Analysis of Transverse Vibration in a Concentrated Mass Rayleigh Pipe
<p>Schematic diagram of the simply supported pipe.</p> "> Figure 2
<p>The flow chart for software program.</p> "> Figure 3
<p>Flow chart for multi-field simulations with ANSYS.</p> "> Figure 4
<p>Structural member and mesh.</p> "> Figure 5
<p>The simulation set up members.</p> "> Figure 6
<p>The initial three mode shapes.</p> "> Figure 7
<p>Fluid velocity vs. natural frequency <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>;</mo> <mo> </mo> <mo> </mo> <mi>ζ</mi> <mo>=</mo> <mn>0.2</mn> <mo>;</mo> <mo> </mo> <mo> </mo> <msub> <mo>Γ</mo> <mi>s</mi> </msub> <mo>=</mo> <mn>0.2</mn> <mo>;</mo> <mo> </mo> <mo> </mo> <mi>λ</mi> <mo>=</mo> <mn>10</mn> <mo>∼</mo> <mn>30</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p> "> Figure 8
<p>Fluid velocity vs. natural frequency <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>;</mo> <mo> </mo> <mi>ζ</mi> <mo>=</mo> <mn>0.2</mn> <mo>;</mo> <mo> </mo> <mo> </mo> <msub> <mo>Γ</mo> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> </mrow> </msub> <mo>−</mo> <msub> <mo>Γ</mo> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> </mrow> </msub> <mo>=</mo> <mn>0.2</mn> <mo>;</mo> <mo> </mo> <mo> </mo> <mi>λ</mi> <mo>=</mo> <mn>10</mn> <mo>∼</mo> <mn>30</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p> "> Figure 9
<p>The natural frequencies for different concentrated mass ratios <math display="inline"><semantics> <mrow> <mfenced> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>;</mo> <mo> </mo> <mi>ζ</mi> <mo>=</mo> <mn>0.2</mn> <mo>;</mo> <mo> </mo> <mo> </mo> <msub> <mo>Γ</mo> <mi>s</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>∼</mo> <mn>0.5</mn> <mo>;</mo> <mo> </mo> <mo> </mo> <mi>λ</mi> <mo>=</mo> <mn>10</mn> </mrow> </mfenced> <msqrt> <mrow> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>−</mo> <mn>4</mn> <mi>a</mi> <mi>c</mi> </mrow> </msqrt> </mrow> </semantics></math>.</p> "> Figure 10
<p>The distribution of normalized mode shape functions <math display="inline"><semantics> <mrow> <mfenced separators="|"> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.5</mn> <mo>;</mo> <mo> </mo> <msub> <mrow> <mi>ζ</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>_</mo> <msub> <mrow> <mi>ζ</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0.4</mn> <mo>;</mo> <mrow> <mo> </mo> <mo> </mo> </mrow> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <msub> <mrow> <mi>s</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>_</mo> <msub> <mrow> <mi>Γ</mi> </mrow> <mrow> <msub> <mrow> <mi>s</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </msub> <mo>=</mo> <mn>0.5</mn> <mo>;</mo> <mrow> <mo> </mo> <mo> </mo> </mrow> <mi>λ</mi> <mo>=</mo> <mn>30</mn> </mrow> </mfenced> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Mathematical Model of Motion
3. Numerical Analysis Procedure
3.1. Galerkin Method
3.2. Computer-Aided FSI Analysis Procedure
4. Results and Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | Description | SI Unit |
L | Length of the pipe | m (meter) |
D | Outer diameter of the pipe | m (meter) |
t | Thickness of the pipe | m (meter) |
ρs | Density of the pipe material | kg/m3 |
ρf | Density of the fluid inside the pipe | kg/m3 |
m | Mass per unit length of the pipe | kg/m |
M | Concentrated mass | kg (kilogram) |
E | Young’s modulus | Pa (Pascal) |
J | Second moment of area | m4 |
A | Cross-sectional area of the pipe | m2 |
v | Transverse displacement | m (meter) |
ω | Natural frequency | rad/s |
μ | Mass ratio | dimensionless |
λ | Slenderness ratio | dimensionless |
U | Fluid velocity | m/s |
F | External force | N (Newton) |
References
- Ibrahim, R.A. Overview of mechanics of pipes conveying fluids—Part I: Fundamental studies. J. Press. Vessel. Technol. 2010, 132, 034001. [Google Scholar] [CrossRef]
