Aneurysmal Wall Enhancement of Non-Ruptured Intracranial Aneurysms after Endovascular Treatment Correlates with Higher Aneurysm Reperfusion Rates, but Only in Large Aneurysms
<p>From left to right: <b>Left</b>: Grade 1 AWE in a middle cerebral artery Aneurysm, showing non-continuous arterial wall semilunar enhancement on the right ventral circumference. <b>Middle</b>: Grade 2 AWE in a basilar artery aneurysm showing continuous arterial wall enhancement without thickening of the vessel wall. <b>Right</b>: Grade 3 AWE in an internal cerebral artery Aneurysm with continuous enhancement and thickening of the vessel wall, the dorsolaterally located enhancing structure in the bottom right corner of the figure corresponds to the pituitary infundibulum.</p> "> Figure 2
<p>Boxplot of the maximum diameter of an IA vs. AWE in patients with and without reperfusion.</p> "> Figure 3
<p>ROC–Curves showing the relation of the sensitivity and specificity of the maximum IA diameter, AWE, PHASES–Score and aneurysm reperfusion.</p> ">
Abstract
:1. Introduction
2. Methods and Materials
2.1. Research Design
2.2. Patients
2.3. Image Acquisition and Analysis
2.4. Assessment of Intracranial Aneurysms in Imaging Sequences and Clinical History
- 1.
- Presence and duration of aneurysmal wall enhancement of the electively treated aneurysms on MRI (if available prior to any intervention and every recorded scan after elective intervention including sequences for HR–VWI in the timespan of 1 January 2015 to 31 December 2020).
- 2.
- Analysis of aneurysm location on MRI and DSA.
- 3.
- Grade of AWE
- 4.
- Aneurysm recurrence/reperfusion and retreatment
- 5.
- Size of the aneurysm (maximum diameter in mm)
- 6.
- PHASES–Score, which includes
- (a)
- Age
- (b)
- Population (Finnish, Japanese, North American and European)
- (c)
- History of hypertension
- (d)
- Size of aneurysm
- (e)
- Site of aneurysm
- (f)
- Earlier subarachnoid hemorrhage from another aneurysm
2.5. Grading of AWE
- Grade 1: Non–continuous enhancement
- Grade 2: Continuous linear enhancement without thickening of the aneurysmal wall
- Grade 3: Continuous linear enhancement with thickening of the aneurysmal wall
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morita, A.; Kirino, T.; Hashi, K.; Aoki, N.; Fukuhara, S.; Hashimoto, N.; Takeo, N.; Sakai, M.; Teramoto, A.; Tominari, S.; et al. The natural course of unruptured cerebral aneurysms in a japanese cohort. N. Engl. J. Med. 2012, 366, 2474–2482. [Google Scholar] [PubMed]
- Etminan, N.; Rinkel, G. Unruptured intracranial aneurysms: Development, rupture and preventive management. Nat. Rev. Neurol. 2016, 12, 699–713. [Google Scholar] [CrossRef] [PubMed]
- Greving, J.; Wermer, M.; Brown, R.; Morita, A.; Juvela, S.; Yonekura, M.; Ishibashi, T.; Torner, J.; Takeo, N.; Rinkel, G.; et al. Development of the phases score for prediction of risk of rupture of intracranial aneurysms: A pooled analysis of six prospective cohort studies. Lancet Neurol. 2014, 13, 59–66. [Google Scholar] [CrossRef]
- Bijlenga, P.; Gondar, R.; Schilling, S.; Morel, S.; Hirsch, S.; Cuony, J.; Corniola, M.; Perren, F.; Rüfenacht, D.; Schaller, K. Phases score for the management of intracranial aneurysm: A cross-sectional population-based retrospective study. Stroke 2017, 48, 2105–2112. [Google Scholar] [CrossRef] [PubMed]
