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Abstract: Background/Objectives: Gait analysis, traditionally performed with lab-based
optical motion capture systems, offers high accuracy but is costly and impractical for
real-world use. Wearable technologies, especially inertial measurement units (IMUs), en-
able portable and accessible assessments outside the lab, though challenges with sensor
placement, signal selection, and algorithm design can affect accuracy. This systematic
review aims to bridge the benchmarking gap between IMU-based and traditional systems,
validating the use of wearable inertial systems for gait analysis. Methods: This review
examined English studies between 2012 and 2023, retrieved from the Scopus database,
comparing wearable sensors to optical motion capture systems, focusing on IMU body
placement, gait parameters, and validation metrics. Exclusion criteria for the search in-
cluded conference papers, reviews, unavailable papers, studies without wearable inertial
sensors for gait analysis, and those not involving agreement studies or optical motion
capture systems. Results: From an initial pool of 479 articles, 32 were selected for full-text
screening. Among them, the lower body resulted in the most common site for single IMU
placement (in 22 studies), while the most frequently used multi-sensor configuration in-
volved IMU positioning on the lower back, shanks, feet, and thighs (10 studies). Regarding
gait parameters, 11 studies out of the 32 included studies focused on spatial-temporal
parameters, 12 on joint kinematics, 2 on gait events, and the remainder on a combination
of parameters. In terms of validation metrics, 24 studies employed correlation coefficients
as the primary measure, while 7 studies used a combination of error metrics, correlation
coefficients, and Bland–Altman analysis. Validation metrics revealed that IMUs exhibited
good to moderate agreement with optical motion capture systems for kinematic measures.
In contrast, spatiotemporal parameters demonstrated greater variability, with agreement
ranging from moderate to poor. Conclusions: This review highlighted the transformative
potential of wearable IMUs in advancing gait analysis beyond the constraints of traditional
laboratory-based systems.

Keywords: agreement; biomechanics; gait analysis; inertial measurement units;
wearable sensors
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1. Introduction
Human locomotion is a sophisticated process requiring complex interplay between

multiple systems, including skeletal alignment, joint mobility, neuromuscular regulation,
and the biomechanical forces that direct movement [1,2]. Pathological conditions such as
congenital deformities, developmental issues, traumatic injuries, or degenerative disorders
can affect these systems, leading to decreased walking efficiency and reduced mobility [3–6].
Therefore, the possible comprehensive gait assessment using gait analysis (GA), which
systematically examines human movement, is crucial in several fields, including sports,
clinical diagnoses, physical ergonomics, and rehabilitation [7–11]. In sports, GA helps in
determining better athletic performance, preventing injuries, as well as developing tailored
training programs [12,13]. From a clinical point of view, GA allows identifying abnormal-
ities, monitoring recovery, and evaluating fall risk, especially among the elderly [14,15].
At the same time, for rehabilitation purposes, it provides therapists with critical data
to track patient progress, enabling them to modify treatment plans based on mobility
improvements [16,17].

Human walking consists of a cyclical motion divided into distinct gait phases: the
stance phase (60% of the cycle), where the foot remains on the ground, and the swing phase
(40% of the cycle), where the foot moves forward [18]. These phases, including heel strike,
toe-off, and various stages of swing, form a coordinated cycle of leg and foot movements
(Figure 1). Thus, to provide deeper insights into human movement, quantitative GA focuses
on measuring, describing, and evaluating several parameters, including kinematic, kinetic,
and spatiotemporal (ST) metrics [19].
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The origins of GA date back to the 19th century, with pioneers such as Étienne-Jules
Marey and Eadweard Muybridge using sequential photography to study motion [20]. The
20th century marked a significant milestone in the integration of biomechanics with GA,
highlighted by the introduction of force plates and multi-camera optical motion capture
(OMC) systems [21–24]. These innovations enabled accurate measurements of forces and
three-dimensional movement, establishing OMC systems as a practical gold standard in
the GA field [25,26]. OMC systems offer high accuracy in motion capture, making them
ideal for advanced biomechanical studies in various fields, from sports medicine and
rehabilitation to scientific research [27,28]. In addition, OMC systems excel in controlled
(with sufficient space and good lighting) and unobstructed environments, such as motion
analysis labs, where precise tracking is essential [29]. However, conventional OMC systems
are often more expensive and complex to install, resulting in lengthy set-up times, as well
as space issues, requiring specialized structures, which may also hinder their ability to
accurately reflect real-world walking scenarios [30].
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In recent years, the emergence of wearable technologies, including inertial measure-
ment units (IMUs) which combine accelerometers, gyroscopes, and magnetometers, has
revolutionized GA. These devices facilitate assessments outside traditional lab settings,
providing more realistic evaluations of human movement and being very useful in the
context of telemedicine for remote patient monitoring. Indeed, inertial systems are typi-
cally more portable and affordable than optical systems, enabling motion analysis in any
environment—including outdoors or in confined spaces—without requiring cameras or
specialized lighting. Therefore, advances in miniaturization and accessibility have fos-
tered a shift in movement biomechanics, making wearable sensors a viable alternative
to established OMC systems [31–33]. The integration of these wearable inertial systems
with advanced signal processing algorithms for gait events (GEs) detection holds signifi-
cant promise for enhancing the extraction of kinematic parameters and transforming how
movement is monitored [34–39]. The primary limitation of inertial systems is sensor drift,
which causes error accumulation and progressively reduces tracking accuracy over time.
Moreover, IMUs are highly sensitive to sensor placement, considering factors such as
soft-tissue artefacts, muscle movement, and attachment to non-bony areas introducing
significant noise and compromising data reliability. Furthermore, IMUs cannot directly
measure kinetic variables (e.g., joint moments or power) and may be influenced by exter-
nal magnetic or metallic interference, which can occasionally result in system failure. In
contrast, OMC systems offer highly accurate and direct measurements of both kinematic
and kinetic variables by tracking reflective markers in controlled environments. However,
their substantial infrastructure requirements limit their feasibility in real-world settings.
Additionally, IMUs are less accurate in capturing complex movements, as they may struggle
to detect subtle changes or rotations as accurately as OMC systems.

Despite the growing adoption of wearable inertial sensors and specialized motion
analysis algorithms, there is still a lack of systematic literature review studies validating
their effectiveness. Possible inconsistencies in the adoption of different wearable inertial
sensors may indeed lead to potential variability in gait parameter estimates, which may
arise from differences in sensor placement and in the inertial signals used to calculate
kinematic parameters [40–42].

Therefore, in the wake of the increasing use of wearable inertial sensors in the field
of GA, this systematic review aims to address, possibly filling, gaps of inconsistency in
the literature, proposing a systematic analysis of the validity of wearable sensors, both
prototype and commercial ones, comparing the benchmarking with OMC systems, which
can be considered the gold standard also for clinical applications.

2. Research Strategy
A systematic review involves the rigorous selection, evaluation, and synthesis of

studies on a defined subject [43]. This review adheres to the guidelines set by the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [44] (the checklist is
included in the Supplementary Materials).

