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Abstract: Background: Traumatic brain injury (TBI) research often focuses on mortality rates
or functional recovery, yet the critical need for long-term care among patients dependent
on institutional or Respiratory Care Ward (RCW) support remains underexplored. This
study aims to address this gap by employing machine learning techniques to develop
and validate predictive models that analyze the prognosis of this patient population.
Method: Retrospective data from electronic medical records at Chi Mei Medical Center,
encompassing 2020 TBI patients admitted to the ICU between January 2016 and December
2021, were collected. A total of 44 features were included, utilizing four machine learning
models and various feature combinations based on clinical significance and Spearman
correlation coefficients. Predictive performance was evaluated using the area under the
curve (AUC) of the receiver operating characteristic (ROC) curve and validated with
the DeLong test and SHAP (SHapley Additive exPlanations) analysis. Result: Notably,
236 patients (11.68%) were transferred to long-term care centers. XGBoost with 27 features
achieved the highest AUC (0.823), followed by Random Forest with 11 features (0.817), and
LightGBM with 44 features (0.813). The DeLong test revealed no significant differences
among the best predictive models under various feature combinations. SHAP analysis
illustrated a similar distribution of feature importance for the top 11 features in XGBoost,
with 27 features, and Random Forest with 11 features. Conclusions: Random Forest, with
an 11-feature combination, provided clinically meaningful predictive capability, offering
early insights into long-term care trends for TBI patients. This model supports proactive
planning for institutional or RCW resources, addressing a critical yet often overlooked
aspect of TBI care.

Keywords: traumatic brain injury; long-term care; machine learning models; predictive
analysis; Random Forest; SHAP analysis

1. Introduction
Traumatic Brain Injury (TBI) stands as a significant global health concern, with an

estimated annual incidence ranging from 27 to 69 million worldwide [1]. According to
the Centers for Disease Control and Prevention (CDC), in the United States, TBI cases
witnessed an increase from 521 to 824 per 100,000 individuals between 2001 and 2010 (CDC,
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2011). Similarly, in Taiwan, the incidence was reported at 220.6 per 100,000 person-years
from 2007 to 2008 [2]. TBI-related mortality rates are approximately 17.7 deaths per 100,000
in the U.S. (53,000 deaths) [3] and range from 26.15% to 36.36% in Taiwan for patients
undergoing brain surgery between 1997 and 2007 [4,5].

TBI results in enduring cognitive, physical, and behavioral impairments, necessitating
prolonged healthcare and disability assistance services [6]. The estimated healthcare cost
for non-fatal TBI among MarketScan enrollees in the USA in 2016 amounted to USD 40.6 bil-
lion [7]. Consequently, TBI not only significantly impacts patient well-being but also
imposes a substantial burden on social, economic, and healthcare resources (CDC, 2016).
Hence, accurate predictions and contributions to a more nuanced understanding of the
factors influencing TBI outcomes are crucial.

Several studies have identified a range of predictive factors that may significantly
influence the outcomes of individuals with TBI in both acute and chronic stages. These
factors include age [8,9], sex [9,10], obesity [11], Glasgow Coma Scale (GCS), and pupil
reactivity [12,13], computed tomography (CT) findings [14,15], surgery [8,16], injury sever-
ity [17–20], vasopressor use [21], endotracheal tube intubation [22], intracranial pressure
monitoring use [23], and hypnotic-sedative drug use [24]. Therefore, establishing how to
effectively utilize these feature variables for predicting outcomes is a crucial issue.

The objective of returning home (RH) holds significant importance for survivors of the
intensive care unit (ICU), as emphasized by Li Y [25]. Research indicates that approximately
20% to 38% of ICU survivors following TBI fail to achieve discharge to their homes [26].
Various studies have explored predictive factors for RH in TBI patients, including age, heart
rate, platelet count, D-dimer, and GCS score, as reported by Yabuno S [27]. Additionally,
Leitgeb identified age and GCS score as significant predictors [28].

Additional factors influencing the likelihood of a positive outcome with RH in TBI
patients include the length of hospital stay [29], the Functional Status Score for the ICU [30],
the Acute Physiology and Chronic Health Evaluation II score (APACHE II) [31], and the Coma
Recovery Scale-Revised (CRS-R) score at discharge [32]. However, the complexity of TBI
outcomes and the limitations of traditional statistical methods may be insufficient in capturing
the interactions among various clinical variables, especially with multiple interacting variables
and non-linear relationships [33]. Therefore, the quest for a method that offers the potential
to uncover intricate patterns, provide accurate predictions, and contribute to a more nuanced
understanding of the factors influencing TBI outcomes is crucial.

Machine learning, a subset of artificial intelligence (AI), proves invaluable in clin-
ical prediction and the discovery of novel prognostic markers, due to its capability to
detect interactions among numerous attributes [34]. However, a notable impediment to its
widespread clinical application is the lack of explanation. Explanatory AI (XAI), such as
SHAP (SHapley Additive exPlanations), becomes crucial for enhancing the interpretability
of machine learning models and understanding essential clinical features in predicting
diseases or patient outcomes [35]. The importance of features is a critical aspect of com-
prehending the relevance of clinical features in the prediction process, and various XAI
techniques contribute to elucidating this importance.

While recent studies have applied machine learning to predict outcomes in neurologi-
cal disorders such as aneurysmal subarachnoid hemorrhage [36] and ischemic stroke [37],
and machine learning has been applied to TBI outcomes, the primary focus has been on
mortality or morbidity [38–41]. Its application in predicting the likelihood of transferring
to a long-term care center after TBI is not well-established. Therefore, developing new AI
prognostic prediction models specifically for this outcome is worthwhile.

In this study, we aim to address the pressing challenges in predicting outcomes for
ICU patients with TBI who are unlikely to return home, but transfer to long-term care center.
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Our specific objectives are to develop and validate machine learning-based prognostic
models, including Logistic Regression (LR) [42], Random Forest (RF) [43], LightGBM [44],
and XGBoost [45], and Multilayer Perceptron (MLP) neural networks [46], which predict
the risk of transferring TBI patients to a long-term care center, using easily obtainable
clinical data. To enhance the interpretability of our models, we employ the SHAP [47,48]
technique to identify and explain the key clinical features influencing these predictions.
By focusing on this underexplored aspect of TBI outcomes, we hope to provide valuable
insights that can inform clinical decision-making and contribute to the development of
targeted interventions for this vulnerable patient population.

