Bézier Triangles with G2 Continuity across Boundaries
<p>Blending of Bézier triangles: (<b>a</b>) A given triangular mesh; (<b>b</b>) Cubic Bézier triangles with <math display="inline"> <msup> <mi>G</mi> <mn>0</mn> </msup> </math> continuity; (<b>c</b>) Blending regions (in yellow) between adjacent triangles; (<b>d</b>) A smoothly blended surface; (<b>e</b>) A blended surface with sharp features.</p> "> Figure 2
<p>(<b>a</b>) A cubic Bézier triangle; (<b>b</b>) Constructed on a triangle.</p> "> Figure 3
<p>(<b>a</b>) A triangular mesh; (<b>b</b>) Surface of cubic Bézier triangles.</p> "> Figure 4
<p>Four domain triangles <math display="inline"> <mrow> <msub> <mi>T</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> </mrow> </math> and <math display="inline"> <msub> <mi>T</mi> <mn>3</mn> </msub> </math>, and the three subdomains <math display="inline"> <mrow> <msub> <mi>T</mi> <mn>01</mn> </msub> <mo>,</mo> <msub> <mi>T</mi> <mn>02</mn> </msub> </mrow> </math> and <math display="inline"> <msub> <mi>T</mi> <mn>03</mn> </msub> </math>.</p> "> Figure 5
<p>Ratios of lengths that determine the barycentric coordinates <math display="inline"> <mrow> <mo>(</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> <mo>,</mo> <mi>w</mi> <mo>)</mo> </mrow> </math> [<a href="#B6-symmetry-08-00013" class="html-bibr">6</a>].</p> "> Figure 6
<p>Projected length of (<math display="inline"> <mi mathvariant="bold">a</mi> </math>) on to (<math display="inline"> <mi mathvariant="bold">b</mi> </math>).</p> "> Figure 7
<p>(a) Parameterization of a blending region; (b) Different blending regions.</p> "> Figure 8
<p>Quintic blending function <math display="inline"> <mrow> <mi>α</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </math>.</p> "> Figure 9
<p>Blended triangles with (<b>b</b>) <math display="inline"> <mrow> <mi>h</mi> <mo>=</mo> <mo>.</mo> <mn>106</mn> </mrow> </math> and (<b>d</b>) <math display="inline"> <mrow> <mi>h</mi> <mo>=</mo> <mo>.</mo> <mn>212</mn> </mrow> </math>. (blending regions are shown in yellow in (<b>a</b>),(<b>c</b>)).</p> "> Figure 10
<p>(<b>a</b>) A stellated dodecahedron; (<b>b</b>) Surfaced by PN triangles; (<b>c</b>),(<b>d</b>) Using our method (blend regions are shown in yellow in (<b>c</b>)).</p> "> Figure 11
<p>Planar Bézier triangles (defined using the scheme shown in (<b>a</b>)) produce (<b>b</b>) on object with flat faces (<math display="inline"> <mrow> <mi>h</mi> <mo>=</mo> <mn>0</mn> </mrow> </math>), which can be (<b>c</b>) blended by setting <math display="inline"> <mrow> <mi>h</mi> <mo>=</mo> <mo>.</mo> <mn>106</mn> </mrow> </math>. (<b>d</b>) Different values of <span class="html-italic">h</span> produces a variety of darts, crease and corners.</p> "> Figure 12
<p>(<b>a</b>) A different geometry surfaced by Bézier triangles (<b>b</b>), and (<b>c</b>) Blending regions with different extents, and (<b>d</b>) Sharp features generated by blending different types of Bézier triangles.</p> "> Figure 13
<p>Comparison with PN triangles: (a), (d), (g), (h): control meshes; (b), (e), (h), (k): PN triangles with <math display="inline"> <msup> <mi>G</mi> <mn>0</mn> </msup> </math> continuity; (c), (f), (i), (l): smooth surfaces with <math display="inline"> <msup> <mi>G</mi> <mn>2</mn> </msup> </math> continuity.</p> ">
Abstract
:1. Introduction
- A simple technique for generating a smooth surface with continuity over a triangular mesh.
- Surface construction using a simple linear blending of two Bézier triangles rather than a manifold.
- Interactive control of the blending region on each Bézier triangle allows sharp features such as darts, corners and creases to be created in a controlled manners.
