Conditional Granger Causality and Genetic Algorithms in VAR Model Selection
<p>(From left to right) Direct vs full indirect vs partially indirect causality.</p> "> Figure 2
<p>Matrix of coefficients transformation to a linear vector for the candidate genome.</p> "> Figure 3
<p>Cross-over for genotypes.</p> "> Figure 4
<p>Genetic algorithm procedure flow.</p> "> Figure 5
<p>Average MSE for increasing levels of complexity (difference to unrestricted VAR).</p> "> Figure 6
<p>Mean squared error for variable sample sizes.</p> "> Figure 7
<p>Evolution of the Akaike criterion dependent on model size.</p> "> Figure 8
<p>Evolution of the Bayesian criterion dependent on model size.</p> "> Figure 9
<p>Core links in the US economy dataset. (<b>a</b>) Granger search VAR. (<b>b</b>) Genetic Algortihm VAR.</p> "> Figure 10
<p>Results of genetic optimization. (<b>a</b>) Scatter plot of solution population at each generation (<b>b</b>) Individual score vs. population score.</p> "> Figure 11
<p>Evolution of genome for the best individual at each generation.</p> "> Figure 12
<p>Causal dependencies in the Euro area.</p> ">
Abstract
:1. Introduction
1.1. The Vector Autoregression Model and Its Limitations
1.2. Coefficient Shrinkage Methods
1.3. Model Selection Methods
2. Methodology
2.1. Competing Approaches to VAR Model Selection
2.1.1. Unrestricted VAR and the Identification Problem
2.1.2. Conditional Granger Causality VAR
- if only the past of A is considered;
- if all available information in the measurable past universe () is incorporated;
- if the perspective of causality from B to A is to be tested.
- (1)
- Identify for each variable of the dataset which are the individual lags and variables that Granger cause it. These are called “ancestors”.
- (2)
- After compiling the first list of “ancestors”, each one is tested for significance in a multivariate VAR by incorporating all possible combinations of two, then three, four, etc. “ancestors”. If during this testing process the coefficient significance becomes null, the candidate “ancestor” is dropped.
- (3)
- The previous procedure iterates until all possible testing is completed, leaving only the most resilient “ancestors”.
2.1.3. Lasso VAR
2.1.4. Genetic VAR
2.2. Performance Assessment Criteria
2.2.1. Performance Assessment of Competing Algorithms through Simulation
2.2.2. Performance Assessment of Competing Algorithms on Empirical Data Sets
2.3. Utility of Model Shrinkage and Selection in Explaining Networks
3. Results and Discussion
3.1. Simulation Performance Results
3.1.1. Number of Estimated Model Parameters
3.1.2. VAR Log Likelihood
3.1.3. Forecast Error
3.1.4. Model Information Criteria
3.2. Empirical Performance Results
3.2.1. US Economy Data Set
3.2.2. Euro Area Dataset
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barnett, L.; Barrett, A.B.; Seth, A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett. 2009, 103, 238701. [Google Scholar] [CrossRef] [PubMed]
- Sims, C.A. Macroeconomics and reality. Econ. J. Econ. Soc. 1980, 48, 1–48. [Google Scholar] [CrossRef]
- Liao, W.; Mantini, D.; Zhang, Z.; Pan, Z.; Ding, J.; Gong, Q.; Yang, Y.; Chen, H. Evaluating the effectiveconnectivity of resting state networks using conditional Granger causality. Biol. Cybern. 2010, 102, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Ladroue, C.; Guo, S.; Feng, J. Identifying interactions in the time and frequency domains in local and global networks-A Granger Causality Approach. BMC Bioinformatics 2010, 11, 337. [Google Scholar] [CrossRef] [PubMed]
- Bellman, R. Adaptive Control Processes: A Guided Tour; Princeton University Press: Princeton, NJ, USA, 1961. [Google Scholar]
- Yamamoto, T.; Kunitomo, N. Asymptotic bias of the least squares estimator for multivariate autoregressive models. Ann. Inst. Stat. Math. 1984, 36, 419–430. [Google Scholar] [CrossRef]