2. Materials and Methods
2.1. Ethics Consideration

Approval for this study was granted by the Institutional Review Board (IRB) of Chi Mei
Medical Center under the reference number 10911-006. All procedures were conducted by
the authors in strict adherence to applicable laws and regulations, performed in accordance
with relevant guidelines. Given the retrospective nature of the study, the ethics committee
decided to waive the requirement for obtaining informed consent.

2.2. Study Flow Chart and the Content of the Prediction Device

Our study followed the guidelines specified in the Transparent Reporting of a Mul-
tivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) standard.
Figure 1 illustrates the flowchart detailing the ML training process and its integration into
the hospital system for TBI patients in ICU. Various models, including LR, RF, LightGBM,
XGBoost, and Multilayer Perceptron (MLP) neural networks were trained on 70% of the
data and validated on a 30% test set through random splitting. To mitigate concerns of over-
fitting that might arise from a small dataset, we employed the cross-validation technique to
build the models.

Diagnostics 2025, 15, x FOR PEER REVIEW 4 of 22 
 

 

 

Figure 1. Flowchart showing the ML training process and its integration into the hospital system 
for TBI patients in ICU. 

To address the imbalance in the dataset, characterized by more negative cases (sur-
vival) than positive cases (mortality), we applied the Synthetic Minority Oversampling 
Technique (SMOTE) [49] to achieve equal representation during the final model training 
with each algorithm. To evaluate the stability and scalability of the proposed models, we 
conducted both cross-validation and scalability testing. Stability was assessed using 
5-fold cross-validation, where the mean and standard deviation of Accuracy [50], Sensi-
tivity, Specificity [51], and Area under the Curve (AUC) [52] of the Receiver Operating 
Characteristic curve (ROC) were analyzed across different training and validation splits. 
Figure 2 illustrates our AI prediction device for TBI in the ICU, providing insight into 
the system’s architecture and modules. 

 

Figure 2. AI prediction device for TBI in ICU, insight into the system architecture and modules. 

  

Figure 1. Flowchart showing the ML training process and its integration into the hospital system for
TBI patients in ICU.

In this study, we excluded deceased patients, as the primary focus was on predicting
long-term care needs for TBI survivors. For the remaining dataset, we opted not to im-
pute missing values, due to their significant clinical implications in a healthcare context.
Imputation of variables such as SOFA scores, FiO2, or Glasgow Coma Scale (GCS) may
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compromise the clinical integrity of the data, as these features are critical indicators in
patient management and decision-making.

Therefore, we chose to exclude records with incomplete clinical data, as reflected in
the updated Figure 1 Flowchart. The extent of missingness for each variable is summarized
in the RTable (Supplementary Table S1), where variables such as SOFA (24.55% missing)
and FiO2 (10.94% missing) were noted. This approach ensured that only high-quality,
complete clinical data were used for model development, thus enhancing the reliability
and robustness of the machine learning predictions.

To address the imbalance in the dataset, characterized by more negative cases (sur-
vival) than positive cases (mortality), we applied the Synthetic Minority Oversampling
Technique (SMOTE) [49] to achieve equal representation during the final model training
with each algorithm. To evaluate the stability and scalability of the proposed models, we
conducted both cross-validation and scalability testing. Stability was assessed using 5-fold
cross-validation, where the mean and standard deviation of Accuracy [50], Sensitivity,
Specificity [51], and Area under the Curve (AUC) [52] of the Receiver Operating Character-
istic curve (ROC) were analyzed across different training and validation splits. Figure 2
illustrates our AI prediction device for TBI in the ICU, providing insight into the system’s
architecture and modules.
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2.3. Schematic Representation and Configuration of the Prediction Apparatus

Our investigation adhered to the guidelines outlined in the Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) standard.
Figure 1 delineates the diagram portraying the machine learning (ML) training procedure
and its seamless integration into the hospital system for patients with traumatic brain injury
(TBI) in the intensive care unit (ICU). Diverse models, encompassing Linear Regression
(LR), Random Forest (RF), LightGBM, XGBoost, and Multilayer Perceptron (MLP) neural
networks, underwent training on 70% of the dataset and validation on a separate 30% test
set following random partitioning. To address potential overfitting concerns stemming from
a limited dataset, we employed the cross-validation technique in constructing the models.
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In order to counterbalance the dataset’s imbalance, marked by a surplus of negative
cases (no transfer to long-term care center) compared to positive cases (transfer to long-term
care center), we implemented the SOMET. This technique was instrumental in achieving
equitable representation during the final model training across all algorithms. Figure 2
offers an illustration of our artificial intelligence (AI) prediction apparatus designed for
predicting TBI in the ICU, shedding light on the architecture and components of the system.

2.4. Defining Enrollment Period, Inclusion and Exclusion Criteria in the Current Study

This study retrospectively enrolled 3958 patients aged 20 and above with Traumatic
Brain Injury (TBI). These individuals were admitted to the Intensive Care Unit (ICU) at
Chi Mei Medical Center in Tainan, Taiwan, between 1 January 2016 and 31 December 2021.
The electronic medical records were screened using the following diagnostic codes: ICD-9:
800*–804*, 850*–854*, 959.0, 959.01, 959.8–959.9, ICD-10: S00*–T07*. Primary outcome is
defined as “admitted to long-term care center excluding death”. Data with missing values,
extreme outliers, and those who had deceased were also excluded (1938 patients).

2.5. Feature Selection for Predicting Traumatic Brain Injury Transfer to Long-Term Care in ICU

Initially, a collection of 44 feature variables, routinely acquired and measured, was
gathered upon admission to the intensive care unit. These variables were deemed crucial
for predicting the progression of Traumatic Brain Injury (TBI). The initial 44 features were
selected by experts based on their knowledge of the subject matter, previous research
findings, and clinical relevance. All of the features have been analyzed and identified as
encompassing a range of predictive factors that may significantly impact the outcomes of
individuals with TBI across both the acute and chronic stages. Subsequent feature reduction
or recombination was performed based on clinical significance (p < 0.05) and Spearman
correlation coefficient (absolute value > 0.1 or >0.2) analysis to select the necessary parame-
ters. These criteria were applied to construct a fitting model for predicting the likelihood of
transfer to the long-term care center.

