Enhancing Epilepsy Seizure Detection Through Advanced EEG Preprocessing Techniques and Peak-to-Peak Amplitude Fluctuation Analysis
<p>EEG processing stages in the study.</p> "> Figure 2
<p>EEG real (−, time acquisition: Power spectrum envelopes and ERP activity of eight most significant independent components.</p> "> Figure 3
<p>Epilepsy detection for patient with four seizures by examining the IC ERP envelope plots with topographical maps.</p> "> Figure 4
<p>This figure displays the power spectrum and ERP activity of the most significant independent components. The black traces represent ERP envelopes, with key IC contributions highlighted in color. The scalp topography maps illustrate the spatial distribution of the ICs during seizure events.</p> "> Figure 5
<p>The ERP and power spectrum for a patient with five seizures. Key independent components (IC 3, 15, 16 and 17) are represented along with their spatial projections.</p> "> Figure 6
<p>Mean PPAF values for different seizure categories. The percentage of amplitude fluctuations indicates seizure waveform stability across the 3-, 4- and 5-seizure datasets.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Clinical Details of Seizures
2.3. Ethical Approval
2.4. EEG Processing with EEGLAB
2.4.1. Data Preprocessing
2.4.2. Re-Referencing and Filtering
2.4.3. Data Structures and Events
2.4.4. Peak-to-Peak Amplitude Fluctuation (PPAF)
- represents the amplitude of the -th peak in the EEG signal;
- represents the amplitude of the -th trough following the -th peak;
- is the total number of peak-to-trough pairs.
2.4.5. Visualizing and Analyzing the Data
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falco-Walter, J. Epilepsy—Definition, Classification, Pathophysiology, and Epidemiology. Semin. Neurol. 2020, 40, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Frauscher, B.; Bénar, C.; Engel, J.; Grova, C.; Jacobs, J.; Kahane, P.; Wiebe, S.; Zjilmans, M.; Dubeau, F. Neurophysiology, Neuropsychology, and Epilepsy, in 2022: Hills We Have Climbed and Hills Ahead. Neurophysiology in epilepsy. Epilepsy Behav. 2023, 143, 109221. [Google Scholar] [CrossRef] [PubMed]
- Xiong, B. EEG-Based Epilepsy Prediction: Evaluation Metrics, Data Deficiency and Limitation of Current Methods. Stud. Health Technol. Inform. 2023, 308, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Maganti, R.K.; Rutecki, P. EEG and epilepsy monitoring. Contin. Lifelong Learn. Neurol. 2013, 19, 598–622. [Google Scholar] [CrossRef] [PubMed]
- Amin, U.; Benbadis, S.R. The Role of EEG in the Erroneous Diagnosis of Epilepsy. J. Clin. Neurophysiol. 2019, 36, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Attar, E.T.; Balasubramanian, V.; Subasi, E.; Kaya, M. Stress Analysis Based on Simultaneous Heart Rate Variability and EEG Monitoring. IEEE J. Transl. Eng. Health Med. 2021, 9, 2700607. [Google Scholar] [CrossRef] [PubMed]
- Attar, E.T. Review of electroencephalography signals approaches for mental stress assessment. Neurosciences 2022, 27, 209–215. [Google Scholar] [CrossRef]
- Attar, E.T. The consequences of eye tracking on brain and heart coherence. Multimed. Tools Appl. 2024, 83, 1–11. [Google Scholar] [CrossRef]
- Attar, E.T. Improved HRV Analysis in ECG Data: A Comparative Study Using MATLAB Code, Kubios, and gHRV. J. King Abdulaziz Univ. Eng. Sci. 2024, 34. Available online: https://journals.kau.edu.sa/index.php/JENGSCI/article/view/1599 (accessed on 19 September 2023).
- Goldberger, A.; Amaral, L.; Glass, L.; Hausdorff, J.; Ivanov, P.C.; Mark, R.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- PANACEE Project. Available online: https://panacee.diism.unisi.it/ (accessed on 17 July 2020).