- Nicholls, D.F.; Pope, A.L. Bias in the estimation of multivariate autoregressions. Aust. J. Stat. 1988, 30, 296–309. [Google Scholar] [CrossRef]
- Engsted, T.; Pedersen, T. Bias-correction in vector autoregressive models: A simulation study. Econometrics 2014, 2, 45–71. [Google Scholar] [CrossRef]
- Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer Science & Business Media: Berlin, Germany, 2005. [Google Scholar]
- Blanchard, O.J.; Diamond, P.; Hall, R.E.; Murphy, K. The cyclical behavior of the gross flows of US workers. Brook. Pap. Econ. Act. 1990, 1990, 85–155. [Google Scholar] [CrossRef]
- Faust, J. The robustness of identified VAR conclusions about money. Carnegie Rochester Conf. Ser. Public Policy 1998, 49, 207–244. [Google Scholar] [CrossRef] [Green Version]
- Doan, T.; Litterman, R.; Sims, C. Forecasting and conditional projection using realistic prior distributions. Econom. Rev. 1984, 3, 1–100. [Google Scholar] [CrossRef] [Green Version]
- Litterman, R.B. Techniques of Forecasting Using Vector Autoregressions; Working Paper 115; Federal Reserve Bank of Minneapolis: Minneapolis, MN, USA, 1979. [Google Scholar]
- Todd, R.M. Improving economic forecasting with Bayesian vector autoregression. Model. Econ. Ser. 1990, 8, 214–234. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. In Selected Papers of Hirotugu Akaike; Parzen, E., Tanabe, K., Kitagawa, G., Eds.; Springer: Basel, Switzerland, 1974; pp. 215–222. [Google Scholar]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Shao, J. An asymptotic theory for linear model selection. Stat. Sin. 1997, 221–242. [Google Scholar]
- Nishii, R. Asymptotic properties of criteria for selection of variables in multiple regression. Ann. Stat. 1984, 12, 758–765. [Google Scholar] [CrossRef]
- Yang, Y. Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation. Biometrika 2005, 92, 937–950. [Google Scholar] [CrossRef]
- Yang, Y. Regression with multiple candidate models: Selecting or mixing? Stat. Sin. 2003, 783–809. [Google Scholar]
- Hoerl, A.E.; Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 273–282. [Google Scholar] [CrossRef]
- Geweke, J.F. Measures of conditional linear dependence and feedback between time series. J. Am. Stat. Assoc. 1984, 79, 907–915. [Google Scholar] [CrossRef]
- Ding, M.; Chen, Y.; Bressler, S.L. 17 Granger causality: Basic theory and application to neuroscience. Handb. Time Ser. Anal. Recent Theor. Dev. Appl. 2006, 437. [Google Scholar]
- Anghel, L.C.; Marica, V.G. Understanding Emerging and Frontier Capital Markets Dynamics through Network Theory. In Proceedings of the 5th International Academic Conference on Strategica, Bucharest, Romania, 10–11 October 2019. [Google Scholar]
- Goldberg, D.E.; Holland, J.H. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Leardi, R.; Gonzalez, A.L. Genetic algorithms applied to feature selection in PLS regression: How and when to use them. Chemom. Intell. Lab. Syst. 1998, 41, 195–207. [Google Scholar] [CrossRef]
- Kubiny, H. Variable selection in QSAR studies. I. An evolutionary algorithm. Quant. Struct. Act. Relatsh. 1994, 13, 285–294. [Google Scholar] [CrossRef]
- Broadhurst, D.; Goodacre, R.; Jones, A.; Rowland, J.J.; Kell, D.B. Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Anal. Chim. Acta 1997, 348, 71–86. [Google Scholar] [CrossRef]
- Gaetan, C. Subset ARMA model identification using genetic algorithms. J. Time Ser. Anal. 2000, 21, 559–570. [Google Scholar] [CrossRef]
- Ong, C.-S.; Huang, J.-J.; Tzeng, G.-H. Model identification of ARIMA family using genetic algorithms. Appl. Math. Comput. 2005, 164, 885–912. [Google Scholar] [CrossRef]
- Chatterjee, S.; Laudato, M.; Lynch, L.A. Genetic algorithms and their statistical applications: An introduction. Comput. Stat. Data Anal. 1996, 22, 633–651. [Google Scholar] [CrossRef]