2.6. Assessing Machine Learning Models for Predicting Traumatic Brain Injury Outcomes in ICU

In our study, we deliberately selected commonly used and stable machine learning
algorithms, including LR, RF, LightGBM, XGBoost, and MLP. These algorithms are widely
acknowledged in the medical field for their robustness, interpretability, and strong pre-
dictive capabilities, which align with the practical goals of our study. To evaluate the
performance of our machine learning models, we implemented and compared multiple
commonly used algorithms. Additionally, we incorporated a stacking ensemble method,
which combines predictions from these base models to potentially improve overall perfor-
mance. To evaluate the quality of these models, we utilized metrics such as Accuracy [50],
Sensitivity, Specificity [51], and AUC [52]. Ultimately, we selected the model with the
highest AUC for clinical implementation, as this metric reflects the overall discriminative
ability of the model and ensures the best balance between sensitivity and specificity. A
higher AUC value indicates a superior model, demonstrating its ability to distinguish
between the two classes across different threshold levels.

The DeLong test specifically compares areas under correlated ROC curves, indicating
significant differences in performance between the models [53].

To gain insights into how each feature contributes to the associated outcome, we em-
ployed SHAP (SHapley Additive exPlanations) analysis, a widely used technique for explain-
ing the importance of clinical features in predicting various diseases or patient prognosis.
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2.7. Statistical Analysis

The statistical analysis for this study was conducted using the SPSS software (Ver-
sion 15, SPSS Inc., Chicago, IL, USA). To assess the significance of various variables, we
employed specific statistical tests based on the nature of the data and research questions.
For continuous variables, such as physiological measures and scores, we utilized the inde-
pendent t-test to compare means between two groups. The Chi-square test was employed
for the analysis of categorical variables. Additionally, Spearman’s correlation method
was used to evaluate the strength and direction of relationships between each feature and
mortality. All significance testing was performed with a predetermined alpha level of 0.05,
and p-values below this threshold were considered statistically significant.

3. Results
3.1. Demographics and Clinical Pictures in Patients with or Without Transfer to Long-Term Care
Center After TBI

A total of 2020 patients were retrospectively included, from the electronic medical
records system of Chi-Mei Hospital, consisting of 1285 (63.61%) males and 735 (36.39%) fe-
males, with an average age of 63.26 years (mean ± SD: 17.76). Notably, 236 patients (11.68%)
were transferred to long-term care centers. In comparison with the non-transferred group
to institutions or respiratory care wards, Table 1 suggests that individuals transferred after
traumatic brain injury (TBI) exhibited more severe medical conditions, evident in various
physiological measures, medical interventions, and medical history. Among the 44 features,
27 (in italics) showed significant differences between the groups (p-value < 0.05). Due to
an imbalanced outcome class in the dataset, the current study employed the Synthetic
Minority Over-sampling Technique (SMOTE) for model training.

Table 1. (1) Characteristics and clinical presentations of patient transfer to long-term care center with
traumatic brain injury. (2) Characteristics and clinical presentations of patient transfer to long-term
care center with traumatic brain injury.

Feature
Overall

Long-Term Care Center
p-ValueNo Yes

N = 2020 N = 1784 N = 236

(1)

Female, n (%) 735 (36.39) 663 (37.16) 72 (30.51) 0.054
Male, n (%) 1285 (63.61) 1121 (62.84) 164 (69.49)

Age, mean (SD) 63.26 (17.76) 62.69 (18.08) 67.52 (14.52) <0.001
Height, mean (SD) 162.75 (10.95) 162.67 (11.18) 163.37 (9.00) 0.277
Weight, mean (SD) 63.24 (14.23) 63.24 (14.10) 63.23 (15.27) 0.995

Systolic blood pressure (SBP), mean (SD) 143.33 (28.40) 142.56 (27.13) 149.15 (36.17) 0.007
Diastolic blood pressure (DBP), mean (SD) 78.72 (16.36) 79.08 (16.12) 76.02 (17.83) 0.013
Mean Arterial Pressure (MAP), mean (SD) 100.99 (19.86) 100.99 (19.40) 100.98 (23.06) 0.992

Body temperature (BT), mean (SD) 36.57 (0.56) 36.58 (0.55) 36.51 (0.62) 0.098
Pulse, mean (SD) 85.93 (15.90) 85.60 (15.64) 88.43 (17.53) 0.019

Respiratory rate (RR), mean (SD) 17.73 (3.95) 17.78 (3.93) 17.36 (4.06) 0.13
Glasgow Coma Scale_eye-opening (GCS_E), mean (SD) 3.31 (1.15) 3.40 (1.08) 2.61 (1.40) <0.001

Glasgow Coma Scale_verbal response (GCS_V), mean (SD) 3.75 (1.66) 3.92 (1.57) 2.47 (1.72) <0.001
Glasgow Coma Scale_motor response (GCS_M), mean (SD) 5.21 (1.60) 5.35 (1.49) 4.21 (2.00) <0.001

Glasgow Coma Scale (GCS), mean (SD) 12.27 (4.11) 12.66 (3.86) 9.29 (4.70) <0.001
Left Pupil

Pupil reflex (−), n (%) 104 (5.15) 76 (4.26) 28 (11.86)
<0.001Pupil reflex (+), n (%) 1916 (94.85) 1708 (95.74) 208 (88.14)

Pupil size (L), mean (SD) 3.10 (0.77) 3.09 (0.73) 3.25 (1.01) 0.018
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Table 1. Cont.

