Logic Gates Formed by Perturbations in an Asynchronous Game of Life
<p>AGL systems. The systems show different patterns at <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>async</mi> </mrow> </msub> <mo>=</mo> <mn>0.30</mn> </mrow> </semantics></math> (<b>left column</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>async</mi> </mrow> </msub> <mo>=</mo> <mn>0.70</mn> </mrow> </semantics></math> (<b>right column</b>). These systems continue the transition as in rows 1 to 4.</p> "> Figure 2
<p>An example of a system in a connected state. (<b>a</b>) GL system. (<b>b</b>) This system is determined to be in a connected state because the “path” shown in red runs from one edge to another edge of the system.</p> "> Figure 3
<p>Phase transition between the connected phase and unconnected phase with respect to the asynchronous rate. The plots are data from experiments, and the curve is a sigmoid function fitted to the data.</p> "> Figure 4
<p>Phase transitions at various perturbation rates. (<b>a</b>–<b>e</b>) Plots of the experimental data and curves of the fitting functions. (<b>f</b>) Fitting functions for all perturbation rates.</p> "> Figure 5
<p>(<b>a</b>) Logic gate model. The arrangement of its input areas is the same as that of the conductors in (<b>b</b>) a series circuit when viewed vertically and that of (<b>c</b>) a parallel circuit when viewed horizontally.</p> "> Figure 6
<p>Examples of outputs in series and parallel circuits.</p> "> Figure 7
<p>Outputs for the input (1, 0) in the series and parallel circuits of our model.</p> "> Figure 8
<p>Outputs of the logic gate model at <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>async</mi> </mrow> </msub> <mo>=</mo> <mn>0.350</mn> </mrow> </semantics></math>. (<b>a</b>) The series circuit behaved as a probabilistic AND gate, and (<b>b</b>) the parallel circuit behaved as a probabilistic OR gate.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
- A cell in state 1 at edge 1 of the system is set to x;
- If there is a cell in state 1 in the Moore neighborhood of x, then set it to x;
- Repeat process 2;
- If x is at edge 2 of the system, then edge 1 and edge 2 are connected, and the system is determined to be in a connected state.
- Initialize the path list;
- If , thenadd tuple to the path list;
- If andis not included in the path list,thenadd tuple to the path listrepeat process 3 recursively;
- If the cell at site is on edge 2,i.e., , , , or ,then edge 1 and edge 2 are connected
3. Results
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rennard, J.-P. Implementation of Logical Functions in the Game of Life. Collision Based Comput. 2002, 491–512. [Google Scholar] [CrossRef] [Green Version]
- Martínez, G.J.; Adamatzky, A.; McIntosh, H.V. Phenomenology of glider collisions in cellular automaton Rule 54 and associated logical gates. Chaos Solitons Fractals 2006, 28, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Martínez, G.J.; Adamatzky, A.; Morita, K. Logical Gates via Gliders Collisions. In Reversibility and Universality; Adamatzky, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 199–220. [Google Scholar]
- Soto, J.M.G.; Wuensche, A. Minimal glider-gun in a 2d cellular automaton. arXiv 2017, arXiv:1709.02655. [Google Scholar]
- Martínez, G.J.; Adamatzky, A.; Morita, K.; Margenstern, M. Computation with competing patterns in life-like automaton. Game Life Cell. Autom. 2010, 547–572. [Google Scholar] [CrossRef] [Green Version]
- Matsuno, K. Determinism and Freedom in Early Evolution. In Individuality and Determinism; Springer: Boston, MA, USA, 1984; pp. 203–215. [Google Scholar]
- Fatès, N.; Thierry, É.; Morvan, M.; Schabanel, N. Fully asynchronous behavior of double-quiescent elementary cellular automata. Theor. Comput. Sci. 2006, 362, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Fatès, N. A guided tour of asynchronous cellular automata. J. Cell. Autom. 2014, 9, 387–416. [Google Scholar]
