [47] | 100 | iPhone 5s + Volk ClearField lens + Paxos Scope adapter | Y | 4.0 | Dilated fundus examination, referrable DR | 91 | 99 | 0.7 | |
Kim et al. 2018 [48] | 142 | iPhone 5S + Cellscope Retina optical system (5-field) | Y | 16 | Dilated fundus examination, referrable DR | 93.3 | 56.8 | 0.55–0.63 | |
Rajalakshmi et al. 2018 [49] | 602 | Android Phone + Remidio Fundus on Phone imaging system (4-field) + EyeArt AI Algorithm | Y | N/A | Dilated fundus examination, any DR | 95.8 (92.9–98.7) | 80.2 (72.6–87.8) | 0.78 (0.71–0.86) | |
Rajalakshmi et al. 2018 [49] | 602 | Android Phone + Remidio Fundus on Phone imaging system (4-field)+ EyeArt AI Algorithm | Y | N/A | Dilated fundus examination, VTDR | 99.1 (95.1–99.9) | 80.4 (73.9–85.9) | 0.75 (0.67–0.83) | |
Sengupta et al. 2019 [29] | 233 | HTC One M8 + Remidio Fundus on Phone imaging (3-field 45°) | Y | 1.7–2.1 | Dilated fundus examination, any DR | 93.1 (88.3–96.4) 94.3 (89.7–97.2) | 89.1 (68.2–92.2) 94.5 (84.9–98.9) | 0.55 (0.50–0.57) | |
Ultrawide-field imaging | Silva et al. 2012 [50] | 206 | Stereoscopic 100° and 200° images (Optos Resmax) | Y | 0.5 | 7-field dilated fundus photography, any DR | (95–100) | (81–100) | 0.95 ± 0.03 |
Szeto et al. 2019 [51] | 322 | Non-stereoscopic 200° (Optos Daytona) | N | 7.1 | Dilated fundus examination, any DR | 67.7 (60.0–74.8) | 97.8 (93.6–95.5) | 0.63 | |
Szeto et al. 2019 [51] | 322 | Non-stereoscopic 200° (Optos Daytona) | N | 7.1 | Dilated fundus examination, VTDR | 72.6 (58.2–84.1) | 97.8 (92.7–98.1) | 0.71 | |
Manjunath et al. 2015 [52] | 2046 | Non-stereoscopic 200° (Optomap P2000) | Y | 1.1 | Clinical examination, VTDR | 84.0 (81–87) | 69.0 (67–72) | 0.75 | |
Lois et al. 2021 [30] | 281 | Optos System (Not specified) | 5.0 | Clinical examination, proliferative DR | 83 (75–89) | 54 (46–61) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanclerz, P.; Tuuminen, R.; Khoramnia, R. Imaging Modalities Employed in Diabetic Retinopathy Screening: A Review and Meta-Analysis. Diagnostics 2021, 11, 1802. https://doi.org/10.3390/diagnostics11101802
Kanclerz P, Tuuminen R, Khoramnia R. Imaging Modalities Employed in Diabetic Retinopathy Screening: A Review and Meta-Analysis. Diagnostics. 2021; 11(10):1802. https://doi.org/10.3390/diagnostics11101802
Chicago/Turabian StyleKanclerz, Piotr, Raimo Tuuminen, and Ramin Khoramnia. 2021. "Imaging Modalities Employed in Diabetic Retinopathy Screening: A Review and Meta-Analysis" Diagnostics 11, no. 10: 1802. https://doi.org/10.3390/diagnostics11101802
APA StyleKanclerz, P., Tuuminen, R., & Khoramnia, R. (2021). Imaging Modalities Employed in Diabetic Retinopathy Screening: A Review and Meta-Analysis. Diagnostics, 11(10), 1802. https://doi.org/10.3390/diagnostics11101802