Feature
Overall

Long-Term Care Center
p-ValueNo Yes

N = 2020 N = 1784 N = 236

Right Pupil
Pupil reflex (−), n (%) 103 (5.10) 74 (4.15) 29 (12.29)

<0.001Pupil reflex (+), n (%) 1917 (94.90) 1710 (95.85) 207 (87.71)
Pupil size (R), mean (SD) 3.09 (0.76) 3.08 (0.72) 3.16 (0.96) 0.26

Muscle power_left upper extremity (Muscle_LUE), mean (SD) 3.24 (1.54) 3.39 (1.46) 2.14 (1.70) <0.001
Muscle power_left lower extremity (Muscle_LLE), mean (SD) 3.13 (1.58) 3.29 (1.50) 1.90 (1.65) <0.001

Muscle power_right upper extremity (Muscle_RUE), mean (SD) 3.25 (1.54) 3.39 (1.46) 2.19 (1.73) <0.001
Muscle power_right lower extremity (Muscle_RLE), mean (SD) 3.14 (1.58) 3.31 (1.49) 1.89 (1.64) <0.001

(2)

Inspired fraction of oxygen (FiO2), mean (SD) 26.49 (9.08) 25.86 (8.63) 31.25 (10.84) <0.001
APACHE II, mean (SD) 11.71 (6.44) 11.11 (6.23) 16.31 (6.14) <0.001

Sequential Organ Failure Assessment (SOFA score), mean (SD) 2.64 (2.26) 2.41 (2.10) 4.40 (2.61) <0.001
Endotracheal tube (Endo)

No, n (%) 1229 (60.84) 1158 (64.91) 71 (30.08) <0.001
Yes, n (%) 791 (39.16) 626 (35.09) 165 (69.92)

External ventricular drain (EVD)
No, n (%) 1823 (90.25) 1627 (91.20) 196 (83.05)

<0.001Yes, n (%) 197 (9.75) 157 (8.80) 40 (16.95)
EVD_days, mean (SD) 5.01 (2.65) 4.85 (2.40) 5.62 (3.41) 0.184

Intracranial pressure (ICP), n (%)
No, n (%) 1835 (90.84) 1652 (92.60) 183 (77.54)

<0.001Yes, n (%) 185 (9.16) 132 (7.40) 53 (22.46)
Surgery, n (%) 247 (12.23) 185 (10.37) 62 (26.27) <0.001

Drugs
Vasopressors, n (%) 157 (7.77) 106 (5.94) 51 (21.61) <0.001

Sedative_hypnotic, n (%) 787 (38.96) 647 (36.27) 140 (59.32) <0.001
Perdipine, n (%) 295 (14.60) 240 (13.45) 55 (23.31) <0.001
Medical history

Hypertension, n (%) 829 (41.04) 723 (40.53) 106 (44.92) 0.223
Diabetes mellitus, n (%) 510 (25.25) 443 (24.83) 67 (28.39) 0.27

Heart disease, n (%) 320 (15.84) 283 (15.86) 37 (15.68) 1
Cerebrovascular disease, n (%) 181 (8.96) 149 (8.35) 32 (13.56) 0.012
Gastrointestinal disease, n (%) 151 (7.48) 137 (7.68) 14 (5.93) 0.408

Liver disease, n (%) 135 (6.68) 122 (6.84) 13 (5.51) 0.529
kidney disease, n (%) 100 (4.95) 86 (4.82) 14 (5.93) 0.562

Cancer, n (%) 97 (4.80) 84 (4.71) 13 (5.51) 0.705
Thyroid disease, n (%) 53 (2.62) 46 (2.58) 7 (2.97) 0.894

Epilepsy, n (%) 40 (1.98) 35 (1.96) 5 (2.12) 0.804
Asthma, n (%) 39 (1.93) 31 (1.74) 8 (3.39) 0.123

Pneumonia, n (%) 32 (1.58) 24 (1.35) 8 (3.39) 0.027

3.2. The Correlation Between Features and Transfer to Long-Term Care Center After TBI
(Spearman Correlation Coefficient)

To quickly select the proper parameters for machine learning, we conducted a cor-
relation analysis using the Spearman correlation coefficient [49,52]. Table 2 shows that
11 features had an absolute value of coefficients greater than 0.2 (bold), and 7 had values
greater than 0.1 but less than 0.2 (italic). All the correlations in our dataset are less than
0.3. The top seven features were Muscle_RLE, Muscle_LLE, GCS_M, GCS_V, APACHE II,
SOFA, and GCS.
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Table 2. The Spearman correlation coefficient (r) for 44 features.

Feature r Feature r Feature r Feature r

APACHE II 0.259 Vasopressors 0.188 Perdipine 0.09 DBP −0.063
SOFA 0.259 ICP 0.168 EVD 0.088 BT −0.053
FiO2 0.232 Surgery 0.156 Age 0.08 RR −0.046

Endo 0.229 Sedative–hypnotic
drugs 0.152 Cerebrovascular

disease 0.059 Liver Disease −0.017

Muscle_RLE −0.279 GCS_E −0.199 Pneumonia 0.053 Weight −0.013
Muscle_LLE −0.272 pupil_reflex +(R) −0.119 SBP 0.052 MAP −0.011

GCS_M −0.268 pupil_reflex +(L) −0.111 Pulse 0.044 Heart disease −0.002
GCS_V −0.266 Gender 0.044 Liver disease −0.017

GCS −0.255 Asthma 0.039 Gastrointestinal disease −0.021
Muscle_LUE −0.249 pupil_size (L) 0.034 RR −0.046
Muscle_RUE −0.235 Hypertension 0.029 Liver Disease −0.017

Diabetes mellitus 0.026
Height 0.019

Kidney disease 0.016
Cancer 0.012

Thyroid disease 0.008
Pupil_size (R) 0.006

Epilepsy 0.004

MAP: mean arterial pressure; RR: respiratory rate; SBP: systolic blood pressure; EVD: external ventricular drainage;
ICP: intracranial pressure. Italic text: Absolute value greater than 0.1; Bold text: Absolute value greater than 0.2.

3.3. Combinations of Features According to Clinical Significance and Spearman Correlation Coefficient

Four sets of feature combinations were generated, based on clinical significance, Spear-
man correlation coefficient values, and expert judgment with neurologists or other relevant
medical experts who could provide insights into which variables are crucial in the context
of TBI. These sets comprised 44 features (encompassing all features in the study), 27 fea-
tures (identified as clinically significant with p < 0.05 between two comparison groups),
18 features (clinically significant with p < 0.05 between two comparison groups, along with
Spearman correlation coefficient greater than 0.1 or less than −0.1), and 11 features (clini-
cally significant with p < 0.05 between two comparison groups, coupled with Spearman
correlation coefficient greater than 0.2 or less than −0.2) for training the machine learning
model. Detailed information on these sets is presented in Table 3.