Search Methodology and Study Selection

The literature search was conducted by searching for documents in the Scopus
database and was limited to English documents published between 2012 and 2023. The
database was queried using the following keyword structure: ((“agreement”) or (“bench-
marking”) or (“validity”)) and ((“optoelectronic system”) or (“stereophotogrammetry”))
and ((“wearable sensor”) or (“imu”) or (“inertial measurement unit”) or (“accelerometer”))
and ((“gait analysis”) or (“gait”)).

In order to simplify our research, the exclusion criteria were:
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• manuscripts not published in English;
• conference reviews, reviews, and book chapters;
• papers not available.

For the screening process involving titles, abstracts, and full texts, the following
exclusion criteria were established:

• papers assessing gait parameters without utilizing wearable inertial sensors;
• papers comparing wearable inertial sensors with OMC systems for tasks not related to

gait analysis;
• papers that do not include agreement studies;
• papers using wearable inertial sensors for gait assessment that do not compare results

with OMC systems.

Documents were screened by first assessing the content of the titles and abstracts.
If any documents did meet the inclusion criteria at this stage, a full-text evaluation was
conducted. Following the completion of the initial search of electronic database, one
reviewer (G.P.) examined the titles and abstracts of the identified articles to determine their
eligibility for inclusion in the review. Full-text evaluations of potentially relevant articles
were conducted independently by two reviewers (G.P. and M.A.P.).

The PRISMA workflow is illustrated in Figure 2, which also indicates the number of
documents included in this systematic review.
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3. Main Findings and Argumentation
This systematic review encompasses 32 studies, published between 2014 and 2023.

Publication activity reached its highest point in 2022, as depicted in Figure 3. This surge
highlights the rising interest in applying IMUs for GA from both practical and scientific
research perspectives. This demonstrates the growing role of IMUs in clinical practice,
particularly in assessing gait parameters. Their portability and relatively low cost make
them ideal for tracking rehabilitation progress or identifying motor impairments without
relying on complex motion analysis labs.
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Figure 3. Distribution of papers over time.

Data collection, organization of tabular information, and the creation of graphics
and charts were conducted using Microsoft Excel 2021. The papers were examined across
several key aspects: the aim of the study, the participants involved, and the tasks performed;
the type of wearable inertial system used, including the number of the devices used and
their placement on the body; the OMC system, including the number of cameras; the
extracted kinematic and kinetic parameters; the statistical methodologies employed; and
the results obtained for each study. Table 1 presents the studies, listed in chronological
order by publication year.
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Table 1. Analysis of the studies included in this review.

Study Scope Population
IMU System
(Number and
Positioning)

OMC System
(Number
Cameras)

Gait Parameters Gait Task Validation
Metrics Results

Buganè et al.
(2014)
[45]

Assessing the validity of
pelvis kinematics in level

walking using a single
inertial sensor on the sacrum
compared with OMC system

16 volunteer
healthy subjects

Free4Act,
LetSense Group Srl,

Bologna, Italy.
(1 IMU: low back)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.
(8 cameras)

Joint kinematic
measures of the

pelvis

Walking on a
10 m straight

pathway at three
different speeds

Paired test, R2,
and PB

The two measurement
systems showed good
agreement in assessing

pelvis kinematics

Micó-Amigo
et al. (2016)

[46]

Developing and validating a
novel algorithm based on
two different IMU set-ups

(low back and heels) for step
duration detection in healthy

elderly subjects

20 volunteer
healthy subjects

DynaPort® Hybrid,
McRoberts B.V., Hague,

The Netherlands.
(3 IMUs: low back and

lateral sides of both
heels)

Motion tracking
system 3020

Optotrak,
Northern Digital

Inc., Waterloo, ON,
Canada.

(3 cameras)

Step time

Walking at
self-selected

speed along a 5 m
pathway

Paired test
and ICC

The algorithm can accurately
estimate step time in elderly

subjects using both IMU
configurations when

compared to the
OMC system

Pepa et al.
(2017)
[47]

Assessing the smartphone
performance in heel strike,

step count, step period, and
step length estimation

compared to ST system using
three different kinematic

parameters
estimation methods

11 volunteer
healthy subjects

Prototype
(1 IMU: low back)

BTS SMART
System,

BTS
Bioengineering

S.p.A., Milan, Italy.
(6 cameras)

Step time, step
length, step count,

heel strike

Walking at three
different speeds

on a 10 m straight
pathway

PCC, ANOVA,
and BA

The smartphone
demonstrated good accuracy
in estimating ST parameters

across the three different
estimation methods,

supporting its suitability for
gait monitoring

Cimolin et al.
(2017)
[48]

Validating the ST parameter
estimates in level walking

with a single IMU placed on
the lower trunk in obese

adolescents and
normal-weight adolescents

10 obese
and

8 normal-weight
subjects

BTS® G-Sensor,
BTS Bioengineering
S.p.A., Milan, Italy
(1 IMU: low back)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.
(6 cameras)

Stride length,
stride time, stance

phase, double
support phase,

speed,
cadence

Walking at
self-selected

speed on a 10 m
walkway

Wilcoxon test, ρ,
and BA

No statistical differences
were observed between the

two systems across all ST
parameters analyzed,

indicating the effectiveness of
the inertial system in

evaluating ST parameters

Pham et al.
(2017)
[49]

Developing and validating
an algorithm for step

detection during turning and
non-turning walking

episodes using a single IMU
worn at the low back in PD

patients and older adults

11 PD
participants

and
12 older adults

DynaPort® Hybrid,
McRoberts B.V., Hague,

The Netherlands.
(1 IMU: low back)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.
(6 cameras)

Toe-off, heel strike

Treadmill
walking for 120 s

at self-selected
speeds

LR test and BA

Comparable validity was
assessed by comparing the

IMU-based low back
algorithm with an OMC

system in PD patients and
older adults, which detected

88% of steps during
turning episodes
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Table 1. Cont.

Study Scope Population
IMU System
(Number and
Positioning)

OMC System
(Number
Cameras)

Gait Parameters Gait Task Validation
Metrics Results

Koska et al.
(2018)
[50]

Investigating the validity of
kinematic measures of
human running from

shoe-mounted IMU system
and compared to

OMC system

51 volunteer
healthy subjects

Prototype
(1 IMU: heel cup of the

right shoe)

Motion Capture
system MA,
Qualisys AB,

Göteborg,
Danmark.

