Enhancing Ant-Based Algorithms for Medical Image Edge Detection by Admissible Perturbations of Demicontractive Mappings
<p>Graph for the successive approximations points corresponding to <span class="html-italic">T</span>, <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>0.1</mn> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>0.2</mn> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>0.5</mn> </mrow> </msub> </semantics></math>.</p> "> Figure 2
<p>Distribution of iterations <math display="inline"><semantics> <msub> <mi>x</mi> <mi>n</mi> </msub> </semantics></math> with respect to the corresponding graphs of operators <span class="html-italic">T</span>, <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>0.5</mn> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>0.1</mn> </mrow> </msub> </semantics></math>.</p> "> Figure 3
<p>Test-data: medical images (<math display="inline"><semantics> <mrow> <mi>H</mi> <mi>e</mi> <mi>a</mi> <mi>d</mi> <mo>_</mo> <mi>C</mi> <mi>T</mi> </mrow> </semantics></math> (<b>a</b>) [<a href="#B23-symmetry-13-00885" class="html-bibr">23</a>], <math display="inline"><semantics> <mrow> <mi mathvariant="italic">Brain</mi> <mo>_</mo> <mi mathvariant="italic">CT</mi> </mrow> </semantics></math> (<b>b</b>) and <math display="inline"><semantics> <mrow> <mi mathvariant="italic">Hand</mi> <mo>_</mo> <mi>X</mi> <mspace width="-0.166667em"/> <mo>-</mo> <mspace width="-0.166667em"/> <mi mathvariant="italic">ray</mi> </mrow> </semantics></math> [<a href="#B24-symmetry-13-00885" class="html-bibr">24</a>] (<b>c</b>)).</p> "> Figure 4
<p>Detected edges for <span class="html-italic">Head CT</span> with test function: (<b>a</b>) <span class="html-italic">T</span>; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>0.9</mn> </mrow> </msub> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>0.5</mn> </mrow> </msub> </semantics></math>; and (<b>d</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mfrac> <mn>1</mn> <mn>15</mn> </mfrac> </msub> </semantics></math>.</p> "> Figure 5
<p>Detected edges for <span class="html-italic">Brain CT</span> with test function: (<b>a</b>) <span class="html-italic">T</span>; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>0.9</mn> </mrow> </msub> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>0.5</mn> </mrow> </msub> </semantics></math>; and (<b>d</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mfrac> <mn>1</mn> <mn>15</mn> </mfrac> </msub> </semantics></math>.</p> "> Figure 6
<p>Detected edges for Hand X-ray with test function: (<b>a</b>) <span class="html-italic">T</span>; (<b>b</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>0.9</mn> </mrow> </msub> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mrow> <mn>0.5</mn> </mrow> </msub> </semantics></math>; and (<b>d</b>) <math display="inline"><semantics> <msub> <mi>T</mi> <mfrac> <mn>1</mn> <mn>15</mn> </mfrac> </msub> </semantics></math>.</p> "> Figure 7
<p>Extracted edges for <span class="html-italic">Hand X-Ray</span> with different edge extraction methods: (<b>a</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="italic">Prewitt</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="italic">Sobel</mi> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mi mathvariant="italic">Roberts</mi> </mrow> </semantics></math>; and (<b>d</b>) ACO with test function <math display="inline"><semantics> <msub> <mi>T</mi> <mfrac> <mn>1</mn> <mn>15</mn> </mfrac> </msub> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Enriching Nonlinear Mappings by Admissible Perturbations
3. Admissible Perturbations of Demicontractive Mappings as Test Functions
- , where T is defined in Example 1;
- , where;
- , where is a parameter which adjusts the shape of the operator, see Example 2 for the case ;
- , where adjusts the shape of the operator.