Table 3. Details of different combinations of features according to clinical significance and Spearman
correlation coefficient.

Model Definition Number of
Features Involved Features

All study features 44

Gender, Age, Height, Weight, SBP, DBP, MAP, BT, Pulse, RR, GCS_E,
GCS_V, GCS_M, GCS, Left Pupil reflex, Left Pupil size, Right Pupil reflex,
Right Pupil size, Muscle_LUE, Muscle_LLEE, Muscle_RUE, Muscle_RLE,

APACHE II, SOFA score, FiO2, Endo, EVD, ICP, Surgery, Vasopressors,
Sedative–Hypnotic, Perdipine, Hypertension, Diabetes Mellitus, Heart

disease, Cerebrovascular disease, Gastrointestinal disease, Liver disease,
Kidney disease, Cancer, Thyroid disease, Epilepsy, Asthma, Pneumonia

Clinical significance

27

Age, SBP, DBP, Pulse, GCS_E, GCS_V, GCS_M, GCS, Left Pupil reflex, Left
Pupil size, Right Pupil reflex, Muscle_LUE, Muscle_LLEE, Muscle_RUE,
Muscle_RLE, APACHE II, SOFA score, FiO2, Endo, EVD, ICP, Surgery,

Vasopressors, Perdipine, Sedative–Hypnotic, Pneumonia,
Cerebrovascular disease

p < 0.05

Clinical significance p < 0.05
plus Spearman correlation
coefficient > 0.1 or <−0.1

18
GCS_E, GCS_V, GCS_M, GCS, Left Pupil reflex, Right Pupil reflex,

Muscle_LUE, Muscle_LLEE, Muscle_RUE, Muscle_RLE, APACHE II,
SOFA score, FiO2, Endo, ICP, Surgery, Vasopressors, Sedative–Hypnotic
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Table 3. Cont.

Model Definition Number of
Features Involved Features

Clinical significance plus
Spearman correlation

coefficient > 0.2 or <−0.2
11 GCS_V, GCS_M, GCS, Muscle_LUE, Muscle_LLEE, Muscle_RUE,

Muscle_RLE, APACHE II, SOFA score, FiO2, Endo

3.4. Area Under the Curve (AUC), for Transfer to Long-Term Care Center Prediction

Using ROC analysis and AUC [50,51] calculations, we identified optimal predictive
models for the risk of transfer to an institute or respiratory care center based on different
feature combinations. Across four machine learning models, the best-performing model
consistently achieved an AUC exceeding 0.8 (Figure 3a–d).
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Figure 3. Receiver operating characteristic curves (ROC), area under the curve (AUC), for transfer
to institute or respiratory care center prediction: (a) 44 features to train the ML model; (b) 27 fea-
tures which were significant in transfer to institute or respiratory care center; (c) 18 features which
were significant and Spearman correlation coefficient > 0.1; (d) 11 features which were significant
and Spearman correlation coefficient > 0.2. Logistic Regression (orange), Random Forest (black),
LightGBM (green), XGBoost (pink), and stacking (purple).
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The LightGBM model excelled with an AUC of 0.813 among the 44 features. In the
27-feature combination, XGBoost achieved the highest AUC at 0.823. For the 28-feature
combination, Random Forest outperformed others with an AUC of 0.819. In the 11-feature
combination, Random Forest again had the highest AUC of 0.817. Details are in Table 4A–D.
Supplementary Table S2 shows the hyper-parameter range for experiments, detailing the
ranges of the hyperparameters explored.

Table 4. Model performances with different features combinations. Highest AUC in each category is
highlighted in bold.

(A)

Algorithm (44) Accuracy Sensitivity Specificity AUC

Logistic Regression 0.721 0.718 0.721 0.809
Random Forest 0.748 0.732 0.750 0.810

LightGBM 0.728 0.732 0.727 0.813
XGBoost 0.713 0.718 0.712 0.800

MLP 0.723 0.718 0.723 0.792
Stacking 0.741 0.732 0.742 0.818

(B)

Algorithm (27) Accuracy Sensitivity Specificity AUC

Logistic Regression 0.749 0.732 0.751 0.813
Random Forest 0.746 0.746 0.748 0.820

LightGBM 0.754 0.732 0.757 0.807
XGBoost 0.752 0.761 0.751 0.823

MLP 0.751 0.746 0.751 0.810
Stacking 0.751 0.746 0.751 0.828

(C)

Algorithm (18) Accuracy Sensitivity Specificity AUC

Logistic Regression 0.734 0.732 0.735 0.806
Random Forest 0.749 0.831 0.738 0.819

LightGBM 0.772 0.775 0.772 0.812
XGBoost 0.736 0.732 0.736 0.774

MLP 0.762 0.746 0.764 0.785
Stacking 0.761 0.761 0.761 0.822

(D)

Algorithm (11) Accuracy Sensitivity Specificity AUC

Logistic Regression 0.749 0.746 0.75 0.813
Random Forest 0.752 0.746 0.753 0.817

LightGBM 0.756 0.789 0.751 0.815
XGBoost 0.723 0.718 0.723 0.795

MLP 0.708 0.746 0.703 0.775
Stacking 0.764 0.761 0.764 0.820

Supplementary Table S3 showed that the models consistently maintain robust perfor-
mance, with minimal variation, confirming their stability. For scalability analysis, we tested
the models with varying sample sizes and observed their performance through learning
curves. The learning curve for the 11-feature Random Forest model (Supplementary Figure S1)
indicate that the models converge effectively as the training data size increases, showing
no significant overfitting or underfitting trends, as in Supplementary Table S3.

The stacking method integrates outputs from individual models into a meta-model
to generate final predictions. We assessed all models using metrics such as Accuracy,
Sensitivity, Specificity, and AUC, as summarized in Table 4. While stacking demonstrated
competitive performance and achieved the highest AUC in several scenarios, the improve-
ment over the best-performing single model was minimal. Moreover, stacking required
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significantly more computational resources and training time, due to the combination of
multiple base models. This trade-off between performance and resource demand was an
important factor in our final model selection. Ultimately, we selected the single algorithm
with the highest AUC (excluding stacking) for implementation, ensuring that the chosen
model strikes a balance between accuracy, interpretability, and practical applicability in
clinical settings.