- Ikawa, F.; Morita, A.; Tominari, S.; Nakayama, T.; Shiokawa, Y.; Date, I.; Nozaki, K.; Miyamoto, S.; Kayama, T.; Arai, H. Rupture risk of small unruptured cerebral aneurysms. J. Neurosurg. 2020, 132, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Etminan, N.; Rinkel, G. Cerebral aneurysms: Cerebral aneurysm guidelines—More guidance needed. Nat. Rev. Neurol. 2015, 11, 490–491. [Google Scholar] [CrossRef] [PubMed]
- Texakalidis, P.; Hilditch, C.; Lehman, V.; Lanzino, G.; Pereira, V.; Brinjikji, W. Vessel wall imaging of intracranial aneurysms: Systematic review and meta-analysis. World Neurosurg. 2018, 117, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Chyatte, D.; Bruno, G.; Desai, S.; Todor, D.R. Inflammation and intracranial aneurysms. Neurosurgery 1999, 45, 1137–1147. [Google Scholar] [CrossRef]
- Frösen, J.; Piippo, A.; Paetau, A.; Kangasniemi, M.; Niemelä, M.; Hernesniemi, J.; Jääskeläinen, J. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture histological analysis of 24 unruptured and 42 ruptured cases. Stroke 2004, 35, 2287–2293. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, K.; Taneda, M.; Asai, T.; Kinoshita, A.; Ito, M.; Kuroda, R. Structural fragility and inflammatory response of ruptured cerebral aneurysms: A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 1999, 30, 1396–1401. [Google Scholar] [CrossRef]
- Mossa-Basha, M.; Hwang, W.; de Havenon, A.; Hippe, D.; Balu, N.; Becker, K.; Tirschwell, D.; Hatsukami, T.; Anzai, Y.; Yuan, C. Multicontrast high-resolution vessel wall magnetic resonance imaging and its value in differentiating intracranial vasculopathic processes. Stroke 2015, 46, 1567–1573. [Google Scholar] [CrossRef]
- Skarpathiotakis, M.; Mandell, D.; Swartz, R.; Tomlinson, G.; Mikulis, D. Intracranial atherosclerotic plaque enhancement in patients with ischemic stroke. Am. J. Neuroradiol. 2013, 34, 299–304. [Google Scholar] [CrossRef]
- Vergouwen, M.; Backes, D.; Schaaf, I.; Hendrikse, J.; Kleinloog, R.; Algra, A.; Rinkel, G. Gadolinium enhancement of the aneurysm wall in unruptured intracranial aneurysms is associated with an increased risk of aneurysm instability: A follow-up study. Am. J. Neuroradiol. 2019, 40, 1112–1116. [Google Scholar] [CrossRef]
- Hartman, J.; Watase, H.; Sun, J.; Hippe, D.; Kim, L.; Levitt, M.; Sekhar, L.; Balu, N.; Hatsukami, T.; Yuan, C.; et al. Intracranial aneurysms at higher clinical risk for rupture demonstrate increased wall enhancement and thinning on multi-contrast 3d vessel wall mri. Br. J. Radiol. 2019, 92, 20180950. [Google Scholar] [CrossRef]
- Edjlali, M.; Guédon, A.; Hassen, W.B.; Boulouis, G.; Joseph, B.; Rodriguez-Régent, C.; Trystram, D.; Nataf, F.; Meder, J.; Turski, P.; et al. Circumferential thick enhancement at vessel wall mri has high specificity for intracranial aneurysm instability. Radiology 2018, 289, 172879. [Google Scholar] [CrossRef]
- Etminan, N.; de Sousa, D.A.; Tiseo, C.; Bourcier, R.; Desal, H.; Lindgren, A.; Koivisto, T.; Netuka, D.; Peschillo, S.; Lémeret, S.; et al. European stroke organisation (eso) guidelines on management of unruptured intracranial aneurysms. Eur. Stroke J. 2022, 7, LXXXI-CVI. [Google Scholar] [CrossRef]