(14 cameras)

ROM of foot
Treadmill

running at three
different speeds

BA

The disagreement between
IMUs and the OMC system
suggests that shoe-mounted
IMUs are not a valid method

for detecting foot
kinematic variables

Kleiner et al.
(2018)
[51]

Comparing TUG test total
times measured by a

wearable tri-axial IMU
against an OMC system and

a stopwatch

30 PD
participants

BTS® G-Sensor,
BTS Bioengineering
S.p.A., Milan, Italy.
(1 IMU: low back)

BTS SMART
System,

BTS
Bioengineering

S.p.A., Milan, Italy.
(8 cameras)

TUG time
parameter TUG test ICC, ANOVA,

and BA

The IMU showed excellent
accuracy and precision in
quantifying the TUG test

completion times, similar to
those obtained using the

OMC system and
a stopwatch

Al-Amri et al.
(2018)
[52]

Assessing the agreement
between two systems for the

measurement of the joint
kinematics parameters

26 volunteer
healthy subjects

Xsens MVN Biomech,
Xsens Technologies BV,

Enschede, The
Netherlands.

(7 IMUs: thighs,
shanks, feet, and low

back)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.
(10 cameras)

Joint kinematic
measures of the

hip,
ankle, knee

Walking at
normal speed on
an 8 m straight

pathway

CMC and R2

Despite not being
interchangeable, joint angle

parameters obtained from the
two systems demonstrated
excellent similarity in the

sagittal plane and acceptable
similarity in the frontal and

transverse planes

Zago et al.
(2018)
[53]

Assessing the validity
between IMU system and

OMC system for the
measurement of the ST gait

parameters

22 PD
participants

BTS® G-Sensor,
BTS Bioengineering
S.p.A., Milan, Italy.
(1 IMU: low back)

BTS SMART
System,

BTS
Bioengineering

S.p.A., Milan, Italy.
(8 cameras)

Cadence, speed,
stride length,

stride time, step
time, stance phase,

swing phase,
double support

phase

Walking at
self-selected

speed on a 10 m
walkway

Wilcoxon test,
ES, RMSE, MAE,

and PCC

The ST gait parameters
detected by the IMU were
mostly comparable to the

output of the OMC system,
except for speed

Teuf et al.
(2018)
[54]

Evaluating the agreement
between two systems (IMU

and OMC) for the
measurement of the ST gait

parameters

24 volunteer
healthy subjects

Xsens MVN Biomech,
Xsens Technologies BV,

Enschede, The
Netherlands

(7 IMUs: shanks, feet,
thighs, and low back)

OptiTrack—
Motion

Capture system,
NaturalPoint Inc.,

Corvallis, OR,
USA.
(NS)

Step length, stride
length, swing

width, step width,
step time, stride
time, cadence,
single support
time, double
support time,

stance time, swing
time, speed

Walking at
normal speed on

a 6 m straight
pathway

RMSE, paired
test, and BA

The IMU-based system
demonstrated high validity

for most parameters
compared to the OMC

system, except for step width
and swing width
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Table 1. Cont.

Study Scope Population
IMU System
(Number and
Positioning)

OMC System
(Number
Cameras)

Gait Parameters Gait Task Validation
Metrics Results

Teuf et al.
(2018)
[55]

Developing and validating
an algorithm for joint
kinematics measures

estimation based on the IMU
system compared with

OMC system

28 volunteer
healthy subjects

XSens MTw Awinda,
Xsens Technologies BV,

Enschede, The
Netherlands.

(7 IMUs: low back,
shanks, thighs,

and feet)

OptiTrack—
Motion

Capture system,
NaturalPoint Inc.,

Corvallis, OR,
USA.

(13 cameras)

Joint kinematic
measures of the

hip,
ankle, knee, pelvis

Walking for 6 min
on a 10 m straight
pathway at a self-

selected speed

RMSE, ROME,
CMC, and BA

The algorithm for calculating
joint angles using the IMU

system mounted on the
lower limbs demonstrated

strong/excellent agreement
when compared to a

standard OMC system

Fleron et al.
(2019)
[56]

Evaluating the accuracy of
trunk speed extracted using

an inertial motion system
compared to an OMC

system during
steady walking

11 volunteer
healthy subjects

Xsens MVN Biomech,
Xsens Technologies BV,

Enschede, The
Netherlands.

(17 IMUs: shoulders,
arms, forearms, hands,

thighs, shanks, feet,
head, sternum, and

low back)

Motion Capture
system MA,
Qualisys AB,

Göteborg,
Danmark.

(8 cameras)

Trunk speed

Walking at
self-selected

speed on three
pre-established

pathways
(1 × 1 m path,

2 × 2 m path and
2 × 3 m path)

RMSE, PCC, and
ANOVA test

Close agreement between the
IMU and the OMC system in

detecting trunk speed was
assessed during a standard

walking task

Adamowicz et al.
(2019)
[57]

Evaluating the validity of
novel sensor-to-sensor
relative orientation and

sensor-to-segment alignment
algorithms by assessing

performance in the
estimation of hip joint angles

in human subjects.

20 volunteer
healthy subjects

Opal System,
APDM Inc., Portland,

OR, USA.
(8 IMUs: feet, shanks,

thighs, low back,
and sternum)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.
(19 camera)

Joint kinematic
measures of hip

Treadmill
walking for 60 s

at self-
selected speeds

PB and RMSE

Close agreement was shown
when comparing the

MIMU-based method for
estimating sensor-to-sensor
relative orientation and hip

joint angles with the
OMC system

Amitrano et al.
(2020)
[58]

Assessing the validity of the
ST gait parameters of novel

wearable device SWEET Sock
for remote health

monitoring

3 volunteer
healthy subjects

Prototype
(2 IMUs: ankles)

BTS SMART
System,

BTS
Bioengineering

S.p.A., Milan, Italy.
(6 cameras)

GCT, stance time,
stance phase,

swing time, swing
phase, single

support phase,
double support
phase, cadence,

stride
length, speed

Walking at
normal speed on
an 11 m straight

pathway

Paired test, PCC,
PB, and BA

The study revealed good
agreement for temporal

parameters such as gait cycle
time and cadence, but not for
spatial parameters, notably

step length
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Table 1. Cont.

Study Scope Population
IMU System
(Number and
Positioning)

OMC System
(Number
Cameras)

Gait Parameters Gait Task Validation
Metrics Results

Berner et al.
(2020)
[59]

Assessing the validity of an
IMU system for measuring

lower limb kinematic and ST
gait parameters in people

living with HIV (PLHIV) and
HIV-seron negative
participants (SNP)

8 PLHIVs
and

8 SNPs

MyoMotion Noraxon
system, Noraxon Inc.,
Scottsdale, AZ, USA.

(7 IMUs: low back, feet,
shanks, and thighs)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.
(8 cameras)

Step length, stride
length, cadence,
stance time, step

time, single
support time,

double support
time, stance phase,

single support
phase, double
support phase,

speed
ROM of ankle,

knee, hip, pelvis

Walking at
self-selected

speed along a
10 m pathway

RMSE, ICC,
and BA

Good agreement was
obtained between the IMU

system and the OMC system
for all kinematic and ST gait

parameters, except for
double support time and

parameters expressed as a
percentage of the gait cycle

Jordan et al.
(2021)
[60]

Assessing the validity of
lower limb joint kinematic

measures from the IMU
system compared with OMC

system during linear
decelerations at various

running speeds

1 volunteer
healthy subject

Xsens IMU sensors,
Xsens Technologies BV,

Enschede, The
Netherlands.

