Early Prediction of Abdominal Aortic Aneurysm Rupture Risk Using Numerical Biomechanical Analysis
<p>Graphical workflow on methodology of selection of patients suitable for analysis.</p> "> Figure 2
<p>Increase in PWS (peak wall stress) as a function of observation time in comparison between ruptured (rupture) and asymptomatic (control group) infrarenal aortic aneurysm cases.</p> "> Figure 3
<p>Increase in luminal diameter as a function of observation time in comparison between ruptured (rupture) and asymptomatic (control group) infrarenal aortic aneurysm cases.</p> "> Figure 4
<p>Example of biomechanical output from one matched pair. Areas of high stress are colored in red and areas of lower stress are colored in yellow to green. Blue implies base-line stress.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Study Design
2.2. Biomechanical Analyses
2.3. Data Processing and Statistical Analysis
3. Results
Patient Characteristics
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reimerink, J.J.; van der Laan, M.J.; Koelemay, M.J.; Balm, R.; A Legemate, D. Systematic review and meta-analysis of population-based mortality from ruptured abdominal aortic aneurysm. Br. J. Surg. 2013, 100, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Anjum, A.; von Allmen, R.; Greenhalgh, R.; Powell, J.T. Explaining the decrease in mortality from abdominal aortic aneurysm rupture. Br. J. Surg. 2012, 99, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Lederle, F.A.; Johnson, G.R.; Wilson, S.E.; Ballard, D.J.; Jordan, J.W.D.; Blebea, J.; Littooy, F.N.; Freischlag, J.A.; Bandyk, D.; Rapp, J.H.; et al. Rupture Rate of Large Abdominal Aortic Aneurysms in Patients Refusing or Unfit for Elective Repair. JAMA 2002, 287, 2968–2972. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.T.; Brown, L.C.; Forbes, J.F.; Fowkes, F.G.; Greenhalgh, R.M.; Ruckley, C.V.; Thompson, S.G. Final 12-year follow-up of surgery versus surveillance in the UK Small Aneurysm Trial. Br. J. Surg. 2007, 94, 702–708. [Google Scholar]
- Wanhainen, A.; Van Herzeele, I.; Bastos Goncalves, F.; Bellmunt Montoya, S.; Berard, X.; Boyle, J.R.; D’Oria, M.; Prendes, C.F.; Karkos, C.D.; Kazimierczak, A. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the Management of Abdominal Aorto-Iliac Artery Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2024, 67, 192–331. [Google Scholar]
- Kontopodis, N.; Metaxa, E.; Papaharilaou, Y.; Tavlas, E.; Tsetis, D.; Ioannou, C. Advancements in identifying biomechanical determinants for abdominal aortic aneurysm rupture. Vascular 2015, 23, 65–77. [Google Scholar] [CrossRef]
- Haller, S.J.; Azarbal, A.F.; Rugonyi, S. Predictors of Abdominal Aortic Aneurysm Risks. Bioengineering 2020, 7, 79. [Google Scholar] [CrossRef]
- Gasser, T.C.; Miller, C.; Polzer, S.; Roy, J. A quarter of a century biomechanical rupture risk assessment of abdominal aortic aneurysms. Achievements, clinical relevance, and ongoing developments. Int. J. Numer. Methods Biomed. Eng. 2023, 39, e3587. [Google Scholar] [CrossRef]
- Forneris, A.; Marotti, F.B.; Satriano, A.; Moore, R.D.; Di Martino, E.S. A novel combined fluid dynamic and strain analysis approach identified abdominal aortic aneurysm rupture. J. Vasc. Surg. Cases Innov. Tech. 2020, 6, 172–176. [Google Scholar] [CrossRef]
