Recent Advances in Microscopic Approaches to Nuclear Matter and Symmetry Energy
<p>(<b>a</b>) The baryon density and (<b>b</b>) the mass-energy density profile for a neutron star with a mass of 1.4 solar masses.</p> ">
<p>Three-body force due to virtual pair excitation.</p> ">
<p>Our Dirac–Brueckner–Hartree–Fock (DBHF) predictions for the equation of state (EoS) of symmetric matter (solid red) and neutron matter (dashed black).</p> ">
<p>Pressure in symmetric matter from the Idaho DBHF calculation. The shaded area corresponds to the region of pressure consistent with the flow data analyzed in [<a href="#b62-symmetry-06-00851" class="html-bibr">62</a>].</p> ">
<p>DBHF prediction for the symmetry energy (solid red) compared with various phenomenological parametrizations (dashed black). See the text for details.</p> ">
<p>Pressure in neutron (red curve) and baryon-lepton (green curve) matter from the Idaho DBHF calculation. The shaded area corresponds to the region of pressure consistent with flow data and the inclusion of strong density dependence in the asymmetry terms [<a href="#b62-symmetry-06-00851" class="html-bibr">62</a>].</p> ">
<p>Momentum dependence of the single-nucleon potential in isospin asymmetric matter, <span class="html-italic">U<sub>i</sub></span> (<span class="html-italic">i</span> = <span class="html-italic">n, p</span>), predicted with Bonn A (<b>a</b>), Bonn B (<b>b</b>) and Bonn C (<b>c</b>). The total density is equal to 0.185 fm<sup>−3</sup>, and the isospin asymmetry parameter is equal to 0.4. The momentum is given in units of the (average) Fermi momentum, which is equal to 1.4 fm<sup>−1</sup>.</p> ">
<p>(<b>a</b>) Neutron and (<b>b</b>) proton single-particle potentials as functions of the asymmetry parameter at fixed average density and momentum equal to the average Fermi momentum, which is equal to 1.4 fm<sup>−1</sup>.</p> ">
<p>The symmetry energy as predicted with Bonn A, B and C.</p> ">
Abstract
:1. Introduction
2. The Symmetry Energy
2.1. Empirical Facts
2.2. Experimental Constraints on the Symmetry Energy
Heavy ion collisions:
Nuclear binding energies:
Neutron skin measurements with hadronic or electroweak probes:
Electric dipole strength function:
2.3. The Slope of the Symmetry Energy and the Radii of Neutron Stars
3. Our Microscopic Approach to Isospin-Asymmetric Nuclear Matter
3.1. Brief Review of the Model
3.2. Microscopic Predictions of the EoS and Related Quantities
4. A Different Approach: Chiral Interactions
5. Summary and Conclusions
Acknowledgments
Conflicts of Interest
References
- Bethe, H.A.; Bacher, R.F. Nuclear Physics A. Stationary states of nuclei. Rev. Mod. Phys 1936, 8. [Google Scholar] [CrossRef]
- Von Weizäcker, C.F. Zur theorie der kernmassen. Z. Phys 1935, 96, 431–458. [Google Scholar]
- Machleidt, R. The meson theory of nuclear forces and nuclear structure. Adv. Nucl. Phys 1989, 19, 189–376. [Google Scholar]
- Oyamatsu, K.; Tanihata, I.; Sugahara, Y.; Sumiyoshi, K.; Toki, H. Can the equation of state of asymmetric nuclear matter be studied using unstable nuclei? Nucl. Phys. A 1998, 634, 3–14. [Google Scholar]