- Hoppmann, W.H. Forced lateral vibration of beam carrying a concentrated mass. J. Applıed Mech. Trans. ASME 1952, 19, 301–307. [Google Scholar] [CrossRef]
- Maltbaek, J. The influence of a concentrated mass on the free vibrations of a uniform beam. Int. J. Mech. Sci. 1961, 3, 197–218. [Google Scholar] [CrossRef]
- Chen, Y. On the vibration of beams or rods carrying a concentrated mass. J. Appl. Mech. 1963, 30, 310–311. [Google Scholar] [CrossRef]
- Pan, H.H. Transverse vibration of an Euler beam carrying a system of heavy bodies. J. Appl. Mech. 1965, 32, 434–437. [Google Scholar] [CrossRef]
- Sato, K.; Saito, H.; Otomi, K. The parametric response of a horizontal beam carrying a concentrated mass under gravity. J. Appl. Mech. 1978, 45, 643–648. [Google Scholar] [CrossRef]
- Kang, M.G. Effect of rotary inertia of concentrated masses on the natural vibration of fluid conveying pipes. J. Korean Nucl. Soc. 1999, 31, 202–213. [Google Scholar]
- Dagli, B.Y.; Ergut, A.; Çiftçioğlu, A.Ö. Estimation of natural frequencies of pipe–fluid–mass system by using causal discovery algorithm. Arab. J. Sci. Eng. 2023, 48, 11713–11726. [Google Scholar] [CrossRef]
- Kang, M.-G. The influence of rotary inertia of concentrated masses on the natural vibrations of a clamped–supported pipe conveying fluid. Nucl. Eng. Des. 2000, 196, 281–292. [Google Scholar] [CrossRef]
- Ghayesh, M.H.; Amabili, M.; Païdoussis, M.P. Thermo-mechanical phase-shift determination in Coriolis mass-flowmeters with added masses. J. Fluids Struct. 2012, 34, 1–13. [Google Scholar] [CrossRef]
- Varol, B.Y.; Sinir, G.B. The Dynamıc Analysis of a Pıpe with Concentrated Masses. In International Symposium on Computing in Science & Engineering Proceedings; GEDIZ University: Izmir, Turkey, 2013; p. 235. [Google Scholar]
- Goyder, H. An experimental ınvestigation of added mass and damping in submerged pipework. In Proceedings of the ASME 2015 Pressure Vessels and Piping Conference, Boston, MA, USA, 19–23 July 2015; American Society of Mechanical Engineers: New York, NY, USA, 2015. Volume V004T04A031. [Google Scholar]
- Zhang, T.; Ouyang, H.; Zhang, Y.; Lv, B. Nonlinear dynamics of straight fluid-conveying pipes with general boundary conditions and additional springs and masses. Appl. Math. Model. 2016, 40, 7880–7900. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Li, Y.H. Nonlinear vibration of a deploying laminated Rayleigh beam with a spinning motion in hygrothermal environment. Eng. Comput. 2021, 37, 3825–3841. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, H.-J.; Chen, L.-Q.; Ding, Q.; Gao, Q.; Yang, T. Recent progress on dynamics and control of pipes conveying fluid. Nonlinear Dyn. 2024. [Google Scholar] [CrossRef]
- Han, S.M.; Benaroya, H.; Wei, T. Dynamics of transversely vibrating beams using four engineering theories. J. Sound Vib. 1999, 225, 1999–2257. [Google Scholar] [CrossRef]
- ANSYS. Fluent Users Guide; ANSYS: Canonsburg, PA, USA, 2013. [Google Scholar]
- Chang, J.R.; Lin, W.J.; Huang, C.J.; Choi, S.T. Vibration and stability of an axially moving Rayleigh beam. Appl. Math. Model. 2010, 34, 1482–1497. [Google Scholar] [CrossRef]
- Sınır, B.G. The mathematical modeling of vibrations in marine pipelines. Ph.D. Thesis, DEÜ Institute of Science, Warsaw, Poland, 2004. [Google Scholar]
- Sınır, B.G.; Demïr, D.D. The analysis of nonlinear vibrations of a pipe conveying an ideal fluid. Eur. J. Mech. B/Fluids 2015, 52, 38–44. [Google Scholar] [CrossRef]
- Li, B.; Fang, H.; Yang, K.; He, H.; Tan, P.; Wang, F. Mechanical response and parametric sensitivity analyses of a drainage pipe under multiphysical coupling conditions. Complexity 2019, 2019, 3635621. [Google Scholar] [CrossRef]