- Haller, S.J.; Crawford, J.D.; Courchaine, K.M.; Bohannan, C.J.; Landry, G.J.; Moneta, G.L.; Azarbal, A.F.; Rugonyi, S. Intraluminal thrombus is associated with early rupture of abdominal aortic aneurysm. J. Vasc. Surg. 2018, 67, 1051–1058.e1. [Google Scholar] [CrossRef]
- Teng, B.; Zhou, Z.; Zhao, Y.; Wang, Z. Combined Curvature and Wall Shear Stress Analysis of Abdominal Aortic Aneurysm: An Analysis of Rupture Risk Factors. Cardiovasc. Interv. Radiol. 2022, 45, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Soto, B.; Vila, L.; Dilmé, J.; Escudero, J.-R.; Bellmunt, S.; Camacho, M. Finite element analysis in symptomatic and asymptomatic abdominal aortic aneurysms for aortic disease risk stratification. Int. Angiol. 2018, 37, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Forneris, A.; Nightingale, M.; Ismaguilova, A.; Sigaeva, T.; Neave, L.; Bromley, A.; Moore, R.D.; Di Martino, E.S. Heterogeneity of Ex Vivo and In Vivo Properties along the Length of the Abdominal Aortic Aneurysm. Appl. Sci. 2021, 11, 3485. [Google Scholar] [CrossRef]
- Vignali, E.; Gasparotti, E.; Landini, L.; Celi, S. Development and Realization of an Experimental Bench Test for Synchronized Small Angle Light Scattering and Biaxial Traction Analysis of Tissues. Electronics 2021, 10, 386. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Fillinger, M.F.; Marra, S.P.; Raghavan, M.; Kennedy, F.E. Prediction of rupture risk in abdominal aortic aneurysm during observation: Wall stress versus diameter. J. Vasc. Surg. 2003, 37, 724–732. [Google Scholar] [CrossRef]
- Raghavan, M.; Vorp, D.A. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: Identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 2000, 33, 475–482. [Google Scholar] [CrossRef]
- Sarantides, P.; Raptis, A.; Mathioulakis, D.; Moulakakis, K.; Kakisis, J.; Manopoulos, C. Computational Study of Abdominal Aortic Aneurysm Walls Accounting for Patient-Specific Non-Uniform Intraluminal Thrombus Thickness and Distinct Material Models: A Pre- and Post-Rupture Case. Bioengineering 2024, 11, 144. [Google Scholar] [CrossRef]
- Yeoh, O.H. Some Forms of the Strain Energy Function for Rubber. Rubber Chem. Technol. 1993, 66, 754–771. [Google Scholar] [CrossRef]
- Gasser, T.C.; Görgülü, G.; Folkesson, M.; Swedenborg, J. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J. Vasc. Surg. 2008, 48, 179–188. [Google Scholar] [CrossRef]
- Di Martino, E.S.; Vorp, D.A. Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann. Biomed. Eng. 2003, 31, 804–809. [Google Scholar] [CrossRef]
- Vorp, D.A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 2007, 40, 1887–1902. [Google Scholar] [CrossRef] [PubMed]
- Leemans, E.L.; Willems, T.P.; Slump, C.H.; van der Laan, M.J.; Zeebregts, C.J. Additional value of biomechanical indices based on CTa for rupture risk assessment of abdominal aortic aneurysms. PLoS ONE 2018, 13, e0202672. [Google Scholar] [CrossRef] [PubMed]
- Leemans, E.L.; Willems, T.P.; van der Laan, M.J.; Slump, C.H.; Zeebregts, C.J. Biomechanical Indices for Rupture Risk Estimation in Abdominal Aortic Aneurysms. J. Endovasc. Ther. 2017, 24, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.P.; Moxon, J.V.; Gasser, T.C.; Golledge, J. Systematic Review and Meta-Analysis of Peak Wall Stress and Peak Wall Rupture Index in Ruptured and Asymptomatic Intact Abdominal Aortic Aneurysms. J. Am. Hear. Assoc. 2021, 10, e019772. [Google Scholar] [CrossRef]