- Furnstahl, R.J. Neutron radii in mean-field models. Nucl. Phys. A 2002, 706, 85–110. [Google Scholar]
- Sammarruca, F.; Liu, P. Neutron skin of 208Pb and density dependence of the symmetry energy. Phys. Rev. C 2009. [Google Scholar]
- Brueckner, K.A.; Levinson, C.A.; Mahmoud, H.M. Two-body forces and nuclear saturation. I. Central forces. Phys. Rev 1954, 95, 217–228. [Google Scholar]
- Bethe, H.A. Nuclear Many-body problem. Phys. Rev 1956, 103, 1353–1366. [Google Scholar]
- Goldstone, J. Derivation of the Brueckner many-body theory. Proc. R. Soc. London Ser. A 1957, 239, 267–279. [Google Scholar]
- Bethe, H.A. Theory of nuclear matter. Annu. Rev. Nucl. Sci 1971, 21, 93–244. [Google Scholar]
- Haftel, M.I.; Tabakin, F. Nuclear saturation and the smoothness of nucleon-nucleon potentials. Nucl. Phys. A 1970, 158, 1–42. [Google Scholar]
- Sprung, D.W.L. Nuclear matter calculations. Adv. Nucl. Phys 1972, 5, 225–343. [Google Scholar]
- Pandharipande, V.R.; Wiringa, R.B. Variations on a theme of nuclear matter. Rev. Mod. Phys 1979, 51, 821–859. [Google Scholar]
- Lagaris, I.E.; Pandharipande, V.R. Variational calculations of realistic models of nuclear matter. Nucl. Phys. A 1981, 359, 349–364. [Google Scholar]
- Day, B.D.; Wiringa, R.B. Brueckner-Bethe and variational calculations of nuclear matter. Phys. Rev. C 1985. [Google Scholar]
- Anastasio, M.R.; Celenza, L.S.; Pong, W.S.; Shakin, C.M. Relativistic nuclear structure physics. Phys. Rep 1983, 100, 327–392. [Google Scholar]
- Horowitz, C.J.; Serot, B.D. Two-nucleon correlations in a relativistic theory of nuclear matter. Phys. Lett. B 1984, 137, 287–293. [Google Scholar]
- Horowitz, C.J.; Serot, B.D. The relativistic two-nucleon problem in nuclear matter. Nucl. Phys. A 1987, 464, 613–699. [Google Scholar]
- Brockmann, R.; Machleidt, R. Nuclear saturation in a relativistic Brueckner–Hartree–Fock approach. Phys. Lett. B 1984, 149, 283–287. [Google Scholar]
- Brockmann, R.; Machleidt, R. Relativistic nuclear structure. I. Nuclear matter. Phys. Rev. C 1990. [Google Scholar]
- Sugahara, Y.; Toki, H. Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms. Nucl. Phys. A 1994, 579, 557–572. [Google Scholar]
- Lalazissis, G.A.; König, J.; Ring, P. New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 1997. [Google Scholar]
- Kubis, S.; Kutschera, M. Nuclear matter in a relativistic mean field theory with isovector scalar meson. Phys. Lett. B 1997, 399, 191–195. [Google Scholar]
- Mueller, H.; Serot, B.D. Relativistic mean-field theory and the high-density nuclear equation of state. Nucl. Phys. A 1996, 606, 508–537. [Google Scholar]
- Stone, J.R.; Miller, J.C.; Koncewicz, R.; Stevenson, P.D. Nuclear matter and neutron star properties calculated with the Skyrme interaction. Phys. Rev. C 2003. [Google Scholar]
- Stone, J.R.; Reinhard, P.-G. The Skyrme interaction in finite nuclei and nuclear matter. Prog. Part. Nucl. Phys 2007, 58, 587–657. [Google Scholar]
- Das, C.B.; Gupta, S.D.; Gale, C.; Li, B.A. Momentum dependence of symmetry potential in asymmetric nuclear matter for transport model calculations. Phys. Rev. C 2003. [Google Scholar]