3.5. The DeLong and Other Tests for the Best ML Models in Different Feature Combinations

To select the optimal model for clinical practice, we conducted a comparative analysis
of the AUC values for the best machine learning models across different feature combi-
nations. As presented in Table 5, XGBoost, utilizing 27 features, achieved the highest
AUC (0.823), outperforming Random Forest with 11 features (AUC: 0.817). These results
suggest that XGBoost, incorporating 27 features, demonstrates slightly superior overall
discrimination.

Table 5. DeLong test of ML models with different feature combinations.

Algorithm Accuracy Sensitivity Specificity AUC Delong Test

Feature = 11 (Random Forest) 0.752 0.746 0.753 0.817 -
Feature = 44 (LightGBM) 0.728 0.732 0.727 0.813 0.916
Feature = 27 (XGBoost) 0.752 0.761 0.751 0.823 0.618

Feature = 18 (Random Forest) 0.749 0.831 0.738 0.819 0.728

To statistically assess the performance differences among the models, we employed the
DeLong test [52]. The p-values derived from the DeLong test were examined to determine
whether there were significant variations in AUC across the models. However, none of
the comparisons yielded statistically significant results, implying that the models did not
exhibit significant differences in AUC.

It is noteworthy that XGBoost with 27 features not only exhibited the highest AUC,
but also demonstrated the highest sensitivity (0.761), indicating commendable performance
in accurately identifying positive cases. On the other hand, Random Forest with 11 features
achieved the highest specificity (0.753), showcasing its proficiency in accurately identifying
negative cases.

3.6. Feature Importance of AI Algorithms Using SHAP Analysis

Next, we applied SHAP analysis to evaluate the impact of each feature on the model’s
output, providing insights into the importance of individual features for outcome pre-
dictions. In Figures 4a and 5a, the color of the SHAP plot represents the size of the
original feature values, with red indicating positive variable values and blue indicating
negative ones.

In a Random Forest model with 11 features, the significance order of the features is
as follows: Muscle_RLE, Endotracheal intubation, APACHE II score, GCS_V, SOFA score,
Muscle_LUE, Muscle_LLE, Muscle_RUE, FiO2, GCS_M, and GCS. This ranking implies
that features listed earlier have a greater impact on the model’s predictions. For instance,
“Muscle_RLE” holds the highest importance, while “GCS” is considered relatively less
important (see Figure 5a,b).

In an XGBoost model with 27 features, the top eleven features are as follows: Mus-
cle_LLE, Muscle_RLE, APACHE II score, Muscle_LUE, Endotracheal intubation, GCS_V,
SOFA, Age, GCS, Muscle_RUE, and FiO2. Except for age and GCS-M, the other features
are the same as in the Random Forest model.
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3.7. Presentation of AI Interface in Real-World Clinical Applications at Chi Mei Hospital
Healthcare System

Following our analyses, we have determined that the Random Forest model, using
11 features, is simpler and lightweight. We have integrated it into the hospital system to
aid clinical staff and enhance communication with patients’ families.

The “Original” column displays data from ICU admission, while the “Adjust” column
allows observers to modify feature values, offering insights into their impact on the risk of
transfer to an institute or respiratory care center (see Figure 6).
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To assess the practical feasibility of the proposed models for clinical applications, we
conducted a runtime analysis that evaluated both training and inference times. The results
showed that the training times for the models ranged from 30 to 90 min, reflecting the
computational complexity of each algorithm. Despite variations in training duration, all
models achieved rapid inference speeds, with prediction times under 2–3 s per case.

4. Discussion
4.1. Novelty of Current Study

This is the first study to combine feature variables to predict the risk of transferring to a
long-term care center using an AI model after TBI. We adopted a machine learning approach,
which is less constrained by the assumptions of linear models (such as normality and
independence). We found that the tree-based RF machine learning model showed clinically
meaningful predictive capability with 11 feature combinations. Moreover, this approach
has been implemented in a clinical system, and aids in clinical decision-making, planning
by the medical team, and shared decision-making with patients. This study employed
common and stable ML models. The primary objective was derived from clinical needs,
with the practical aim of developing the model into predictive software integrated with
the existing HIS to provide clinical decision support. Thus, it has significant contributions.
We believe the development of these prognostic models has the potential to revolutionize
patient management, enhance resource allocation, and improve healthcare outcomes.

4.2. Demographics and Clinical Pictures

Our demographic analysis reveals that 11.68% (236/2020) of TBI patients did not
return home upon discharge, a notably lower percentage than reported in previous studies
(20% to 38% ICU survivors) [26]. This difference may stem from variations in patient
severity; our study focused on a broader GCS range (mean 12.27 ± 4.11) compared to
previous studies concentrating on moderate to severe cases (GCS 3–12).

Consistent with existing research, our findings highlight that factors such as higher
heart rates [27], older age and lower GCS [27,28], and elevated APACHE II scores [31] are
associated with a reduced likelihood of returning home. Additional contributors include
abnormalities in pupil light reflex, muscle power, SOFA score, drug usage, and specific
comorbidities like cerebrovascular issues and pneumonia. A comprehensive assessment of
27 features (see Table 1) indicates significant statistical differences between transferred and
non-transferred groups.

These insights underscore the need to consider TBI severity and a comprehensive set of
clinical indicators when predicting discharge outcomes. The inclusion of diverse factors in
our study contributes to a nuanced understanding of the determinants influencing post-TBI
discharge destinations

4.3. Correlation Analysis

To enhance predictive modeling based on available features, we assessed correlations
using the Spearman coefficient. All correlations in our dataset are weak (|r| < 0.3), indicat-
ing subtle relationships between variables. While these correlations are not strong, they
offer insights into variable relationships.