- Siika, A.; Liljeqvist, M.L.; Hultgren, R.; Gasser, T.C.; Roy, J. Aortic Lumen Area Is Increased in Ruptured Abdominal Aortic Aneurysms and Correlates to Biomechanical Rupture Risk. J. Endovasc. Ther. 2018, 25, 750–756. [Google Scholar] [CrossRef]
- Truijers, M.; Pol, J.; SchultzeKool, L.; van Sterkenburg, S.; Fillinger, M.; Blankensteijn, J. Wall Stress Analysis in Small Asymptomatic, Symptomatic and Ruptured Abdominal Aortic Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2007, 33, 401–407. [Google Scholar] [CrossRef]
- Khosla, S.; Morris, D.R.; Moxon, J.V.; Walker, P.J.; Gasser, T.C.; Golledge, J. Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. Br. J. Surg. 2014, 101, 1350–1357. [Google Scholar] [CrossRef]
- Skovbo, J.S.; Andersen, N.S.; Obel, L.M.; Laursen, M.S.; Riis, A.S.; Houlind, K.C.; Diederichsen, A.C.P.; Lindholt, J.S. Individual risk assessment for rupture of abdominal aortic aneurysm using artificial intelligence. J. Vasc. Surg. 2024; in press. [Google Scholar] [CrossRef]
- Nathan, D.P.; Xu, C.; Pouch, A.M.; Chandran, K.B.; Desjardins, B.; Gorman, J.H.; Fairman, R.M.; Gorman, R.C.; Jackson, B.M. Increased Wall Stress of Saccular Versus Fusiform Aneurysms of the Descending Thoracic Aorta. Ann. Vasc. Surg. 2011, 25, 1129–1137. [Google Scholar] [CrossRef]
- Indrakusuma, R.; Jalalzadeh, H.; Planken, R.N.; Marquering, H.; Legemate, D.; Koelemay, M.; Balm, R. Biomechanical Imaging Markers as Predictors of Abdominal Aortic Aneurysm Growth or Rupture: A Systematic Review. Eur. J. Vasc. Endovasc. Surg. 2016, 52, 475–486. [Google Scholar] [CrossRef]
- Erhart, P.; Grond-Ginsbach, C.; Hakimi, M.; Lasitschka, F.; Dihlmann, S.; Böckler, D.; Hyhlik-Dürr, A. Finite Element Analysis of Abdominal Aortic Aneurysms: Predicted Rupture Risk Correlates with Aortic Wall Histology in Individual Patients. J. Endovasc. Ther. 2014, 21, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Lorandon, F.; Rinckenbach, S.; Settembre, N.; Steinmetz, E.; Du Mont, L.S.; Avril, S. Stress Analysis in AAA does not Predict Rupture Location Correctly in Patients with Intraluminal Thrombus. Ann. Vasc. Surg. 2022, 79, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Siika, A.; Talvitie, M.; Liljeqvist, M.L.; Bogdanovic, M.; Gasser, T.C.; Hultgren, R.; Roy, J. Peak wall rupture index is associated with risk of rupture of abdominal aortic aneurysms, independent of size and sex. Br. J. Surg. 2024, 111, znae125. [Google Scholar] [CrossRef]
- Hyhlik-Dürr, A.; Krieger, T.; Geisbüsch, P.; Kotelis, D.; Able, T.; Böckler, D. Reproducibility of Deriving Parameters of AAA Rupture Risk From Patient-Specific 3D Finite Element Models. J. Endovasc. Ther. 2011, 18, 289–298. [Google Scholar] [CrossRef]
- Abdolmanafi, A.; Forneris, A.; Moore, R.D.; Di Martino, E.S. Deep-learning method for fully automatic segmentation of the abdominal aortic aneurysm from computed tomography imaging. Front. Cardiovasc. Med. 2023, 9, 1040053. [Google Scholar] [CrossRef]