- Chappert, F.; Girad, M.; Hilaire, S. Toward a new parametrization of the Gogny force: Neutron matter and nuclear binding energies. Phys. Lett. B 2008, 668, 420–424. [Google Scholar]
- Gandolfi, S.; Yu Illarionov, A.; Schmidt, K.E.; Pederiva, F.; Fantoni, S. Quantum Monte Carlo calculation of the equation of state of neutron matter. Phys. Rev. C 2009. [Google Scholar]
- Baldo, M.; Polls, A.; Rios, A.; Schulze, H.-J.; Vidana, I. Comparative study of neutron and nuclear matter with simplified Argonne nucleon-nucleon potentials. Phys. Rev. C 2012, 86. [Google Scholar] [CrossRef]
- Weinberg, S. Phenomenological Lagrangians. Physica A 1979, 96, 327–340. [Google Scholar]
- Weinberg, S. Nuclear forces from chiral lagrangians. Phys. Lett. B 1990, 251, 288–292. [Google Scholar]
- Simenel, C.; Chomaz, P.H.; de France, G. Fusion process studied with a preequilibrium giant dipole resonance. Phys. Rev. C 2007. [Google Scholar]
- Brown, B.A. Neutron Radii in Nuclei and the Neutron equation of State. Phys. Rev. Lett 2000. [Google Scholar]
- Ko, C.M.; Oh, Y.; Xu, J. Medium effects on charged pion ratio in heavy ion collisions. Int. J. Mod. Phys. E 2010, 19, 1763–1772. [Google Scholar]
- Tsang, M.B.; Stone, J.R.; Camera, F.; Danielewicz, P.; Gandolfi, S.; Hebeler, K.; Horowitz, C.J.; Lee, J.; Lynch, W.G.; Kohley, Z.; et al. Constraints on the symmetry energy and neutron skins from experiments and theory. Phys. Rev. C 2012. [Google Scholar]
- Lane, A.M. Isobaric spin dependence of the optical potential and quasi-elastic (p,n) reaction. Nucl. Phys 1962, 35, 676–685. [Google Scholar]
- Zenihiro, J.; Sakaguchi, H.; Murakami, T.; Yosoi, M.; Yasuda, Y.; Terashima, S.; Iwao, Y.; Takeda, H.; Itoh, M.; Yoshida, H.P.; et al. Neutron density distributions of 204,206,208Pb deduced via proton elastic scattering at Ep = 295 MeV. Phys. Rev. C 2010. [Google Scholar]
- 208Pb Radius Experiment PREX. Available online: hallaweb.jlab.org/parity/prex accessed on 20 July 2014.
- C-REX Workshop. Available online: http://www.jlab.org/conferences/crex accessed on 20 July 2014.
- Reinhard, P.-G.; Nazarewicz, W. Information content of a new observable: The case of the nuclear neutron skin. Phys. Rev. C 2010. [Google Scholar]
- Sedrakian, A. The physics of dense hadronic matter and compact stars. Prog. Part. Nucl. Phys 2007, 58, 168–246. [Google Scholar]
- Champion, D.J.; Ransom, S.M.; Lazarus, P.; Camilo, F.; Bassa, C.; Kaspi, V.M.; Nice, D.J.; Freire, P.C.C.; Stairs, I.H.; van Leeuwen, J.; et al. An eccentric Binary Millisecond Pulsar in the Galactic Plane. Science 2008, 320, 1309–1312. [Google Scholar]
- Demorest, P.; Pennucci, T.; Ransom, S.; Roberts, M.; Hessels, J. Shapiro delay measurement of a two solar mass neutron star. Nature 2010, 468, 1081–1083. [Google Scholar]
- Antoniadis, J.; Freire, P.C.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S.; Driebe, T.; et al. A Massive Pulsar in a Compact Relativistic Binary. Science 2013, 340, 1–9. [Google Scholar]
- Lattimer, J. M.; Prakash, M. Neutron star observations: Prognosis for equation of state constraints. Phys. Rep 2007, 442, 109–165. [Google Scholar]