(7 IMUS: feet, shanks,
thighs, and low back)

Motion Capture
system MA,
Qualisys AB,

Göteborg,
Danmark.

(11 cameras)

GCT, foot-CoM
Joint kinematic

measures of ankle,
knee, and hip

ADA test PCC, MD, ES,
and TEE

High accuracy was obtained
for Xsens IMU to detect ST

parameters and hip and knee
kinematics at low speeds,
except for decelerations at

higher speeds

Ziagkas et al.
(2021)
[61]

Evaluating the agreement
between the PODOSmart

insoles system and an
OMC system.

11 volunteer
healthy subjects

PODOSmart® system,
Digitsole SAS, Nancy,

France.
(inertial platform

insole)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.
(10 cameras)

Stride length,
stride time, stance

phase, swing
phase,

circumduction,
clearance, flat foot
time, propulsion
rate, propulsion
time, cadence,
speed, double
support phase
Joint kinematic

measures of foot

Walking at
normal speed on

a 6 m straight
pathway

ICC

Accurate measurements were
obtained from the

PODOSmart® system
compared to the Vicon

system for temporal gait
parameters but not for spatial

parameters. Joint angle
parameters showed poor or

moderate accuracy
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Table 1. Cont.

Study Scope Population
IMU System
(Number and
Positioning)

OMC System
(Number
Cameras)

Gait Parameters Gait Task Validation
Metrics Results

Saggio et al.
(2021)
[62]

Assessing the agreement of
the ST features during walk
using the IMU-based Movit
System G1 compared with

the camera-based
Vicon system

8 volunteer
healthy subjects

Movit System G1,
Captiks Srl., Rome,

Italy.
(7 IMUs: low back,

shanks, feet,
and thighs)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.
(6 cameras)

Cadence, double
support phase,
single support

phase, step length,
step time, stride

length, stride time,
speed, stance
phase, swing

phase
Joint kinematic

measures of pelvis,
hip, knee, ankle

Walking at
self-selected

speed on a 6 m
walkway

RMSE, PCC, ε,
ε%, and BA

The IMU system obtained
accurate joint performance
and excellent agreement in

all ST parameters, except for
knee varus/valgus and ankle

inversion/eversion, step
length, and double support

Simonetti et al.
(2021)
[63]

Developing and validating a
wearable framework

allowing the estimation of
both the CoM acceleration

and velocity from an optimal
network of MIMUs

1 participant with
transfemoral
amputation

Xsens IMU sensors
Xsens Technologies BV,

Enschede, The
Netherlands.

(7 MIMUs: feet, shanks,
thighs, and sternum)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.

(NS)

CoM acceleration,
CoM velocity

Walking at
self-selected

speed along an
8 m pathway

RMSE and PCC

Strong agreement was
obtained when comparing a
network of five MIMUs with

an OMC system in
estimating CoM acceleration
and velocity in a person with

a transfemoral amputation

Romijnders et al.
(2021)
[64]

Assessing the
shank-mounted IMU-based
detection of GEs in different
walking tasks and different

mobility-limiting chronic
diseases against an

OMC system

11 older adults
14 PD

participants
9 ST participants

MyoMotion Noraxon
system, Noraxon Inc.,
Scottsdale, AZ, USA.

(2 IMUs: shanks)

Motion Capture
system MA,
Qualisys AB,

Göteborg,
Danmark.

(12 cameras)

Toe-off, heel strike

(1) Walking at
self-selected

speed along a 5 m
pathway

(2) Slalom trial (3)
Stroop-and-walk

trial

MAE, Wilcoxon
test, recall,

precision, F1

The shank-mounted IMUs
showed good accuracy in

detecting GEs during straight
walking, except for curved

walking tasks due to an
increase in missed and

false events

Piche et al.
(2022)
[65]

Assessing the validity of joint
kinematic measures from

IMU system with reference to
the OMC system at different

walking speeds

22 volunteer
healthy subjects

iSen STT-IWS sensors,
STT Systems Inc., San

Sebastian, Spain.
(11 IMUS: rearfoot,

forefoot, shanks,
thighs, low back,

sternum, and trunk)

OptiTrack—
Motion

Capture system,
NaturalPoint Inc.,

Corvallis, OR,
USA.

(9 cameras)

Joint kinematic
measures of ankle,

knee, and hip

Treadmill
walking at three
different speeds

RMSD, LCC,
and BA

The comparison between the
IMU iSen and the MOCAP

OptiTrack showed good
agreement at low speed and

tolerable agreement at
high speed
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Table 1. Cont.

Study Scope Population
IMU System
(Number and
Positioning)

OMC System
(Number
Cameras)

Gait Parameters Gait Task Validation
Metrics Results

Rekant et al.
(2022)
[66]

Evaluating the validity of the
joint kinematic measurement

from the IMU-based
Noraxon system compared

with the OMC systems

10 volunteer
healthy subjects

MyoMotion Noraxon
system, Noraxon Inc.,
Scottsdale, AZ, USA.
(7 IMUs: low back,

thighs, shanks,
and feet)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.
(14 cameras)

Joint kinematic
measures of the

hip,
ankle, knee

Walking at
self-selected

speed across a
tile floor

ICC and BA

No agreement was
demonstrated, as kinematics

in the sagittal plane
performed better than in the
frontal and transverse planes,

while motion in the
transverse plane at the ankle

was unreliable

Bartoszek et al.
(2022)
[67]

Validating the joint kinematic
measures during the Nordic
walking gait recorded by an
IMU-based system compared

with an OMC system

1 volunteer
healthy subject

MyoMotion Noraxon
system, Noraxon Inc.,
Scottsdale, AZ, USA.

(15 IMUs: trunk, arms,
forearms, hands, neck,

feet, shanks, thighs,
and low back)

BTS SMART
System,

BTS
Bioengineering

S.p.A., Milan, Italy.
(6 cameras)

Joint kinematic
measures of the

hip,
ankle, knee,

shoulder, elbow,
wrist

Walking at
velocity is

preferred for the
Nordic walking

gait style for 12 m

PCC, BA,
and SEE

The joint angle values
obtained using MyoMotion
were significantly higher or
lower than the joint angle
values obtained using BTS

due to the presence of a
constant systematic error

Choo et al.
(2022)
[68]

Evaluating the validity of the
joint kinematic measurement
from the Perception Neuron
system with reference to a
conventional OMC system

10 volunteer
healthy subjects

Perception Neuron
motion capture system,

Noitom Ltd., Miami,
FL, USA.