- applying filters to reduce the noise in the source image;
- segmenting the image before edge extraction, extracting the edge and reunite the obtained edges for more details;
- finding a method to eliminate the possible noise in the edge.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byrne, C.L. Applied Iterative Methods; A K Peters, Ltd.: Wellesley, MA, USA, 2008. [Google Scholar]
- Ţicală, C.; Zelina, I.; Pintea, C.-M. Admissible perturbation of demicontractive operators within ant algorithms for medical images edge detection. Mathematics 2020, 8, 1040. [Google Scholar] [CrossRef]
- Măruşter, Ş. Sur le calcul des zéros d’un opérateur discontinu par itération. Can. Math. Bull. 1973, 16, 541–544. [Google Scholar] [CrossRef]
- Hicks, T.L.; Kubicek, J.D. On the Mann iteration process in a Hilbert space. J. Math. Anal. Appl. 1977, 59, 498–504. [Google Scholar] [CrossRef] [Green Version]
- Maingé, P.-E. A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 2008, 47, 1499–1515. [Google Scholar] [CrossRef]
- Măruşter, Ş. The solution by iteration of nonlinear equations in Hilbert spaces. Proc. Am. Math. Soc. 1977, 63, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.-J.; Wang, G. Multiple-set split feasibility problems for a finite family of demicontractive mappings in Hilbert spaces. Math. Inequal. Appl. 2013, 16, 1151–1157. [Google Scholar] [CrossRef] [Green Version]
- Suantai, S.; Phuengrattana, W. A hybrid shrinking projection method for common fixed points of a finite family of demicontractive mappings with variational inequality problems. Banach J. Math. Anal. 2017, 11, 661–675. [Google Scholar] [CrossRef]
- Thong, D.V.; Hieu, D.V. Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems. Optimization 2018, 67, 83–102. [Google Scholar] [CrossRef]
- Vuong, P.T.; Strodiot, J.J.; Nguyen, V.H. On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space. Optimization 2015, 64, 429–451. [Google Scholar] [CrossRef]
- Browder, F.E.; Petryshyn, W.V. The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Am. Math. Soc. 1966, 72, 571–575. [Google Scholar] [CrossRef] [Green Version]
- Krasnosel’skiǐ, M.A. Two remarks about the method of successive approximations. Uspehi Mat. Nauk 1955, 10, 123–127. [Google Scholar]
- Rus, I.A. An abstract point of view on iterative approximation of fixed points: Impact on the theory of fixed point equations. Fixed Point Theory 2012, 13, 179–192. [Google Scholar]
- Berinde, V. Convergence theorems for fixed point iterative methods defined as admissible perturbations of a nonlinear operator. Carpathian J. Math. 2013, 29, 9–18. [Google Scholar] [CrossRef]
- Berinde, V.; Khan, A.R.; Păcurar, M. Convergence theorems for admissible perturbations of ϕ-pseudocontractive operators. Miskolc Math. Notes 2014, 15, 27–37. [Google Scholar] [CrossRef]
- Berinde, V.; Măruşter, Ş.; Rus, I.A. An abstract point of view on iterative approximation of fixed points of nonself operators. J. Nonlinear Convex Anal. 2014, 15, 851–865. [Google Scholar]
- Toscano, E.; Vetro, C. Admissible perturbations of α-ψ-pseudocontractive operators: Convergence theorems. Math. Methods Appl. Sci. 2017, 40, 1438–1447. [Google Scholar] [CrossRef]
- Toscano, E.; Vetro, C. Fixed point iterative schemes for variational inequality problems. J. Convex Anal. 2018, 25, 701–715. [Google Scholar]
- Ţicală, C. Approximating fixed points of demicontractive mappings by iterative methods defined as admissible perturbations. Creat. Math. Inform. 2016, 25, 121–126. [Google Scholar]
- Ţicală, C. Approximating fixed points of asymptotically demicontractive mappings by iterative schemes defined as admissible perturbations. Carpathian J. Math. 2017, 33, 381–388. [Google Scholar] [CrossRef]
- Petruşel, A.; Rus, I.A. An abstract point of view on iterative approximation schemes of fixed points for multivalued operators. J. Nonlinear Sci. Appl. 2013, 6, 97–107. [Google Scholar] [CrossRef]
- Ţicală, C.; Zelina, I. New ant colony optimization algorithm in medical images edge detection. Creat. Math. Inform. 2020, 29, 101–108. [Google Scholar] [CrossRef]
- Head CT. Online Medical Free Image. Available online: http://www.libpng.org/pub/png/pngvrml/ct2.9-128x128.png (accessed on 1 May 2020).
- X-ray Hand. Vista Medical Pack. License: Free for Non Commercial Use. id, 236487. Available online: https://www.iconspedia.com/ (accessed on 1 May 2020).