- Elsheikh, S.; Urbach, H.; Meckel, S. Contrast enhancement of intracranial aneurysms on 3t 3d black-blood mri and its relationship to aneurysm recurrence following endovascular treatment. Am. J. Neuroradiol. 2020, 41, 495–500. [Google Scholar] [CrossRef]
- Zwarzany, Ł.; Owsiak, M.; Tyburski, E.; Poncyljusz, W. High-resolution vessel wall mri of endovascularly treated intracranial aneurysms. Tomography 2022, 8, 303–315. [Google Scholar] [CrossRef]
- Leber, S.L.; Hassler, E.M.; Michenthaler, M.; Renner, W.; Deutschmann, H.; Reishofer, G. Wall enhancement of coiled intracranial aneurysms is associated with aneurysm recanalization: A cross-sectional study. Am. J. Neuroradiol. 2024, 45, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Songsaeng, D.; Sakarunchai, I.; Harmontree, S.; Mongkolnaowarat, S.; Charnchaowanish, P.; Zhang, S.; Krings, T. Black-blood vessel wall magnetic resonance imaging—A new imaging biomarker for regrowth of coiled saccular aneurysms? Interdiscip. Neurosurg. 2021, 23, 100920. [Google Scholar] [CrossRef]
- Mascitelli, J.R.; Moyle, H.; Oermann, E.K.; Polykarpou, M.F.; Patel, A.A.; Doshi, A.H.; Gologorsky, Y.; Bederson, J.B.; Patel, A.B. An update to the raymond–roy occlusion classification of intracranial aneurysms treated with coil embolization. J. Neurointerv. Surg. 2015, 7, 496–502. [Google Scholar] [CrossRef]
- Chung, C.Y.; Peterson, R.B.; Howard, B.M.; Zygmont, M.E. Imaging intracranial aneurysms in the endovascular era: Surveillance and posttreatment follow-up. RadioGraphics 2022, 42, 789–805. [Google Scholar] [CrossRef]
- Tóth, A. Wall enhancement in stable aneurysms needs to be understood first to be able to identify instable and culprit aneurysms. Eur. Radiol. 2023, 33, 4915–4917. [Google Scholar] [CrossRef]
- Larsen, N.; Flueh, C.; Madjidyar, J.; Synowitz, M.; Jansen, O. Visualization of aneurysm healing: Enhancement patterns and reperfusion in intracranial aneurysms after embolization on 3t vessel wall mri. Clin. Neuroradiol. 2020, 30, 811–815. [Google Scholar] [CrossRef]
- Roa, J.A.; Zanaty, M.; Osorno-Cruz, C.; Ishii, D.; Bathla, G.; Ortega-Gutierrez, S.; Hasan, D.M.; Samaniego, E.A. Objective quantification of contrast enhancement of unruptured intracranial aneurysms: A high-resolution vessel wall imaging validation study. J. Neurosurg. 2020, 134, 862–869. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Age above 18 | Age below 18 |
One non-ruptured intracranial aneurysm | History of a ruptured intracranial aneurysm with subarachnoid hemorrhage |
Two full MRI studies, if possible one study prior to endovascular treatment | Endovascular treatment via stent or stent—assisted coiling |
Patient history including possible hypertension and ethnicity (for calculating PHASES—Score) | Patient history including vasculitis or intracranial vascular malformation |
Sequence | T1 SPACE FS | T1 SE FS Blood-Suppression | ||
---|---|---|---|---|
Field strength | 1.5 T | 3 T | 1.5 T | 3 T |
Section orientation | Sagittal | Sagittal | Axial | Axial |
TR; TE | 550 ms; 7.2 ms | 600 ms; 8.9 ms | 641 ms; 16 ms | 709 ms; 16 ms |
FA | 120 | 120 | 70 | 70 |
FOV | 248 * 256 | 220 * 220 | 220 * 158 | 220 * 178 |
Matrix | 224 * 256 | 440 * 440 | 512 * 368 | 512 * 416 |
Slice thickness | 1 mm | 1 mm | 2 mm | 2 mm |
Scan time | 5 min 8 s | 6 min 10 s | 2 min 5 s | 3 min 3 s |
Reperfusion | ||||
---|---|---|---|---|