(17 IMUs: NS)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.
(8 cameras)

Joint kinematic
measures of the

hip,
ankle, knee

Walking at
self-selected

speed on a 3 m
walkway

PCC, RMSE,
and BA

The performances of PNS
were good overall compared
to the OMC, except only in

hip flexion/extension during
walking

Digo et al.
(2022)
[69]

Comparing three different
IMU set-ups (trunk, shank,

and ankle) to an OMC
system for the evaluation of

gait ST parameters in a
healthy elderly population

16 volunteer
healthy subjects

XSens MTx Awind,
Xsens Technologies BV,

Enschede, The
Netherlands.

(5 IMUs: trunk, shanks,
and ankles)

OptiTrack—
Motion

Capture system,
NaturalPoint Inc.,

Corvallis, OR,
USA.

(2 cameras)

Speed, stride time,
step time, stance
time, swing time

Walking at three
different speeds

on a 6 m
straight pathway

PCC, RMSE,
and BA

All the IMU configurations
produced a good

performance for GA;
however, the trunk-IMU

system seems to outperform
the ankle-IMU and

shank-IMU

Carcreff et al.
(2022)
[70]

Assessing the concurrent
validity of a new IMU-based

3D lower-limb kinematics
computation method on a
healthy population against

the OMC system

10 volunteer
healthy subjects

Physilog 6S,
GaitUp SA, Lausanne,

Switzerland.
(7 IMUs: low back,

thighs, shanks,
and feet)

Motion Capture
system MA,
Qualisys AB,

Göteborg,
Danmark.

(20 cameras)

Joint kinematic
measures of the

hip,
ankle, knee, pelvis,

foot progression

Walking back and
forth along the

10 m walkway at
a sponta-

neous speed

RMSE, PCC,
and ∆ROM

The two systems are not
completely interchangeable

due to significant differences
in joint kinematic measures

along the frontal and
transverse planes
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Table 1. Cont.

Study Scope Population
IMU System
(Number and
Positioning)

OMC System
(Number
Cameras)

Gait Parameters Gait Task Validation
Metrics Results

Hellec et al.
(2022)
[71]

Evaluating the concurrent
validity of step duration and
step length recorded with an

IMU embedded in smart
glasses compared with an

OMC system

20 volunteer
healthy subjects

Prototype
(1 IMU on eyeglasses)

OptiTrack—
Motion

Capture system,
NaturalPoint Inc.,

Corvallis, OR,
USA.

(6 cameras)

Step time,
step length

Treadmill
walking at three
different speeds

PCC and BA

Good agreement was
assessed between the IMU

embedded in the glasses and
the OMC system to measure
step duration and step length

during gait assessment at
different speeds

Romijnders et al.
(2022)
[72]

Assessing the validity of a
deep learning approach for
detecting GEs from an IMU
placed on the lower leg in

healthy YA, healthy OA, PD
participants, MS participants,

STR participants, cLBP
participants, and others,

compared to an OMC system

42 YA
22 OA
31 PD
21 MS
21 STR
9 cLBP

11 other
participants

MyoMotion Noraxon
system, Noraxon Inc.,
Scottsdale, AZ, USA.
(4 IMUs: shanks and

ankles)

Motion Capture
system MA,
Qualisys AB,

Göteborg,
Danmark.

(12 cameras)

Toe-off, heel strike,
stride time, stance
time, swing time

Walking a
distance of 5 m at

three different
self-

selected speeds

BA and ε

Close agreement was
assessed between the deep
learning approach based on
IMUs placed on the lower

limbs and the OMC system
for detecting ST parameters

and GEs

Ricciardi et al.
(2023)
[73]

Evaluating the agreement
between two systems for the
measurement of the ST gait

parameters in patients
with PSP

15 PSP
participants

Opal System,
APDM Inc., Portland,

OR, USA.
(3 IMUs: low back

and feet)

BTS SMART
System,

BTS
Bioengineering

S.p.A., Milan, Italy.
(6 cameras)

Cadence, GCT,
speed, stance
phase, swing

phase,
stride length

Walking at
normal speed on

a 10 m
straight pathway

Paired test, PB,
and BA

The two systems are not
completely interchangeable,
due to two types of errors: a

constant systematic error
(cadence and GCT) and a
proportional error (stance
phase, swing phase, and

stride length)

El Fezazi et al.
(2023)
[74]

Developing and validating a
method for estimating knee
kinematics during the TUG

test using IMU devices
compared to an OMC system

7 volunteer
healthy subjects

XSens MTw Awinda,
Xsens Technologies BV,

Enschede, The
Netherlands.

(2 IMUs: shank
and thigh)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.
(4 cameras)

Joint kinematic
measures of knee TUG test

Paired test,
RMSE, PCC,

and BA

No significant difference was
shown in extracted

kinematics parameters
compared to the reference

system, demonstrating
strong agreement between

the two methodologies

Brasiliano et al.
(2023)
[75]

Validating of three
IMU-based algorithms

(shank and foot set-up) for
identifying GEs in children

with ITW, both barefoot and
while wearing a foot orthosis,

compared with the
OMC system

6 children
with ITW

Opal System,
APDM Inc., Portland,

OR, USA.
(4 IMUs: feet
and shanks)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.
(7 cameras)

Toe-off, heel strike,
stride length,
swing time,
stance time

Walking at
self-

selected speed
BA

The IMU-foot algorithm was
the best for identifying heel

strikes and estimating ST
parameters, while the
IMU-shank algorithm

excelled at identifying toe-off
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Table 1. Cont.

Study Scope Population
IMU System
(Number and
Positioning)

OMC System
(Number
Cameras)

Gait Parameters Gait Task Validation
Metrics Results

Pacher et al.
(2023)
[76]

Estimating the potential of
multibody optimization to

reduce errors in the
lower-body kinematics

obtained with IMUs
compared with an

OMC system

15 volunteer
healthy subjects

Xsens IMU sensors
Xsens Technologies BV,

Enschede, The
Netherlands.

(7 IMUs: low back,
thighs, shanks,

and feet)

Vicon Motion
Systems, Oxford

Metrics Ltd.,
Oxford, UK.
(18 cameras)

Joint kinematic
measures of the

hip,
ankle, knee, and

pelvis

Walking at
self-selected

speed along an
8 m pathway

RMSE, PCC,
and ∆ROM

Multibody optimization does
not make a very significant
contribution to improving

lower-body kinematics
obtained with IMUs

Abbreviation: ε = absolute error, ε% = absolute percentage error, ∆ROM = absolute difference in ranges of motion, ADA = acceleration–deceleration ability test, BA = Bland–Altman,
CoM = center of mass, CMC = coefficient of multiple correlation, R2 = coefficient of determination, cLBP = chronic low back pain, foot-CoM = foot-center of mass, GEs = gait events,
GCT = gait cycle time, ITW = idiopathic toe walking, ICC = intraclass correlation coefficient, IMU = inertial measurement unit, LR = likelihood ratio, LCC = Lin’s concordance correlation,
MD = mean difference, MAE = mean absolute error, MS = multiple sclerosis, NS = not specified, ES = non-parametric effect size, OA = old adults, PCC = Pearson correlation coefficient,
PD = Parkinson’s disease, PSP = progressive supranuclear palsy, PB = Passing–Bablok, RMSD = root mean square deviation, RMSE = root mean square error, ROME = range of motion
error, STR = stroke, ρ = Spearman’s rank correlation coefficient, SEE = standardize typical error, TUG = timed up and go, TEE = typical error of estimate, YA = young adults.
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4. Wearable Inertial Systems and Study Population
The development of wearable devices has rapidly advanced due to the introduction

of novel sensors and technologies [77]. These innovations enable continuous monitoring
of various physiological parameters, demonstrating versatility across a wide range of
healthcare applications, including the management of chronic and degenerative diseases,
as well as other medical conditions [78–84]. The reviewed studies focused on wearable
inertial systems and their placement on the human body to detect ST and kinematic gait
parameters to establish a benchmark with gold-standard OMC systems.