In line with prior research, the top 18 features are all predictors of outcome after TBI
(12, 13, 16, 21, 22, 23, 24, 27, 28, 31). Age exhibits a significant (p < 0.001) difference between
groups in Table 1, but the weak correlation (r = 0.08) in Table 2 suggests a minor influence
on the No Return Home group. This implies age may modestly impact a patient’s ability to
return home, possibly moderated by unexplored variables.
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Positive correlations observed in the Spearman analysis with features such as FiO2
and endotracheal intubation underscore the critical role of respiratory care, emphasizing
the significance of early monitoring of oxygen levels. Additionally, correlations with
severity scores (APACHE II, Sequential Organ Failure Assessment (SOFA score)) suggest
the necessity of integrating these scores into intervention planning. Furthermore, the
positive correlations with vasopressors, ICP, and sedative–hypnotic drugs highlight the
importance of vigilant monitoring during interventions.

On the other hand, negative correlations with GCS components underscore the cru-
cial role of neurological assessments, especially for patients with lower GCS scores re-
quiring intensive care. Negative correlations related to muscle strength (Muscle_RLE,
Muscle_LLE, Muscle_LUE, and Muscle_RUE) emphasize the predictive role of muscle
strength in transfers. This emphasizes the need for early, tailored rehabilitation programs
to enhance recovery.

In summary, our findings indicate that a multidisciplinary approach, involving neu-
rologists, intensivists, respiratory therapists, and rehabilitation specialists, ensures compre-
hensive care tailored to the specific needs of TBI patients.

4.4. Feature Combinations

Most previous studies on AI have utilized a single set of features to assess the perfor-
mance of AI models [40,41]. Building upon our earlier research [54], we opted for multiple
combinations of features, comprising a total of four sets of data. The generation of these
feature sets was guided by considerations of clinical significance, Spearman correlation,
and expert judgment, reflecting a meticulous approach to feature selection.

The inclusion of expert input ensures that the chosen variables are in line with clin-
ical understanding, thereby enhancing the model’s interpretability and applicability in
a healthcare context. This careful feature selection process not only improves the inter-
pretability of the model, but also instills confidence in clinicians that the selected variables
align with clinical understanding, providing actionable insights for decision-making in a
real-world setting.

4.5. Comparisons on Overfitting and Generalization Issues of the Models

To evaluate and address potential overfitting and generalization issues, we employed
5-fold cross-validation to assess model performance across different data partitions. As
shown in Supplementary Table S2, the results include the mean and standard deviation
for Accuracy, Sensitivity, Specificity, and AUC, which provide insights into model stability.
Notably, Random Forest, LightGBM, and XGBoost demonstrated low standard deviations
across folds, indicating strong robustness and consistent performance. For instance, Ran-
dom Forest, with 11 features, achieved an AUC of 0.956 ± 0.038, highlighting its ability
to generalize across diverse datasets. Similarly, the Stacking ensemble method exhibited
stable performance with minimal variance, suggesting its potential to mitigate overfitting
by leveraging complementary strengths of individual models. However, we acknowledge
that this study relies solely on electronic medical records from a single medical center
in Taiwan, which may limit the generalizability of our findings to other populations or
healthcare settings. While our cross-validation results support the robustness of the models
within the current dataset, future studies should include external validation with data from
multiple centers, to further confirm generalizability.

4.6. AUC Analysis and Delong Test

The ROC analysis and AUC calculations showcased the discriminative capabilities of
various machine learning models—LR, RF, LightGBM, XGBoost, and Multilayer Perceptron
(MLP)—across different feature combinations. The consistently moderate AUC values (>0.8)
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[Bowers, A.J., 2019] in our study, affirm the efficacy of all tested AI models in predicting
transfers (refer to Tables 4 and 5). The differences in feature sets generated by different ML
methods could be due to algorithmic differences and data preprocessing methods.

The Delong test [52] was conducted to assess the statistical significance of the compar-
isons, and the results indicated that none of the comparisons yielded statistically significant
differences in AUC (see Table 5). This suggests that the models did not exhibit notable
variations in their discriminative performance. Consequently, these findings imply that all
models effectively discriminate between patients who will be transferred and those who
will not.

4.7. SHAP Analysis Evaluating Feature Importance

Using SHAP analysis (Figures 5 and 6), we identified that all the features in the Ran-
dom Forest model (11 features) and XGBoost model (27 features) are clinically significant
for the outcome. Except for age and GCS-M, the remaining features are consistent among
the top eleven features in both the RF and XGBoost models. SHAP analysis exposes the
impact of individual features on model predictions, and understanding the significance of
the order of these features can assist clinicians in prioritizing interventions [53].

For example, the top five features in terms of importance in the RF model are Mus-
cle_RLE, Endotracheal intubation, APACHE II score, GCS_V, and SOFA score. When a
patient has poor right upper-limb function and impaired speech, these conditions can lead
to greater dependency on assistance for daily activities. Additionally, if the patient has un-
dergone endotracheal intubation and has higher APACHE II and SOFA scores, it indicates
greater severity of illness and more affected organs. This will require more intensive care
and support, impacting the patient’s ability to be discharged home successfully without
needing transfer to a long-term care facility.

4.8. Considering Model Selection: Which Is Preferable, Random Forest or XGBoost?

In addition to the five algorithms, we incorporated a Stacking method to compare
the performance improvement of an ensemble of all algorithms (as shown in Table 4).
While the stacking model slightly outperformed the best single model in terms of AUC, the
improvement was marginal. For instance, in the 11-feature combination, the stacking model
achieved an AUC of 0.820 compared to 0.817 for the Random Forest model. However,
stacking requires substantially more computational resources and training time, due to the
integration of multiple base models into a meta-model.

Considering these factors, we prioritized the single model with the highest AUC
(excluding stacking) for clinical use. This decision ensures that the model is both efficient
and practical for real-world implementation, particularly in resource-constrained clinical
environments where quick predictions and model interpretability are essential

In the present study, XGBoost (AUC = 0.823) demonstrates a slight advantage in these
metrics compared to Random Forest (AUC = 0.817), though the superiority may not be
highly significant. Therefore, in the current study, we chose Random Forest (11 features)
as the final predictive model, based on its well-rounded performance in terms of accuracy
(0.752) and a balance between sensitivity (0.746) and specificity (0.753). Additionally,
the AUC value of 0.817 suggests that the model has good discriminative ability. The
involvement of the fewer 11-feature model is another important point of consideration,
based on the fact that cost-effectiveness and convenience would be more practical for
implementation.