2. Related Work
3. Cubic Bézier Triangles
4. Smooth Blending of Bézier Triangles
4.1. Barycentric Coordinates with Respect to Different Triangular Domains
4.2. Defining Blending Regions
4.3. Blending Bézier Triangles
5. Experimental Results
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hoppe, H.; DeRose, T.; Duchamp, T.; Halstead, M.; Jin, H.; McDonald, J.; Schweitzer, J.; Stuetzle, W. Piecewise Smooth Surface Reconstruction. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, Orlando, FL, USA, 24–29 July 1994; pp. 295–302.
- Vlachos, A.; Peters, J.; Boyd, C.; Mitchell, J.L. Curved PN Triangles. In Proceedings of the 2001 Symposium on Interactive 3D Graphics, Research Triangle Pk, NC, USA, 19–21 March 2001; pp. 159–166.
- Fünfzig, C.; Müller, K.; Hansford, D.; Farin, G. PNG1 Triangles for Tangent Plane Continuous Surfaces on the GPU. In Proceedings of the Graphics Interface 2008, Toronto, ON, Canada; 2008; pp. 219–226. [Google Scholar]
- Vecchia, G.D.; Jüttler, B.; Kim, M.S. A Construction of Rational Manifold Surfaces of Arbitrary Topology and Smoothness from Triangular Meshes. Comput. Aided Geometr. Des. 2008, 29, 801–815. [Google Scholar] [CrossRef]
- Vecchia, G.D.; Jüttler, B. Piecewise Rational Manifold Surfaces with Sharp Features. In Proceedings of the 13th IMA International Conference on Mathematics of Surfaces XIII, Blois, France, 13–16 July 2009; pp. 90–105.
- Farin, G. Curves and Surfaces for CAGD: A Practical Guide, 5th ed.; Morgan Kaufmann Publishers: Burlington, MA, USA, 2002. [Google Scholar]
- Vida, J.; Martin, R.R.; Varady, T. A survey of blending methods that use parametric surfaces. Comput. Aided Des. 1994, 26, 341–365. [Google Scholar] [CrossRef]
- Choi, B.; Ju, S. Constant-radius blending in surface modeling. Comput. Aided Des. 1989, 21, 213–220. [Google Scholar] [CrossRef]
- Lukács, G. Differential geometry of G1 variable radius rolling ball blend surfaces. Comput. Aided Geometr. Des. 1998, 15, 585–613. [Google Scholar] [CrossRef]
- Hartmann, E. Parametric Gn Blending of curves and surfaces. Vis. Comput. 2001, 17, 1–13. [Google Scholar] [CrossRef]
- Song, Q.; Wang, J. Generating Gn parametric blending surfaces based on partial reparameterization of base surfaces. Comput. Aided Des. 2007, 39, 953–963. [Google Scholar] [CrossRef]
- Grimm, C.M.; Hughes, J.F. Modeling Surfaces of Arbitrary Topology Using Manifolds. In Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 6–11 August 1995; pp. 359–368.
- Cotrina-Navau, J.; Pla-Garcia, N. Modeling surfaces from meshes of arbitrary topology. Comput. Aided Geometr. Des. 2000, 17, 643–671. [Google Scholar] [CrossRef]
- Cotrina-Navau, J.; Pla-Garcia, N.; Vigo-Anglada, M. A Generic Approach to Free Form Surface Generation. In Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications, Saarbrucken, Germany, 17–21 June 2002; pp. 35–44.
- Ying, L.; Zorin, D. A Simple Manifold-based Construction of Surfaces of Arbitrary Smoothness. ACM Trans. Graph. 2004, 23, 271–275. [Google Scholar] [CrossRef]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-K.; Hwang, H.-D.; Yoon, S.-H. Bézier Triangles with G2 Continuity across Boundaries. Symmetry 2016, 8, 13. https://doi.org/10.3390/sym8030013
Lee C-K, Hwang H-D, Yoon S-H. Bézier Triangles with G2 Continuity across Boundaries. Symmetry. 2016; 8(3):13. https://doi.org/10.3390/sym8030013
Chicago/Turabian StyleLee, Chang-Ki, Hae-Do Hwang, and Seung-Hyun Yoon. 2016. "Bézier Triangles with G2 Continuity across Boundaries" Symmetry 8, no. 3: 13. https://doi.org/10.3390/sym8030013
APA StyleLee, C.-K., Hwang, H.-D., & Yoon, S.-H. (2016). Bézier Triangles with G2 Continuity across Boundaries. Symmetry, 8(3), 13. https://doi.org/10.3390/sym8030013