- Delorme, A.; Sejnowski, T.; Makeig, S. Enhanced detection of artifacts in EEG data using statistical properties of independent component analysis. J. Neurosci. Methods 2007, 160, 233–243. [Google Scholar] [CrossRef]
- Pedroni, A.; Bahreini, A.; Langer, N. Automagic: Standardized preprocessing of big EEG data. NeuroImage 2019, 200, 460–473. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S.; Sejnowski, T. Automatic artifact rejection for EEG data using high-order statistics and independent component analysis. In Proceedings of the Third International ICA Conference, San Diego, CA, USA, 9–12 December 2001; pp. 9–12. [Google Scholar]
- Delorme, A. EEG is better left alone. Sci. Rep. 2023, 13, 2372. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Calderon, J.; Luck, S.J. ERPLAB: An open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci. 2014, 8, 213. [Google Scholar] [CrossRef]
- Delorme, A.; Miyakoshi, M.; Jung, T.-P.; Makeig, S. Grand average ERP-image plotting and statistics: A method for comparing variability in event-related single-trial EEG activities across subjects and conditions. J. Neurosci. Methods 2014, 250, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, K.; Qayyum, A.; Qadir, J.; Sivathamboo, S.; Kwan, P.; Kuhlmann, L.; O’Brien, T.; Razi, A. Machine Learning for Predicting Epileptic Seizures Using EEG Signals: A Review. IEEE Rev. Biomed. Eng. 2021, 14, 139–155. [Google Scholar] [CrossRef]
- Aguera, P.-E.; Jerbi, K.; Caclin, A.; Bertrand, O. ELAN: A software package for analysis and visualization of MEG, EEG, and LFP signals. Comput. Intell. Neurosci. 2011, 2011, 158970. [Google Scholar] [CrossRef] [PubMed]
- Issa, M.F.; Juhasz, Z. Improved EOG Artifact Removal Using Wavelet Enhanced Independent Component Analysis. Brain Sci. 2019, 9, 355. [Google Scholar] [CrossRef]
- Niedermeyer, E.; da Silva, F.L. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004. [Google Scholar]
- He, B.; Liu, Y. Electroencephalography: A Tool for Brain Mapping and Functional Imaging; Wiley-Blackwell: Hoboken, NJ, USA, 2008. [Google Scholar]
- Engel, J. Introduction to Epilepsy; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Buzsáki, G.; Draguhn, A. Neuronal oscillations in cortical networks. Science 2004, 304, 1926–1929. [Google Scholar] [CrossRef]
- Spencer, S.S. Neural networks in epilepsy: A review. Epilepsia 2002, 43, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Makeig, S.; Bell, A.J.; Jung, T.P.; Sejnowski, T.J. Independent component analysis of electroencephalographic data. Adv. Neural Inf. Process. Syst. 1996, 8, 145–151. [Google Scholar]
- He, B.; Wu, D. Electroencephalography and Clinical Neurophysiology: Principles, Techniques, and Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Smith, S.J. EEG in the diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 2005, 76 (Suppl. 2), ii2–ii7. [Google Scholar] [CrossRef]
- Baser, O.; Yavuz, M.; Ugurlu, K.; Onat, F.; Demirel, B.U. Automatic detection of the spike-and-wave discharges in absence epilepsy for humans and rats using deep learning. Biomed. Signal Process. Control. 2022, 76, 103726. [Google Scholar] [CrossRef]
- Gotman, J. Automatic detection of seizures in the EEG. Electroencephalogr. Clin. Neurophysiol. 1990, 76, 273–282. [Google Scholar] [CrossRef]
- Kaufman, D.; Frey, L.C. Atypical presentations of epilepsy: Diagnostic challenges. Epilepsy Res. 2021, 171, 106532. [Google Scholar] [CrossRef]
- Gramacki, A.; Gramacki, J. A deep learning framework for epileptic seizure detection based on neonatal EEG signals. Sci. Rep. 2022, 12, 13010. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Schachter, S.C.; Mazarati, A. Epilepsy: A Comprehensive Textbook; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009. [Google Scholar]