4.9. Real-World Application

The incorporation of the Random Forest model into the hospital system represents a
crucial step toward real-world clinical use. Its simplicity and efficiency make it practical for
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daily application. This software enhances the ability to adjust and interact with prediction
functions, allowing for manual adjustment of parameter values to re-predict outcomes. It
can simulate changes in a patient’s physical condition to see if it affects prognosis. For
example, it can show how a decrease in FiO2 increases risk. This enhances the contribution
of our research.

We conducted a runtime analysis to evaluate the computational efficiency of the
pro-posed models, focusing on both training and inference times. The results indicate
that the training time for individual algorithms ranged from approximately 30 to 90 min,
depending on the complexity of the model and the size of the dataset. For inference, all
models demonstrated excellent efficiency, with prediction times consistently under 2–3 s
per case.

The AI model helps close gaps in TBI care by making decisions more personalized and
data-driven. It predicts long-term care needs, helping healthcare teams plan re-sources like
beds and staff, to avoid delays and ensure timely care. Linked to the hospital’s EHR system,
it gives real-time predictions to support discharge planning, coordinate with care centers,
and prevent issues from long hospital stays. It also helps patients and families by providing
tailored insights to set realistic expectations and plan ahead. This proactive approach
makes care smoother, reduces rehospitalizations, improves recovery, and saves costs. Its
effectiveness is measured through doctors’ satisfaction, and overall healthcare efficiency.

4.10. Comparison with Published ML Articles

Machine learning (ML) models have been extensively applied to predict TBI prognosis,
with mortality prediction remaining the most common trend. Wu and Lai (2023), as well as
Courville (2023), demonstrated in their meta-analyses that machine learning significantly
outperforms traditional methods in predictive accuracy [55,56]. Beyond mortality predic-
tion, Fang C et al. (2022) employed ML to predict hospital length of stay [57]. Appiah
Balaji NN et al. (2023) used ML to assist in predicting outcomes for TBI patients in rehabil-
itation hospitals [58]. Say I et al. (2022) revealed that ML surpasses traditional methods
in accuracy, offering better predictions of functional independence during recovery after
rehabilitation [59]. Van Deynse H et al. (2023) extended ML applications to predict patients’
likelihood of returning to work one year post-injury [60]. Matsuo K et al. (2023) utilized
ML to classify discharge outcomes into three categories: functional recovery, disability, or
death [61]. Meanwhile, Satyadev N et al. (2022) proposed an ML model to predict discharge
placement, limited to mild and moderate TBI cases. Their model categorized outcomes as
good, poor, or mortality, but did not address transitions to long-term care facilities [62].
Therefore, our study is novel in providing clinically meaningful predictive capabilities,
offering early insights into long-term care trends for TBI patients.

4.11. Strength and Limitation

Our study possesses several strengths. First, it adheres to the Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) standard,
enhancing the transparency and reproducibility of the research. Second, the use of various
machine learning models (logistic regression, Random Forest, LightGBM, XGBoost, and
MLP neural networks demonstrates a comprehensive approach to prediction modeling,
thereby increasing the robustness of the findings. Third, techniques such as cross-validation
and the Synthetic Minority Oversampling Technique (SMOTE) were employed to address
issues like overfitting and class imbalance, respectively, enhancing the reliability of the
models. Fourth, the study utilized a rigorous process for feature selection, considering
clinical significance, statistical significance, and expert judgment, which strengthens the
relevance of the chosen variables. Fifth, the study used multiple performance metrics,
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including accuracy, sensitivity, specificity, and Area under the Curve (AUC), providing
a comprehensive evaluation of the machine learning models. The use of SHAP analysis
to explain the importance of each feature in the machine learning models enhances the
interpretability of the results. Finally, the integration of the developed model into the
hospital system for real-world clinical applications demonstrates a practical translation of
the research findings.

However, several limitations should be acknowledged. First, the retrospective design
of the study may introduce biases and limit the establishment of causal relationships.
Second, the study relies solely on electronic medical records from a single medical center
in Taiwan, potentially restricting the generalizability of the findings to other populations
or healthcare settings. Third, despite the application of SMOTE, the dataset still displays
an imbalance in the outcome class, with more negative cases (no transfer to a long-term
care center) than positive cases (transfer to a long-term care center). This imbalance may
affect the generalizability and performance of the machine learning models. Employing
a larger dataset or external validation could help alleviate this concern. In the future, we
plan to develop an AI cloud service platform to share our model with other hospitals,
using federated learning to predict prognosis. Fourth, temporal factors, such as changes
in healthcare practices and patient demographics over time, are not considered in this
study, potentially impacting the adaptability of findings to current clinical settings. Fifth,
we acknowledge the importance of including non-survivors in the analysis. However,
we have established a mortality predictive model in ICU cases [54]. The primary focus
of this study was on predicting the need for long-term care in survivors of TBI. The
rationale for excluding non-survivors is based on our specific objective: to assist healthcare
providers in making decisions about post-discharge care for patients who survive the acute
phase. In future work, we plan to develop a comprehensive model that stratifies patients
into three categories: likely to recover and return home, likely to require long-term care,
and likely to succumb during the acute phase. This integrated approach will ensure the
model is applicable across the full spectrum of TBI outcomes. Finally, we recognize the
importance of distinguishing between institutional and home-based care. However, in our
computer system, we have not established neurological functioning and a socioeconomic
system. In future studies, we will explore predictors that differentiate between these care
settings, incorporating metrics such as neurological functioning, caregiver availability, and
socioeconomic factors.

Therefore, in the future, we plan to include a broader range of data over extended
periods, to understand how shifts in healthcare practices and patient demographics may
influence our models’ performance and adaptability. Fifth, we have not evaluated the
length of hospital stay [30], the Functional Status Score for the ICU [31], and the Coma
Recovery Scale—Revised (CRS-R) score at discharge, which were proven predictors of RH.
In the future, we plan to conduct further dynamic and continuous analysis, incorporating
relevant parameters.

5. Conclusions
In summary, the study highlights the clinical effectiveness of the Random Forest model

with 11 features. This model provides valuable early insights into post-traumatic brain-
injury care trends, allowing for proactive arrangements for institutional or respiratory care
ward support. This finding underscores the practical application of the model in clinical
decision-making.
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