- Ursu, E.; Turkman, K.F. Periodic autoregressive model identification using genetic algorithms. J. Time Ser. Anal. 2012, 33, 398–405. [Google Scholar] [CrossRef]
- Howe, A.; Bozdogan, H. Predictive subset VAR modeling using the genetic algorithm and information complexity. Eur. J. Pure Appl. Math. 2010, 3, 382–405. [Google Scholar]
- Mirmirani, S.; Cheng Li, H. A comparison of VAR and neural networks with genetic algorithm in forecasting price of oil. In Applications of Artificial Intelligence in Finance and Economics; Binner, J.M., Kendall, G., Chen, S.H., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2004; pp. 203–223. [Google Scholar]
- Geweke, J. Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 1982, 77, 304–313. [Google Scholar] [CrossRef]
- Bressler, S.L.; Seth, A.K. Wiener–Granger causality: A well established methodology. Neuroimage 2011, 58, 323–329. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.; Burnell, D. Computer Models in Genetics; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Khuda Bux, N.; Lu, M.; Wang, J.; Hussain, S.; Aljeroudi, Y. Efficient association rules hiding using genetic algorithms. Symmetry 2018, 10, 576. [Google Scholar] [CrossRef]
- Dreżewski, R.; Doroz, K. An agent-based co-evolutionary multi-objective algorithm for portfolio optimization. Symmetry 2017, 9, 168. [Google Scholar] [CrossRef]
- Bandrauk, A.D.; Delfour, M.C.; Le Bris, C. Quantum Control: Mathematical and Numerical Challenges: Mathematical and Numerical Challenges, CRM Workshop, 6–11 October 2002, Montréal, Canada; American Mathematical Soc.: Providence, RI, USA, 2003; Volume 33. [Google Scholar]
- Kallel, L.; Schoenauer, M. Alternative Random Initialization in Genetic Algorithms. In Proceedings of the 7th International Conference on Genetic Algorithms (ICGA 1997), Michigan State University, East Lansing, MI, USA, 19–23 July 1997; pp. 268–275. [Google Scholar]
- Lehman, J.; Stanley, K.O. Abandoning objectives: Evolution through the search for novelty alone. Evol. Comput. 2011, 19, 189–223. [Google Scholar] [CrossRef]
- Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 1994, 5, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Pelikan, M.; Goldberg, D.E. Genetic Algorithms, Clustering, and the Breaking of Symmetry. In Proceedings of the International Conference on Parallel Problem Solving from Nature, (PPSN 2000), Paris, France, 18–20 September 2000; Springer: Basel, Switzerland, 2000; pp. 385–394. [Google Scholar]
- Mahfoud, S.W. Niching Methods for Genetic Algorithms. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1995. [Google Scholar]
- Lehman, J.; Stanley, K.O. Evolving a Diversity of Virtual Creatures through Novelty Search and Local Competition. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, Dublin, Ireland, 12–16 July 2011; ACM: Ney York, NY, USA, 2011; pp. 211–218. [Google Scholar]
- Valls, V.; Ballestin, F.; Quintanilla, S. A hybrid genetic algorithm for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 2008, 185, 495–508. [Google Scholar] [CrossRef]
- Mouret, J.-B. Novelty-based multiobjectivization. In New Horizons in Evolutionary Robotics; Doncieux, S., Bredeche, N., Mouret, J.P., Eds.; Springer: Basel, Switzerland, 2011; pp. 139–154. [Google Scholar]
- Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models; Oxford University Press on Demand: Oxford, UK, 1995. [Google Scholar]
- Smets, F.; Wouters, R. An estimated dynamic stochastic general equilibrium model of the euro area. J. Eur. Econ. Assoc. 2003, 1, 1123–1175. [Google Scholar] [CrossRef]