Two categories of devices were considered: (1) prototypes, representing experimental
configurations not commercially available, and (2) commercial devices, referring to those
already widely available (Figure 4). Among the reviewed studies, 4 out of 32 papers
utilized a prototype device. Pepa et al. [47] investigated the accuracy of different spatial
gait parameter estimation methods using the iPhone 4s accelerometer, positioned on the
lumbar region, and compared the results with OMC data. Koska et al. [50] assessed the
accuracy of kinematic data related to human running obtained from brief sequences of shoe-
mounted IMU sensors, comparing the results with those from an OMC system. Amitrano
et al. [58] evaluated a prototype system that combined e-textile sensor socks with ankle-
mounted IMUs to assess both postural and ST gait parameters. Hellec et al. [71] aimed to
determine the concurrent validity of ST parameters captured by an IMU integrated into
smart glasses, compared with an OMC system.
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Other studies utilized commercial inertial systems, enrolling both healthy subjects and
patients suffering from specific impairments. Of these studies, 10 out of 32 works tested the
wearable inertial systems during gait tasks on participants with specific impairments. The
distribution of subject impairments considered across the studies is presented in Table 2.
Cimolin et al. [48] validated ST parameter estimates during level walking using a single
IMU positioned on the lower trunk of both obese and normal-weight adolescents. Pham
et al. [49] assessed an algorithm for step detection in 11 participants with Parkinson’s
disease (PD) during turning and non-turning episodes, utilizing an IMU placed on the
lumbar region. Kleiner et al. [51] compared total times from the timed up and go (TUG)
test in 30 PD participants, measuring outcomes with a wearable tri-axial IMU against an
OMC system. Zago et al. [53] evaluated the validity of two systems for measuring ST
gait parameters (BTS® G-Sensor vs. BTS SMART System) in 22 PD participants. Berner
et al. [59] investigated the validity of an IMU system in measuring lower limb kinematics
and ST gait parameters with eight HIV-positive and eight HIV-negative participants. Si-
monetti et al. [63] validated a wearable framework for estimating the center of mass (CoM)
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acceleration and velocity using one participant with transfemoral amputation. Romijnders
et al. [64] assessed GE detection using a shank-mounted IMU in 14 PD participants and
9 stroke (STR) participants. In a subsequent study, the same authors [69] examined the
effectiveness of a deep learning approach for detecting GEs from an IMU on the lower leg
in 93 participants with various conditions. Ricciardi et al. [73] evaluated the agreement
between two systems for measuring ST gait parameters (Opal System vs. BTS SMART
System) in 15 participants with progressive supranuclear palsy (PSP). Finally, Brasiliano
et al. [75] validated three IMU-based algorithms (shank and foot set-ups) in identifying
GEs among children with idiopathic toe walking (ITW).

Table 2. Distribution of subject impairments as reported in the studies included in this systematic review.

Impairment References Number of Subjects

Parkinson’s disease

[49] 11

[51] 30

[53] 22

[64] 14

[72] 31

Stroke
[64] 9

[72] 21

Transfemoral amputation [63] 1

Obese [48] 8

HIV-positive [59] 8

Multiple sclerosis [72] 21

Chronic low back pain [72] 9

Progressive supranuclear palsy [73] 15

Idiopathic toe walking [75] 6

Not specified condition [72] 11

5. Sensor Placement
The placement of IMUs offers multiple options, and researchers explored different

configurations in gait-related studies, applying sensors to various body segments or combi-
nations of segments. This distribution is highlighted in Figure 5 (one study was excluded
from the figure as the sensor was not placed directly on the body but was instead embedded
in a pair of eyeglasses [71]). Among the studies analyzed, the lower back was the most
frequently used site for lower-body IMU placement in GA (22 studies), followed closely
by the feet and shanks (20 studies each). Additionally, 10 out of 32 studies used a single
sensor, while the remaining studies employed multiple sensors. The most common multi-
sensor set-up involved placing IMUs on the low back, shanks, feet, and thighs (used by ten
studies). While these statistics provided insight into current research preferences, it should
be noted that they did not necessarily indicate whether these segments delivered the most
informative data or simplified the identification of key GEs. Some researchers sought to
clarify these considerations further. For instance, Micó-Amigo et al. [46] compared two IMU
configurations (placed on the low back and feet) for estimating step time and validated
their results against an OMC system. In both configurations, the anteroposterior (AP)
acceleration signal was used to identify GEs and calculate step time. The study concluded
that step time can be estimated with acceptable accuracy using either a single sensor on
the low back or two sensors positioned on the heels, demonstrating flexibility in sensor
placement without compromising accuracy. Additionally, Digo et al. [69] conducted a
comparative study evaluating three distinct IMU set-ups (ankle, shank, and trunk-mounted
IMUs) against a gold-standard OMC system for assessing ST gait parameters in a healthy
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elderly population. The algorithms for the shank and ankle IMUs focused on identifying
GEs from mediolateral (ML) angular velocity signals, while the trunk IMU algorithm
analyzed AP acceleration signals. Despite all IMU configurations demonstrating good
accuracy, the authors concluded that the trunk-IMU system outperformed both the ankle
and shank set-ups in terms of precision in detecting GEs. Moreover, Brasiliano et al. [75]
evaluated the effectiveness of three IMU-based algorithms in detecting GEs in children
with ITW. The study compared two setups: one where the IMUs were placed on the shanks
and another where they were mounted on the feet. All algorithms were applied to the ML
angular velocity signals. The authors concluded that the IMU-foot algorithm was the best
for identifying heel strikes and estimating ST parameters, while the IMU-shank algorithm
excelled at identifying GEs. Finally, Pepa et al. [47] evaluated three algorithms for detecting
GEs using a smartphone placed on the low back to assess the potential of smartphones
in estimating gait parameters. All methods relied on AP acceleration signals, with results
compared against the gold-standard OMC system. The sensor placement on the low back
did not negatively impact the precision of ST parameter estimations. The results indicated
a high accuracy in estimating GEs using the smartphone, confirming its suitability for gait
monitoring. Unlike all the other items, only one involved the use of an IMU placed on the
glasses [71]. The authors developed a methodology based on the vertical acceleration signal
acquired by an IMU placed on the subject’s glasses for the detection of ST parameters. Good
agreement was observed between the measures extracted by IMU embedded in the glasses
and the ones obtained from the OMC system. However, a challenge was the variability in
IMU positioning. Each time the IMU was attached, its location or orientation within the
same body segment could differ, leading to inconsistent datasets and results across subjects.
This intra-segment placement variability could be mitigated by employing a fixed mount
or holder, ensuring consistent sensor positioning for more reliable measurements.
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Figure 5. The number of studies that positioned IMUs on specific anatomical locations. The “Single
Placement” column represents studies where sensors were located at only one anatomical site. The
“Placement Combinations” columns represent studies where sensors were positioned at multiple
anatomical locations. Each relevant location is marked with an “x”, and the number of studies
utilizing that specific combination is noted at the bottom of each column. The “Total” reflects the
cumulative number of studies that placed sensors at the respective anatomical location.
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Another factor contributing to variability in results was the choice of signal (acceler-
ation or angular velocity). Gyroscopes, which measure angular velocity, are unaffected
by positional translation because the angular velocity of a rigid body remains consistent
across any point on the body, assuming the sensor’s orientation relative to the body seg-
ment remains stable. Additionally, gyroscopes are not influenced by gravity and are less
prone to noise. In contrast, accelerometers tend to be noisier, sensitive to both position
and orientation, and susceptible to gravitational effects. Consequently, despite numerous
studies, disagreements persist regarding the optimal sensor positioning, orientation, and
signal type.