- Tian, J.; Yu, W.; Xie, S. An ant colony optimization algorithm for image edge detection. In Proceedings of the IEEE Congress on Evolutionary Computation (IEEEWorld Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp. 751–756. [Google Scholar]
- Berinde, V. Weak and strong convergence theorems for the Krasnoselskij iterative algorithm in the class of enriched strictly pseudocontractive operators. An. Univ. Vest Timiş. Ser. Mat.-Inform. 2018, 56, 13–27. [Google Scholar] [CrossRef]
- Berinde, V. Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces. Carpathian J. Math. 2019, 35, 293–304. [Google Scholar] [CrossRef]
- Berinde, V. Approximating fixed points of enriched nonexpansive mappings in Banach spaces by using a retraction-displacement condition. Carpathian J. Math. 2020, 36, 27–34. [Google Scholar] [CrossRef]
- Berinde, V.; Păcurar, M. Approximating fixed points of enriched contractions in Banach spaces. J. Fixed Point Theory Appl. 2020, 22, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Berinde, V.; Păcurar, M. Kannan’s fixed point approximation for solving split feasibility and variational inequality problems. J. Comput. Appl. Math. 2021, 386, 113217. [Google Scholar] [CrossRef]
- Berinde, V.; Păcurar, M. Fixed point theorems for Chatterjea type mappings in Banach spaces. J. Fixed Point Theory Appl. 2021. under review. [Google Scholar]
- Berinde, V.; Păcurar, M. Krasnoselskij-type algorithms for variational inequality problems and fixed point problems in Banach spaces. arXiv 2021, arXiv:2103.10289. [Google Scholar]
- Berinde, V.; Păcurar, M. Existence and Approximation of Fixed Points of Enriched Contractions and Enriched φ-Contractions. Symmetry 2021, 13, 498. [Google Scholar] [CrossRef]
- Berinde, V.; Păcurar, M. Fixed Points Theorems for Unsaturated and Saturated Classes of Contractive Mappings in Banach Spaces. Symmetry 2021, 13, 713. [Google Scholar] [CrossRef]
n | T | ||||
---|---|---|---|---|---|
1 | |||||
10 | |||||
20 | |||||
30 | |||||
40 | |||||
50 | |||||
60 |
Number of Pixels on the Edge | Head CT | Brain CT | Hand X-ray |
---|---|---|---|
D | 2233 | 2745 | 3060 |
1902 | 2737 | 2728 | |
2262 | 2780 | 3172 | |
2879 | 2886 | 3987 | |
3170 | 2940 | 4408 | |
N | 1969 | 1593 | 1800 |
Operator/Image | Head CT | Brain CT | Hand X-ray |
---|---|---|---|
2854 | 1054 | 3437 | |
2710 | 966 | 4388 | |
2090 | 885 | ||
1127 | 671 | 982 | |
1117 | 413 | 4301 | |
1164 | 2987 | 4481 | |
534 | 471 | 4826 | |
1271 | 610 | 6803 | |
2799 | 921 | 3048 | |
1022 | 4872 | ||
3412 | 5274 | ||
1113 | 529 | 5533 | |
2641 | 805 | 4335 | |
3399 | 936 | 3429 | |
3250 | 3473 | 4936 | |
1951 | 715 | 6841 | |
2714 | 823 | 5438 | |
2538 | 3367 | 5299 | |
1261 | 615 | 4248 | |
1022 | 3086 | 4394 | |
898 | 2979 | 2324 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berinde, V.; Ţicală, C. Enhancing Ant-Based Algorithms for Medical Image Edge Detection by Admissible Perturbations of Demicontractive Mappings. Symmetry 2021, 13, 885. https://doi.org/10.3390/sym13050885
Berinde V, Ţicală C. Enhancing Ant-Based Algorithms for Medical Image Edge Detection by Admissible Perturbations of Demicontractive Mappings. Symmetry. 2021; 13(5):885. https://doi.org/10.3390/sym13050885
Chicago/Turabian StyleBerinde, Vasile, and Cristina Ţicală. 2021. "Enhancing Ant-Based Algorithms for Medical Image Edge Detection by Admissible Perturbations of Demicontractive Mappings" Symmetry 13, no. 5: 885. https://doi.org/10.3390/sym13050885
APA StyleBerinde, V., & Ţicală, C. (2021). Enhancing Ant-Based Algorithms for Medical Image Edge Detection by Admissible Perturbations of Demicontractive Mappings. Symmetry, 13(5), 885. https://doi.org/10.3390/sym13050885