- Giacomini, R. The relationship between DSGE and VAR models. In VAR Models in Macroeconomics—New Developments and Applications: Essays in Honor of Christopher A. Sims; Fomby, T.B., Murphy, A., Kilian, L., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2013; pp. 1–25. [Google Scholar]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Weakliem, D.L. A critique of the Bayesian information criterion for model selection. Sociol. Methods Res. 1999, 27, 359–397. [Google Scholar] [CrossRef]
- Fruchterman, T.M.; Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exp. 1991, 21, 1129–1164. [Google Scholar] [CrossRef]
Number of lags | ||||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Number of model variables | 1 | 1 | 3 | 7 | 15 | 31 |
2 | 3 | 15 | 63 | 255 | 1023 | |
3 | 7 | 63 | 511 | 4095 | 32,767 | |
4 | 15 | 255 | 4095 | 65,535 | 1,048,575 | |
5 | 31 | 1023 | 32,767 | 1,048,575 | 33,554,431 | |
6 | 63 | 4095 | 262,143 | 16,777,215 | 107 × 107 | |
7 | 127 | 16,383 | 2,097,151 | 268 × 106 | 344 × 108 | |
8 | 255 | 65,535 | 16,777,215 | 429 × 107 | 110 × 1010 | |
9 | 511 | 262,143 | 134 × 106 | 687 × 108 | 352 × 1011 | |
10 | 1023 | 1,048,575 | 107 × 107 | 110 × 1010 | 113 × 1013 |
Criterion | Source | Decision |
---|---|---|
Likelihood of the model parameters given the data | [52] | Higher is better |
Number of estimated parameters | Lower is better | |
Mean of squared errors for forecasting 5% of the dataset | Lower is better | |
Akaike information criterion | [41] | Lower is better |
Likelihood of the model parameters given the data | [42] | Lower is better |
FRED Series | Description |
---|---|
GDP | Gross Domestic Product (USD billions, Quarterly) |
GDPDEF | Gross Domestic Product Implicit Price Deflator |
COE | Paid Compensation of Employees (USD billions, Quarterly) |
HOANBS | Nonfarm Business Sector Hours of All Persons |
FEDFUNDS | Effective Federal Funds Rate (Annualized, Percent, Monthly) |
PCEC | Personal Consumption Expenditures (USD billions, Quarterly) |
GPDI | Gross Private Domestic Investment (USD billions, Quarterly) |
Indicator | Measure |
---|---|
Money market interest rates | Rates on money markets, 3-month rates |
Euro/USD exchange rates | |
Gross domestic product at market prices | Millions of euros |
Real labor productivity per person | GDP/ Total employment, all industries, in persons |
Nominal unit labor cost based on persons | Ratio of labor costs to labor productivity |
Employment rate | Number of persons aged 20 to 64 in employment by the total population of the same age group |
Government consolidated gross debt | Total gross debt at nominal value outstanding at the end of the year (percentage of GDP) |
Global oil price | Crude Oil Prices: West Texas Intermediate (WTI) |
Number of variables | Number of Lags | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unrestricted | Conditional Granger | Evolutionary | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | |
4 | 16 | 32 | 48 | 64 | 80 | 96 | 3 | 2 | 4 | 2 | 4 | 1 | 4 | 5 | 10 | 10 | 13 | 16 |
6 | 36 | 72 | 108 | 144 | 180 | 216 | 2 | 4 | 7 | 5 | 3 | 3 | 10 | 11 | 17 | 25 | 37 | 56 |
8 | 64 | 128 | 192 | 256 | 320 | 384 | 4 | 8 | 2 | 5 | 2 | 6 | 10 | 27 | 50 | 64 | 82 | 122 |
10 | 100 | 200 | 300 | 400 | 500 | 10 | 8 | 5 | 8 | 7 | 10 | 20 | 53 | 85 | 128 | 202 | 232 | |
12 | 144 | 288 | 432 | 576 | 6 | 9 | 18 | 9 | 6 | 17 | 31 | 83 | 142 | 239 | 377 | 226 | ||
14 | 196 | 392 | 588 | 784 | 8 | 20 | 15 | 10 | 13 | 15 | 43 | 143 | 210 | 742 | 272 | 212 |
Number of Variables | Number of LAGS | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unrestricted | Conditional Granger | Evolutionary | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | |
4 | −0.98 | −0.96 | −0.96 | −0.93 | −0.93 | −0.89 | −0.98 | −1.01 | −1.01 | −1.04 | −1.04 | −1.1 | −1.04 | −1.03 | −1.03 | −1.02 | −1.04 | −1.01 |
6 | −0.96 | −0.95 | −0.92 | −0.89 | −0.87 | −0.81 | −1.01 | −1 | −1.03 | −1.06 | −1.08 | −1.14 | −1.03 | −1.04 | −1.05 | −1.05 | −1.06 | −1.04 |