- He, B.; Liu, Z. Multimodal functional neuroimaging: Integrating functional MRI and EEG/MEG. IEEE Rev. Biomed. Eng. 2008, 1, 23–40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bartolini, E.; Caciagli, L.; Larivière, S.; Trimmel, K. Editorial: Advances in neuroimaging of epilepsy. Front. Neurol. 2023, 14, 1142503. [Google Scholar] [CrossRef]
- Engel, J.; Pedley, T.A. Epilepsy: A Comprehensive Textbook; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2008. [Google Scholar]
- Attar, E.T. Integrated Biosignal Analysis to Provide Biomarkers for Recognizing Time Perception Difficulties. J. Med. Signals Sens. 2023, 13, 217–223. [Google Scholar] [CrossRef]
- Attar, E.T. EEG Waves Studying Intensively to Recognize the Human Attention Behavior. In Proceedings of the 2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater Noida, India, 3–4 November 2023; pp. 1–5. [Google Scholar] [CrossRef]
Patient ID | Age | Gender | Seizure | Localization | Lateralization | EEG Electrodes | Number of Seizure | Recording Time (Seconds) |
---|---|---|---|---|---|---|---|---|
PN00 | 55 | Male | IAS (Intra-Axial Seizure) | T (Temporal) | R (Right) | 29 | 5 | 198 s |
PN05 | 51 | Female | IAS (Intra-Axial Seizure) | T (Temporal) | L (Left) | 29 | 3 | 359 s |
PN06 | 36 | Male | IAS (Intra-Axial Seizure) | T (Temporal) | L (Left) | 29 | 5 | 722 s |
PN09 | 27 | Female | IAS (Intra-Axial Seizure) | T (Temporal) | L (Left) | 29 | 3 | 410 s |
PN12 | 71 | Male | IAS (Intra-Axial Seizure) | T (Temporal) | L (Left) | 29 | 4 | 246 s |
PN13 | 34 | Female | IAS (Intra-Axial Seizure) | T (Temporal) | L (Left) | 29 | 3 | 519 s |
PN14 | 49 | Male | WIAS (Wide Intra-Axial Sei-zure) | T (Temporal) | L (Left) | 29 | 4 | 1408 s |
Criteria | Peak-to-Peak Amplitude Fluctuation (PPAF) | Traditional Methods | References |
---|---|---|---|
Accuracy | Higher accuracy in detecting seizure locations | Variable accuracy; dependent on manual inspection or standard algorithms | [3,4] |
Sensitivity | Improved sensitivity for identifying seizure events | Moderate sensitivity; may miss subtle seizure activity | [3,4] |
Specificity | High specificity; fewer false positives | Varies; potential for higher false positives | [3,4] |
Computational Efficiency | Faster processing and analysis | Slower, especially with visual inspection | [3,4] |
Ease of Implementation | Easier to implement with automated tools | Requires manual review or standard analysis tools | [3,4] |
Clinical Relevance | Provides more precise localization of seizures | Effective but less precise; often requires additional tools | [1,2] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahhah, M.A.; Attar, E.T. Enhancing Epilepsy Seizure Detection Through Advanced EEG Preprocessing Techniques and Peak-to-Peak Amplitude Fluctuation Analysis. Diagnostics 2024, 14, 2525. https://doi.org/10.3390/diagnostics14222525
Bahhah MA, Attar ET. Enhancing Epilepsy Seizure Detection Through Advanced EEG Preprocessing Techniques and Peak-to-Peak Amplitude Fluctuation Analysis. Diagnostics. 2024; 14(22):2525. https://doi.org/10.3390/diagnostics14222525
Chicago/Turabian StyleBahhah, Muawiyah A., and Eyad Talal Attar. 2024. "Enhancing Epilepsy Seizure Detection Through Advanced EEG Preprocessing Techniques and Peak-to-Peak Amplitude Fluctuation Analysis" Diagnostics 14, no. 22: 2525. https://doi.org/10.3390/diagnostics14222525
APA StyleBahhah, M. A., & Attar, E. T. (2024). Enhancing Epilepsy Seizure Detection Through Advanced EEG Preprocessing Techniques and Peak-to-Peak Amplitude Fluctuation Analysis. Diagnostics, 14(22), 2525. https://doi.org/10.3390/diagnostics14222525