6. Gait Task
Most of the studies (22 out of 32) involved a gait task where participants walked at

either a self-selected pace or at three different speeds over a predetermined distance. Five
additional studies required participants to walk on a treadmill. Two studies, conducted
by Kleiner et al. [51] and El Fezazi et al. [74], used the TUG test. The TUG test measures
the time taken for an individual to rise from a seated position, walk three meters, turn
around, walk back, and sit down. This test is commonly used to assess mobility issues,
particularly in individuals with PD, stroke, or other conditions affecting balance and
gait [85]. Jordan et al. [60] chose the acceleration–deceleration ability (ADA) test, which
consists of a 20 m sprint, followed by rapid linear deceleration after crossing the 20 m
line, and then backpedaling to the same line. Romijnders et al. [64] asked participants to
complete three distinct tasks: walking at a self-selected speed over a 5 m path, a slalom
task (covering 5 m with a cone placed every meter, at a preferred speed), and a Stroop-
and-walk trial (walking back and forth along the 5 m path while performing a numerical
Stroop test on a handheld mobile device, at a self-selected pace, until the Stroop test was
completed) [86]. Finally, Bartoszek et al. [67] enrolled a single participant who performed a
12 m walk at their preferred speed for the Nordic walking gait style.

7. Gait Parameters
Gait parameters are essential metrics that characterize human locomotion, offering

valuable insights into mobility, efficiency, and injury risk. These parameters are typically
classified into three categories: ST, kinematic, and kinetic. ST parameters focus on timing
and distances, relying on critical GEs such as heel strike, toe-off, and mid-swing. Kinematic
parameters capture the movement of joints and limbs without accounting for forces, while
kinetic parameters assess the forces and moments exerted on the body during movement.
Notably, no kinetic parameters were reported in the reviewed works. Table 3 presents a
detailed breakdown of the parameters measured across the selected studies, while Figure 6
reports the distribution of gait parameters. Joint kinematic angles were recorded 117 times,
ST parameters 91 times, center-of-mass parameters 3 times, and gait events 9 times, totaling
233 parameters across 32 studies. Hip flexion was the most frequently measured parameter
(ten occurrences), followed by knee flexion (nine occurrences). Hip abduction, hip rotation,
ankle flexion, stride length, and speed were each recorded eight times. This is related to the
different set-ups (number and positions of sensors that were used).

Of the 32 studies reviewed, 17 focused on calculating ST parameters, while 2 con-
centrated only on extracting GEs such as heel strike and toe-off, as shown in Figure 6.
Pham et al. [47] developed an algorithm that uses an AP acceleration signal from a sin-
gle IMU placed on the lumbar region to detect GEs. Romijnders et al. [64] designed an
algorithm based on angular velocity signals along the ML axis, using two IMUs mounted
on the shanks. Both studies were validated by comparing their results with those from
two commercial OMC systems, with Pham et al. [47] achieving 90% accuracy and Romijn-
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ders et al. [64] achieving 100% accuracy in detecting GEs during non-rotational phases of
step detection.

Table 3. Gait parameters computed in the studies included in this systematic review. The parameters
are categorized based on their type, with the total number of parameters measured per category
indicated in parentheses. The “Articles” column provides the reference for each measurement, while
the “Total” column displays the overall count for each individual parameter.

Joint Kinematics Angles (117)

Parameter Total Articles Parameter Total Articles

ROM of foot 1 [50] Shoulder abduction 1 [67]
ROM of ankle 3 [59,60,65] Elbow flexion 1 [67]
ROM of hip 3 [59,60,65] Wrist abduction 1 [67]
ROM of pelvis 1 [59] Ankle min dorsiflexion 1 [65]
ROM of knee 3 [59,60,65] Ankle min plantarflexion 1 [65]
Pelvic tilt 5 [45,55,62,70,76] Ankle peak dorsiflexion 1 [60]
Pelvic obliquity 5 [45,55,62,70,76] Ankle peak plantarflexion 1 [60]
Pelvic rotation 5 [45,55,62,70,76] Hip peak flexion 1 [65]
Knee abduction 7 [52,55,62,66,67,70,76] Hip minimum flexion 1 [65]
Knee rotation 7 [52,55,62,66,67,70,76] Knee peak flexion 2 [60,65]
Knee flexion 9 [52,55,62,66–68,74,76] Knee minimum flexion 2 [60,65]
Hip abduction 8 [52,55,57,62,66,67,76] Heel strike angle 1 [61]
Hip rotation 8 [52,55,57,62,66,67,76] Supination angle at heel-off 1 [61]
Hip flexion 10 [52,55,57,60,62,66–68,70,76] Supination angle at heel strike 1 [61]
Ankle abduction 7 [52,55,62,66,67,70,76] Supination angle at toe-off 1 [61]
Ankle rotation 7 [52,55,62,66,67,70,76] Supination angle at toe-strike 1 [61]
Ankle flexion 8 [52,55,62,66–68,70,76] Foot progression angle 1 [70]
Shoulder flexion 1 [67]

Spatiotemporal (91)