- Faulkner, A.J.; Kramer, M.; Lyne, A.G.; Manchester, R.N.; McLaughlin, M.A.; Stairs, I.H.; Hobbs, G.; Possenti, A.; Lorimer, D.R.; D’Amico, N.; et al. A new relativistic double neutron star system. Astrophys. J. Lett 2004, 618, L119–L122. [Google Scholar]
- Weber, F. Pulsars as Astrophysical Laboratories for Nuclear and Particle Physic; Institute of Physics Publishing: Bristol, UK; Philadelphia, PA, USA, 1999. [Google Scholar]
- Fattoyev, F.J.; Piekarewicz, J. Neutron skins and neutron stars. Phys. Rev. C 2012. [Google Scholar]
- Li, Z.H.; Lombardo, U.; Schulze, H.-J. Consistent nucleon-nucleon potentials and three-body forces. Phys. Rev. C 2008. [Google Scholar]
- Li, Z.H.; Schulze, H.-J. Neutron star structure with modern nucleonic three-body forces. Phys. Rev. C 2008. [Google Scholar]
- Wiringa, R.B.; Stocks, V.G.J.; Schiavilla, R. Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C 1995. [Google Scholar]
- Stocks, V.G.J.; Klomp, R.A.M.; Terheggen, C.P.F.; de Swart, J.J. Construction of high-quality NN potential models. Phys. Rev. C 1994. [Google Scholar]
- Pieper, S.C.; Pandharipande, V.R.; Wiringa, R.B.; Carlson, J. Realistic models of pion-exchange three-nucleon interactions. Phys. Rev. C 2001. [Google Scholar]
- Harrison, B.K.; Thorne, K.S.; Wakano, M.; Wheeler, J.A. Gravitation Theory and Gravitational Collapse; University of Chicago Press: Chicago, IL, USA, 1965. [Google Scholar]
- Negele, J.W.; Vautherin, D. Neutron star matter at sub-nuclear densities. Nucl. Phys. A 1973, 207, 298–320. [Google Scholar]
- Machleidt, R. High-precision, charge-dependent Bonn nucleon-nucleon potential. Phys. Rev. C 2001. [Google Scholar]
- Thompson, R.H. Bethe-Salpeter Equation Applied to the Nucleon-Nucleon Interaction. Phys. Rev. D 1970. [Google Scholar]
- Salpeter, E.E.; Bethe, H.A. A Relativistic Equation for Bound-State Problems. Phys. Rev 1951, 84, 1232–1242. [Google Scholar]
- Sammarruca, F. The microscopic approach to nuclear matter and neutron star matter. Int. J. Mod. Phys. E 2010, 19, 1259–1313. [Google Scholar]
- Sammarruca, F. Analysis of the symmetry energy in a microscopic approach. Int. J. Mod. Phys. E 2013, 22, 1–37. [Google Scholar]
- Danielewicz, P.; Lacey, R.; Lynch, W.G. Determination of the equation of state of dense matter. Science 2002, 298, 1592–1596. [Google Scholar]
- Sammarruca, F. Contribution of isovector mesons to the symmetry energy in a microscopic model. Phys. Rev. C 2011. [Google Scholar]
- Sakurai, J.J. Currents and Mesons; University of Chicago Press: Chicago, IL, USA, 1969. [Google Scholar]
- Höhler, G.; Pietarinen, E. The ρ NN vertex in the vector-dominance model. Nucl. Phys 1975, B95, 210–230. [Google Scholar]
- Fujita, J.I.; Miyazawa, H. Pion theory of three-body forces. Prog. Theor. Phys 1957, 17, 360–365. [Google Scholar]
- Weinberg, S. Nonlinear realization of chiral symmetry. Phys. Rev 1968, 166, 1568–1577. [Google Scholar]
- Machleidt, R.; Entem, D.R. Chiral effective field theory and nuclear forces. Phys. Rep 2011, 503, 1–75. [Google Scholar]
- Epelbaum, E. Few-nucleon forces and systems in chiral effective field theory. Prog. Part. Nucl. Phys 2006, 57, 654–741. [Google Scholar]
- Epelbaum, E.; Hammer, H.-W.; Meissner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys 2009, 81, 1773–1825. [Google Scholar]