Overall Sample (n = 127) | No (n = 64) | Yes (n = 63) | p-Value | |
Median age (IQR, 25–75) | 59.0 [48.1 to 65.7] | 58.7 [46.7 to 66.3] | 59.5 [48.3 to 65.6] | p = 0.82 |
Female, n (%) | 94 (74.0) | 48 (75.0) | 46 (73.0) | p = 1.0 * |
Median PHASES score (IQR, 25–75) | 5 [4 to 8] | 5 [4 to 8] | 6 [4 to 8] | p = 0.25 |
Median max IA diameter in mm (IQR, 25–75) | 7.0 [6.0 to 9.0] | 6.0 [5.0 to 8.0] | 8.0 [6.3 to 10.0] | p < 0.001 |
AWE [Yes], n (%) | 51 (40.2) | 14 (27.5) | 37 (72.5) | p < 0.001 *+ |
AWE [No], n (%) | 76 (59.8) | 50 (65.9) | 26 (34.2) | p < 0.001 *+ |
AWE Grade 1, n (%) | 17 (13.4) | 6 (9.4) | 11 (17.5) | p = 0.03 * |
AWE Grade 2, n (%) | 21 (16.5) | 5 (7.8) | 16 (25.4) | p = 0.001 * |
AWE Grade 3, n (%) | 13 (10.2) | 3 (4.6) | 10 (15.9) | p = 0.005 * |
AWE | ||||
---|---|---|---|---|
Overall Sample (n = 127) | No (n = 76) | Yes (n = 51) | p-Value | |
Median age (IQR, 25–75) | 58.9 [47.7 to 65.7] | 55.7 [45.2 to 63.8] | 61.2 [51.9 to 66.7] | p = 0.023 |
Female, n (%) | 94 (74.0) | 56 (73.7) | 38 (74.5) | p = 1.0 * |
Median PHASES score (IQR, 25–75) | 5 [4 to 8] | 5 [4 to 7] | 6 [4 to 8] | p = 0.27 |
Median max IA diameter (IQR, 25–75) | 7.0 [6.0 to 9.0] | 6 [5.0 to 9.8] | 8.0 [6.3 to 10.0] | p = 0.003 |
Reperfusion | 63 [49.6] | 26 [41.3] | 37 [58.7] | p < 0.001 *+ |
Method of Measurements | AUC | Cutoff | Youden’ | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
Reperfusion vs. AWE | 0.69 | - | 0.38 | 65.8 | 72.5 |
Reperfusion vs. max IA diameter | 0.67 | 7.5 mm | 0.33 | 73.4 | 58.7 |
Reperfusion vs. PHASES score | 0.56 | 5.5 | 0.18 | 62.5 | 55.6 |
AWE vs. max IA diameter | 0.64 | 7.5 mm | 0.27 | 68.4 | 58.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ladenhauf, V.; Galijasevic, M.; Regodic, M.; Helbok, R.; Rass, V.; Freyschlag, C.; Petr, O.; Deeg, J.; Gruber, L.; Mangesius, S.; et al. Aneurysmal Wall Enhancement of Non-Ruptured Intracranial Aneurysms after Endovascular Treatment Correlates with Higher Aneurysm Reperfusion Rates, but Only in Large Aneurysms. Diagnostics 2024, 14, 1533. https://doi.org/10.3390/diagnostics14141533
Ladenhauf V, Galijasevic M, Regodic M, Helbok R, Rass V, Freyschlag C, Petr O, Deeg J, Gruber L, Mangesius S, et al. Aneurysmal Wall Enhancement of Non-Ruptured Intracranial Aneurysms after Endovascular Treatment Correlates with Higher Aneurysm Reperfusion Rates, but Only in Large Aneurysms. Diagnostics. 2024; 14(14):1533. https://doi.org/10.3390/diagnostics14141533
Chicago/Turabian StyleLadenhauf, Valentin, Malik Galijasevic, Milovan Regodic, Raimund Helbok, Verena Rass, Christian Freyschlag, Ondra Petr, Johannes Deeg, Leonhard Gruber, Stephanie Mangesius, and et al. 2024. "Aneurysmal Wall Enhancement of Non-Ruptured Intracranial Aneurysms after Endovascular Treatment Correlates with Higher Aneurysm Reperfusion Rates, but Only in Large Aneurysms" Diagnostics 14, no. 14: 1533. https://doi.org/10.3390/diagnostics14141533
APA StyleLadenhauf, V., Galijasevic, M., Regodic, M., Helbok, R., Rass, V., Freyschlag, C., Petr, O., Deeg, J., Gruber, L., Mangesius, S., Gizewski, E. R., & Grams, A. E. (2024). Aneurysmal Wall Enhancement of Non-Ruptured Intracranial Aneurysms after Endovascular Treatment Correlates with Higher Aneurysm Reperfusion Rates, but Only in Large Aneurysms. Diagnostics, 14(14), 1533. https://doi.org/10.3390/diagnostics14141533