Parameter Total Articles Parameter Total Articles

Swing time 5 [54,58,69,72,75] Step width 1 [54]
Step time 7 [46,47,54,59,62,69,71] Double support time 2 [54,59]
Step length 5 [47,54,59,62,71] Single support time 2 [54,59]
Swing phase 5 [53,58,61,62,73] Swing width 1 [54]
Stride length 9 [48,53,54,58,59,61,62,73,75] Step count 1 [47]
Stride time 6 [48,53,61,62,69,72] Trunk speed 1 [56]
Cadence 8 [48,53,54,58,59,61,62,73] Circumduction 1 [61]
Speed 9 [48,53,54,58,59,61,62,69,73] Flat foot time 1 [61]
Single support phase 3 [58,59,62] Population rate 1 [61]
Stance phase 7 [48,53,58,59,61,62,73] TUG time 1 [51]
Stance time 6 [54,58,59,69,72,75]
GCT 3 [58,60,73]
Double support phase 6 [48,53,58,59,61,62]

Center of Mass (3)

Parameter Total Articles

Foot-CoM 1 [60]
CoM velocity 1 [63]
CoM acceleration 1 [63]

Gait Events (9)

Parameter Total Articles

Heel strike 5 [47,49,64,72,75]
Toe-off 4 [49,64,72,75]

Twelve articles focused exclusively on kinematic parameter estimation, while four
studies focused on kinematic parameters coupled with ST parameters. Only one study,
Bartoszek et al. [67], investigated the validation of joint kinematic measures for both the
lower and upper limbs during the Nordic walking gait. The study found a consistent sys-
tematic error across all joint kinematic measurements. Finally, Simonetti et al. [63] focused
on two CoM parameters related to gait—CoM velocity and acceleration—to validate a
wearable framework in a person with a transfemoral amputation. Strong agreement was
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obtained by the authors when comparing a network of five IMUs with a gold-standard
OMC system.
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8. Validation Metrics
The present systematic review identified several benchmarking validation metrics,

which can be grouped into five categories: correlation coefficients (CC), Bland–Altman (BA)
analyses, error metrics (ER), statistical tests (ST), and Passing–Bablok (PB) linear regression.

As reported in Figure 7, in the CC category, the most frequently reported metrics
across 24 papers included the Pearson correlation coefficient (PCC), Lin’s concordance
correlation (LCC), coefficient of determination (R2), Spearman’s rank correlation coefficient
(ρ), intraclass correlation coefficient (ICC), and the coefficient of multiple correlation (CMC).
The BA approach was the second most widely used, appearing in 20 studies. The ER
category was identified in 18 papers and included measures such as mean difference (MD),
typical error of estimate (TEE), root mean square deviation (RMSD), root mean square error
(RMSE), mean absolute error (MAE), absolute error (ε), absolute percentage error (ε%),
absolute difference in range of motion (∆ROM), standardized typical error (SEE), range
of motion error (ROME), and non-parametric effect size (ES). The ST category, used in
13 papers, included the paired t-Test, Wilcoxon test, ANOVA, and likelihood ratio (LR) test.
Finally, the PB linear regression method was reported in four studies.
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Overall, CC was the most frequently used metric, followed by BA, ER, ST, and PB
linear regression (Figure 7).

While these validation metrics offer insights into current research preferences, individ-
ually, they fall short of providing a comprehensive picture of agreement levels. Therefore,
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combining multiple metrics is essential to achieve more robust and reliable results. Some
researchers have explored this approach further to enhance interpretability in validation.
For example, Amitrano et al. [58] evaluated the validity of gait parameters measured by the
SWEET Sock, a novel wearable device designed for remote health monitoring, using four
validation metrics: the paired test (either t-Test or Wilcoxon test), PCC, PB linear regression,
and BA analysis. The authors found strong agreement for temporal parameters, such as gait
cycle time and cadence, but limited agreement for spatial parameters, especially step length.
Similarly, El Fezazi et al. [74] developed and validated a method for estimating knee kine-
matics during the TUG test using IMU devices, comparing it to an optical system through
metrics including the paired test, RMSE, PCC, and BA. They concluded that no significant
differences were found in the kinematic parameters compared to the reference system,
indicating strong agreement between the two methodologies. Ricciardi et al. [73] assessed
the agreement between two systems for measuring spatial-temporal gait parameters in
patients with PSP by comparing the Opal System and BTS SMART System using the paired
test, PB, and BA analyses. They found that while the systems showed general agreement,
they were not fully interchangeable due to two types of error: a constant systematic error
affecting cadence and gait cycle time, and a proportional error affecting stance phase, swing
phase, and stride length. Digo et al. [69] compared three different IMU set-ups—placed on
the trunk, shank, and ankle—with an OMC system to evaluate ST parameters in a healthy
elderly population. Using metrics such as the PCC, RMSE, and BA analysis, they concluded
that all IMU configurations demonstrated good performance in assessing gait. However,
the trunk-mounted IMU system showed superior accuracy compared to the shank- and
ankle-mounted configurations.

Overall, the combination of validation metrics most frequently used is ER, CC, and
BA with seven papers [55,59,62,65,67–69].

9. Conclusions
This systematic review highlights the transformative potential of wearable IMUs in

advancing gait analysis beyond the constraints of traditional laboratory-based systems. This
review synthesized findings from studies up to 2023, evaluating the validity of wearable
sensors by assessing their benchmarking with gold-standard OMC systems.

The analysis of IMU configurations in the reviewed studies revealed that lower-body
placement on the lower back, feet, and shanks is the most common setup, with these sites
appearing collectively in over two-thirds of studies. Single-sensor configurations on the
lower back proved effective for estimating ST parameters (such as step time and cadence),
while multi-sensor setups on the lower back, shanks, feet, and thighs demonstrated superior
accuracy for a broader range of gait metrics. Overall, kinematic parameters demonstrated
consistently reliable levels of agreement, independently of sensor placement, the number
of sensors used, or the validation metrics applied. Among ST parameters, metrics such as
cadence, stride time, and stride cycle time demonstrated stronger agreement compared to
those describing specific stride cycle phases, such as swing, stance, and double support.
Despite high levels of agreement between IMU- and OMC-derived data, several limitations
remain in the benchmarking evaluation of the aforementioned systems, especially in
confirming the validity of wearable inertial sensors, which would promote their diffusion
in clinical practice in the near future.

In conclusion, this review confirmed the promising role of wearable IMUs as viable
alternatives to the gold-standard systems (OMCs), particularly in settings where porta-
bility and ease of use are paramount. IMUs demonstrated strong agreement with OMC
systems in estimating gait parameters. Specifically, kinematic parameters showed good
to moderate agreement, while ST parameters exhibited varied results: good agreement
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for parameters such as cadence and gait cycle time but moderate to poor agreement for
parameters associated with gait cycle phases. Therefore, as IMU technology continues to
evolve, standardization in positioning, refined signal processing algorithms, and improved
validation protocols will be essential to fully realize the potential of IMU-based GA.

Our systematic review identified a key limitation in the heterogeneity of the included
studies, particularly in sensor configurations, data processing methods, and validation
metrics. This variability hindered direct comparisons and resulted in inconsistent findings.
To address these challenges, future research could incorporate meta-analytic approaches
to quantitatively synthesize agreement metrics, offering clearer insights into IMU perfor-
mance trends.
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