8 | −0.95 | −0.93 | −0.88 | −0.86 | −0.79 | −0.66 | −1 | −1.04 | −1.1 | −1.1 | −1.15 | −1.25 | −1.04 | −1.03 | −1.02 | −1.04 | −1.06 | −1.09 |
10 | −0.95 | −0.91 | −0.87 | −0.79 | −0.62 | −1 | −1.06 | −1.09 | −1.15 | −1.32 | −1.15 | −1.05 | −1.03 | −1.05 | −1.06 | −1.06 | −0.85 | |
12 | −0.94 | −0.88 | −0.83 | −0.68 | −1.02 | −1.09 | −1.11 | −1.27 | −1.27 | −1.85 | −1.04 | −1.03 | −1.06 | −1.05 | −0.73 | −0.15 | ||
14 | −0.93 | −0.87 | −0.74 | −0.19 | −1.02 | −1.09 | −1.2 | −2.02 | −1.67 | −1.05 | −1.04 | −1.04 | −1.07 | −0.79 | −0.33 | −0.95 |
Number of variables | Number of Lags | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unrestricted | Conditional Granger | Evolutionary | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | |
4 | 1 | 1 | 0.8 | 1.1 | 1.3 | 1.4 | 1 | 1 | 1.2 | 1 | 0.9 | 1 | 1 | 1 | 1 | 0.9 | 0.8 | 0.6 |
6 | 1 | 1 | 1.1 | 1.2 | 1.4 | 1.3 | 1 | 1.1 | 1 | 1 | 0.8 | 0.9 | 1 | 0.9 | 0.9 | 0.9 | 0.8 | 0.8 |
8 | 1 | 1.2 | 0.9 | 1.6 | 1 | 1.7 | 1 | 1 | 1.1 | 0.7 | 1.1 | 0.7 | 1 | 0.9 | 1 | 0.7 | 0.9 | 0.5 |
10 | 1 | 1.3 | 1.3 | 1.6 | 1.9 | 1 | 0.8 | 0.9 | 0.9 | 0.6 | 1.2 | 1 | 0.8 | 0.8 | 0.5 | 0.5 | 0.8 | |
12 | 1 | 1 | 1.1 | 1.7 | 1 | 1 | 1 | 0.6 | 0.8 | 0.8 | 1 | 1 | 0.9 | 0.6 | 1.2 | 1.2 | ||
14 | 1.1 | 0.8 | 1.2 | 2.5 | 1 | 1 | 1 | 0.4 | 0.8 | 1.1 | 0.9 | 1.2 | 0.8 | 0.2 | 1.2 | 0.9 |
Number of Variables | Number of Lags | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unrestricted | Conditional Granger | Evolutionary | ||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | |
4 | 1 | 1 | 1.1 | 1.1 | 1.2 | 1.2 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 1.1 | 1 | 1 | 0.9 | 0.9 | 0.9 |
6 | 1 | 1.1 | 1.1 | 1.2 | 1.2 | 1.2 | 1 | 0.9 | 0.9 | 0.9 | 0.8 | 0.9 | 1 | 1 | 1 | 0.9 | 0.9 | 0.9 |
8 | 1 | 1.1 | 1.2 | 1.2 | 1.3 | 1.2 | 0.9 | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | 1 | 1 | 0.9 | 0.9 | 0.9 | 1 |
10 | 1.1 | 1.1 | 1.2 | 1.3 | 1.2 | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | 0.9 | 1 | 1 | 1 | 1 | 1 | 1.1 | |
12 | 1.1 | 1.2 | 1.2 | 1.2 | 0.9 | 0.9 | 0.8 | 0.8 | 1 | 1.8 | 1 | 1 | 1 | 1 | 1 | 0.2 | ||
14 | 1.1 | 1.2 | 1.2 | 0.7 | 0.9 | 0.8 | 0.8 | 1 | 1.6 | 0.9 | 1 | 1 | 1 | 1.3 | 0.4 | 1.1 |
Indicator | Unrestricted VAR | Simplified VAR | Conditional Granger Search | Lasso Regression | GA Variable Selection |
---|---|---|---|---|---|
Log-Likelihood | 7489 | 7294 | 7286 | 7420 | 7860 |
Model number of parameters | 196 | 32 | 16 | 71 | 121 |
Mean squared error | 1.02% | 0.88% | 0.94% | 0.92% | 0.88% |
Akaike criterion | −14,571 | −14,510 | −14,527 | −14,684 | −15,465 |
Bayesian criterion | −13,879 | −14,377 | −14,448 | −14,418 | −15,022 |
Indicator | Unrestricted VAR | Simplified VAR | Conditional Granger Search | Lasso Regression | GA Variable Selection |
---|---|---|---|---|---|
Log-Likelihood | 143 | −228 | −223 | −80 | 12 |
Model number of parameters | 324 | 70 | 17 | 90 | 149 |
Mean squared error | 0.24 | 0.45 | 0.21 | 0.20 | 0.22 |
Akaike criterion | 380 | 615 | 497 | 358 | 293 |
Bayesian criterion | 1114 | 789 | 555 | 576 | 650 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marica, V.G.; Horobet, A. Conditional Granger Causality and Genetic Algorithms in VAR Model Selection. Symmetry 2019, 11, 1004. https://doi.org/10.3390/sym11081004
Marica VG, Horobet A. Conditional Granger Causality and Genetic Algorithms in VAR Model Selection. Symmetry. 2019; 11(8):1004. https://doi.org/10.3390/sym11081004
Chicago/Turabian StyleMarica, Vasile George, and Alexandra Horobet. 2019. "Conditional Granger Causality and Genetic Algorithms in VAR Model Selection" Symmetry 11, no. 8: 1004. https://doi.org/10.3390/sym11081004
APA StyleMarica, V. G., & Horobet, A. (2019). Conditional Granger Causality and Genetic Algorithms in VAR Model Selection. Symmetry, 11(8), 1004. https://doi.org/10.3390/sym11081004