- Conlisk, N.; Geers, A.J.; McBride, O.M.; Newby, D.E.; Hoskins, P.R. Patient-specific modelling of abdominal aortic aneurysms: The influence of wall thickness on predicted clinical outcomes. Med. Eng. Phys. 2016, 38, 526–537. [Google Scholar] [CrossRef]
- Speelman, L.; Schurink, G.W.H.; Bosboom, E.M.H.; Buth, J.; Breeuwer, M.; van de Vosse, F.N.; Jacobs, M.H. The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm. J. Vasc. Surg. 2009, 51, 19–26. [Google Scholar] [CrossRef]
- Valente, R.; Mourato, A.; Xavier, J.; Sousa, P.; Domingues, T.; Tavares, P.; Avril, S.; Tomás, A.; Fragata, J. Experimental Protocols to Test Aortic Soft Tissues: A Systematic Review. Bioengineering 2024, 11, 745. [Google Scholar] [CrossRef]
- Frangi, A.F.; Prince, J.L.; Sonka, M. Medical Image Analysis; Elsevier Ltd.: Amsterdam, The Netherlands, 2023. [Google Scholar]
Ruptured Group (n = 15) | Control Group (n = 15) | p Value | |
---|---|---|---|
Male Sex | 13 (87) | 13 (87) | |
Female Sex | 2 (13) | 2 (13) | |
Age at First CT | 81 (73–84) | 75 (67–81) | 0.12 |
Age at Second CT | 82 (76–86) | 76 (69–82) | 0.070 |
Diabetes | 5 (33) | 4 (27) | 0.70 |
Smoking Status | 0.69 | ||
Non-Smoker | 5 (33) | 6 (40) | |
Current Smoker | 7 (47) | 3 (20) | |
Former Smoker | 3 (20) | 6 (40) |
Median | p-Value | Median | p-Value | |||
---|---|---|---|---|---|---|
First rAAA | First Control | Second rAAA | Second Control | |||
Aortic diameter [mm] | 55 (51–59) | 55 (51–57) | 0.57 | 69 (63–72) | 60 (58–62) | 0.006 |
PWS [kPA] | 211.8 (191.3–256.7) | 180.5 (158.9–206.7) | 0.029 | 281.9 (259.5–324.4) | 187.4 (175.6–253.3) | 0.002 |
PWRR [-] | 0.52 (0.44–0.62) | 0.43 (0.37–0.56) | 0.059 | 0.78 (0.67–0.99) | 0.49 (0.37–0.81) | 0.014 |
Luminal diameter [mm] | 43.5 (38.7–51.2) | 35.3 (30.4–44.3) | 0.016 | 58.3 (49.2–68.9) | 39.7 (31.1–46.2) | 0.007 |
RRED [mm] | 58.9 (52.0–67.2) | 50.6 (45.3–62.5) | 0.065 | 79.8 (71.4–94.8) | 56.5 (45.1–82.2) | 0.014 |
ILT Thickness [mm] | 19.6 (10.5–23.9) | 21.5 (14.6–24.4) | 0.90 | 20.4 (14.4–29.9) | 24.0 (18.7–26.9) | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grassl, K.; Gasser, T.C.; Enzmann, F.K.; Gratl, A.; Klocker, J.; Wippel, D.; Walcher, D.C.; Gizewski, E.R.; Wipper, S.H. Early Prediction of Abdominal Aortic Aneurysm Rupture Risk Using Numerical Biomechanical Analysis. Diagnostics 2025, 15, 25. https://doi.org/10.3390/diagnostics15010025
Grassl K, Gasser TC, Enzmann FK, Gratl A, Klocker J, Wippel D, Walcher DC, Gizewski ER, Wipper SH. Early Prediction of Abdominal Aortic Aneurysm Rupture Risk Using Numerical Biomechanical Analysis. Diagnostics. 2025; 15(1):25. https://doi.org/10.3390/diagnostics15010025
Chicago/Turabian StyleGrassl, Kristina, Thomas C. Gasser, Florian K. Enzmann, Alexandra Gratl, Josef Klocker, David Wippel, David C. Walcher, Elke R. Gizewski, and Sabine H. Wipper. 2025. "Early Prediction of Abdominal Aortic Aneurysm Rupture Risk Using Numerical Biomechanical Analysis" Diagnostics 15, no. 1: 25. https://doi.org/10.3390/diagnostics15010025
APA StyleGrassl, K., Gasser, T. C., Enzmann, F. K., Gratl, A., Klocker, J., Wippel, D., Walcher, D. C., Gizewski, E. R., & Wipper, S. H. (2025). Early Prediction of Abdominal Aortic Aneurysm Rupture Risk Using Numerical Biomechanical Analysis. Diagnostics, 15(1), 25. https://doi.org/10.3390/diagnostics15010025