- Entem, D.R.; Machleidt, R. Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 2003. [Google Scholar]
- Epelbaum, E. Four-nucleon force using the method of unitary transformation. Eur. Phys. J 2007, A34, 197–214. [Google Scholar]
- Rozpedzik, D.; Golak, J.; Skibinski, R.; Witala, H. A. First Estimation of Chiral Four-Nucleon Force Effects in 4He. Acta Phys. Polon 2006, B37, 2889–2904. [Google Scholar]
- Holt, J.W.; Kaiser, N.; Weise, W. Density-dependent effective nucleon-nucleon interaction from chiral three-nucleon forces. Phys. Rev. C 2010. [Google Scholar]
- Marcucci, L.E.; Kievsky, A.; Rosati, S.; Schiavilla, R.; Viviani, M. Chiral effective field theory predictions for muon capture on deuteron and 3He. Phys. Rev. Lett 2012. [Google Scholar]
- Coraggio, L.; Holt, J.W.; Itaco, N.; Machleidt, R.; Marcucci, L.E.; Sammarruca, F. Nuclear matter equation of state with consistent two- and three-body perturbative chiral interactions. Phys. Rev. C 2014. [Google Scholar]
- Kaiser, N.; Fritsch, S.; Weise, W. Chiral dynamics and nuclear matter. Nucl. Phys. A 2002, 697, 255–276. [Google Scholar]
- Fritsch, S.; Kaiser, N.; Weise, W. Chiral approach to nuclear matter: Role of two-pion exchange with virtual delta-isobar excitation. Nucl. Phys. A 2005, 750, 259–293. [Google Scholar]
- Kaiser, N. Isovector part of nuclear energy density functional from chiral two- and three-nucleon forces. Eur. Phys. J 2012, A48, 36–49. [Google Scholar]
- Holt, J.W.; Kaiser, N.; Weise, W. Nuclear chiral dynamics and thermodynamics. Prog. Part. Nucl. Phys 2013, 73, 35–83, and references therein. [Google Scholar]
- Bogner, S.K.; Furnstahl, R.J.; Schwenk, A. From low-momentum interactions to nuclear structure. Prog. Part. Nucl. Phys 2010, 65, 94–147. [Google Scholar]
- Hebeler, K.; Bogner, S.K.; Furnstahl, R.J.; Nogga, A.; Schwenk, A. Improved nuclear matter calculations from chiral low-momentum interactions. Phys. Rev. C 2011. [Google Scholar]
Physical property A | Correlation coefficient between A and the neutron skin thickness in 208 Pb |
---|---|
L | 0.9952 |
0.9882 | |
0.8016 | |
R0.6 | 0.9953 |
R0.8 | 0.9931 |
R1.0 | 0.9866 |
R1.4 | 0.9486 |
R1.6 | 0.8361 |
Λ (MeV) | n | c1 | c3 | c4 | cD | cE |
---|---|---|---|---|---|---|
450 | 3 | −0.81 | −3.40 | 3.40 | −0.24 | −0.11 |
500 | 2 | −0.81 | −3.20 | 5.40 | 0.0 | −0.18 |
600 | 2 | −0.81 | −3.20 | 5.40 | −0.19 | −0.833 |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sammarruca, F. Recent Advances in Microscopic Approaches to Nuclear Matter and Symmetry Energy. Symmetry 2014, 6, 851-879. https://doi.org/10.3390/sym6040851
Sammarruca F. Recent Advances in Microscopic Approaches to Nuclear Matter and Symmetry Energy. Symmetry. 2014; 6(4):851-879. https://doi.org/10.3390/sym6040851
Chicago/Turabian StyleSammarruca, Francesca. 2014. "Recent Advances in Microscopic Approaches to Nuclear Matter and Symmetry Energy" Symmetry 6, no. 4: 851-879. https://doi.org/10.3390/sym6040851
APA StyleSammarruca, F. (2014). Recent Advances in Microscopic Approaches to Nuclear Matter and Symmetry Energy. Symmetry, 6(4), 851-879. https://doi.org/10.3390/sym6040851