- Sethi, B.; Roy, S.; Das, S. Asynchronous cellular automata and pattern classification. Complexity 2016, 21, 370–386. [Google Scholar] [CrossRef] [Green Version]
- Fates, N.A.; Morvan, M. An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata. arXiv 2004. arXiv preprint nlin/0402016. [Google Scholar]
- Fatès, N.; Morvan, M. Perturbing the topology of the game of life increases its robustness to asynchrony. Lect. Notes Comput. Sci. 2004, 3305, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Blok, H.J.; Bergersen, B. Synchronous versus asynchronous updating in the “game of Life”. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1999, 59, 3876–3879. [Google Scholar] [CrossRef] [Green Version]
- Bersini, H.; Detours, V.; Cp, I. Asynchrony Induces Stability in Cellular Automata Based models. Artif. Life IV 1994. [Google Scholar] [CrossRef]
- Jen, E. Stable or robust? What’s the difference? Complexity 2003, 8, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Radicchi, F.; Vilone, D.; Meyer-ortmanns, H. Phase Transition between Synchronous and Asynchronous Updating Algorithms. J. Stat. Physics 2007, 593–603. [Google Scholar] [CrossRef] [Green Version]
- Gunji, Y.-P.; Ohzawa, Y.; Tanaka, T. Probabilistic Logic Gate in Asynchronous Game of Life with Critical Property. In Handbook of Unconventional Computing (in 2 Vols.); Adamatzky, A., Ed.; World Scientific Publishing Company: Singapore, 2021; pp. 375–397. [Google Scholar] [CrossRef]
- Fatès, N. Does Life Resist Asynchrony? In Game of Life Cellular Automata; Springer: London, UK, 2010; pp. 257–274. [Google Scholar]
- Liu, C.; Chen, H.; Hou, X.; Zhang, H.; Han, J.; Jiang, Y.G.; Zeng, X.; Zhang, D.W.; Zhou, P. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 2019, 14, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Sakiyama, T.; Gunji, Y.P. Uncertain density balance triggers scale-free evolution in game of life. Complex. Syst. 2017, 26, 31–38. [Google Scholar] [CrossRef]
- Nakajima, K.; Haruna, T. Self-organized perturbations enhance class IV behavior and 1/f power spectrum in elementary cellular automata. BioSystems 2011, 105, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Murakami, H.; Niizato, T.; Tomaru, T.; Nishiyama, Y.; Gunji, Y.P. Inherent noise appears as a Lévy walk in fish schools. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [PubMed]
- Murakami, H.; Tomaru, T.; Nishiyama, Y.; Moriyama, T.; Niizato, T.; Gunji, Y.P. Emergent runaway into an avoidance area in a swarm of soldier crabs. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Shokaku, T.; Moriyama, T.; Murakami, H.; Shinohara, S.; Manome, N.; Morioka, K. Development of an automatic turntable-type multiple T-maze device and observation of pill bug behavior. Rev. Sci. Instrum. 2020, 91. [Google Scholar] [CrossRef] [PubMed]
pnoise (%) | a | b |
---|---|---|
0.00 | 118.973 | 0.350 |
0.01 | 116.782 | 0.349 |
0.10 | 113.975 | 0.346 |
0.50 | 95.467 | 0.326 |
1.00 | 95.949 | 0.305 |
2.00 | 86.398 | 0.265 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohzawa, Y.; Gunji, Y.-P. Logic Gates Formed by Perturbations in an Asynchronous Game of Life. Symmetry 2021, 13, 907. https://doi.org/10.3390/sym13050907
Ohzawa Y, Gunji Y-P. Logic Gates Formed by Perturbations in an Asynchronous Game of Life. Symmetry. 2021; 13(5):907. https://doi.org/10.3390/sym13050907
Chicago/Turabian StyleOhzawa, Yoshihiko, and Yukio-Pegio Gunji. 2021. "Logic Gates Formed by Perturbations in an Asynchronous Game of Life" Symmetry 13, no. 5: 907. https://doi.org/10.3390/sym13050907
APA StyleOhzawa, Y., & Gunji, Y.-P. (2021). Logic Gates Formed by Perturbations in an Asynchronous Game of Life. Symmetry, 13(5), 907. https://doi.org/10.3390/sym13050907