- Wahrhaftig, A.d.M.; da Silva, M.A.; Brasil, R.M.L.R.F. Analytical determination of the vibration frequencies and buckling loads of slender reinforced concrete towers. Lat. Am. J. Solids Struct. 2019, 16, e196. [Google Scholar] [CrossRef]
- Wahrhaftig, A.d.M.; Magalhães, K.M.M.; Brasil, R.M.L.R.F.; Murawski, K. Evaluation of mathematical solutions for the determination of buckling of columns under self-weight. J. Vib. Eng. Technol. 2021, 9, 733–749. [Google Scholar] [CrossRef]
- Wahrhaftig, A.d.M.; Magalhães, K.M.; Silva, M.A.; Brasil, R.M.d.F.; Banerjee, J.R. Buckling and free vibration analysis of non-prismatic columns using optimized shape functions and Rayleigh method. Eur. J. Mech. A/Solids 2022, 94, 104543. [Google Scholar] [CrossRef]
- De Macêdo Wahrhaftig, A.; da Fonseca, R.M.L.R. Representative experimental and computational analysis of the initial resonant frequency of largely deformed cantilevered beams. Int. J. Solids Struct. 2016, 102, 44–55. [Google Scholar] [CrossRef]
- Huang, Y.-M.; Liu, Y.-S.; Li, B.-H.; Li, Y.-J.; Yue, Z.-F. Natural frequency analysis of fluid conveying pipeline with different boundary conditions. Nucl. Eng. Des. 2010, 240, 461–467. [Google Scholar] [CrossRef]
- Bahaadini, R.; Saidi, A.R. Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment. Eur. J. Mech. A/Solids 2018, 72, 298–309. [Google Scholar] [CrossRef]
- Paidoussis, M.P. Fluid-Structure Interactions, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Hill, J.L.; Swanson, C.P. Effects of lumped masses on the stability of fluid conveying tubes. J. Appl. Mech. 1970, 37, 494–497. [Google Scholar] [CrossRef]
- Dagli, B.Y.; Tuskan, Y.; Gökkuş, Ü. Evaluation of offshore wind turbine tower dynamics with numerical analysis. Adv. Civ. Eng. 2018, 2018, 3054851. [Google Scholar] [CrossRef]
- Bozkurt, M.B.; Ergüt, A.; Özkılıç, Y.O. Comparison of Turkish steel building specifications, TS 648 and SDCCSS 2018. Steel Compos. Struct. Int. J. 2022, 45, 513–533. [Google Scholar]
- Wang, E.; Nelson, T. Structural dynamic capabilities of ANSYS. In ANSYS 2002 Conference; Academia: Pittsburg, PA, USA, 2002. [Google Scholar]
- Ahamed, M.F.; Atique, S.; Munshi, M.A.K.; Koiranen, T. A concise description of one way and two way coupling methods for fluid-structure interaction problems. Am. J. Eng. Res. 2017, 6, 86–89. [Google Scholar]
- Stokey, W.F. Vibration of systems having distributed mass and elasticity, Chapter 7. In Shock and Vibration Handbook, 5th ed.; McGraw-Hill Companies Inc.: New York, NY, USA, 2002. [Google Scholar]
- Chunping, X.; Jiao, W.; Shangjun, C.; Guoxi, F. Dynamic response of a slender sandwich pipe with a metallic foam core subjected to low-velocity impact. Compos. Struct. 2023, 310, 116751. [Google Scholar]
Young’s Modulus (GPA) | Poisson’s Ratio | Density (kg/m3) |
---|---|---|
210 | 0.3 | 7850 |
Case I | Case II | Case III | |
---|---|---|---|
D/L | 0.30 | 0.15 | 0.10 |
λ | 10 | 20 | 30 |
Case I | Case II | Case III | |
---|---|---|---|
mesh number of solid domain | 314,159 | 471,239 | 942,478 |
mesh number of fluid domain | 1,534,292 | 883,573 | 592,699 |
ζ | Mode No | Case I | Case II | Case III | |||
---|---|---|---|---|---|---|---|
GM | FSI | GM | FSI | GM | FSI | ||
0.1 | 1 | 9.7242 | 9.7243 | 9.7244 | 9.7246 | 9.7246 | 9.7248 |
2 | 39.2473 | 39.2477 | 39.2492 | 39.2500 | 39.2495 | 39.2503 | |
3 | 88.1529 | 88.1538 | 88.1620 | 88.1638 | 88.1637 | 88.1656 | |
0.2 | 1 | 9.7182 | 9.7183 | 9.7183 | 9.7185 | 9.7184 | 9.7186 |
2 | 39.1928 | 39.1932 | 39.1946 | 39.1954 | 39.1949 | 39.1957 | |
3 | 88.0994 | 88.1003 | 88.1084 | 88.1102 | 88.1101 | 88.1120 | |
0.3 | 1 | 9.7107 | 9.7108 | 9.7109 | 9.7111 | 9.7111 | 9.7113 |
2 | 39.1930 | 39.1934 | 39.1948 | 39.1956 | 39.1951 | 39.1959 | |
3 | 88.2761 | 88.2770 | 88.2852 | 88.2870 | 88.2869 | 88.2888 | |
0.4 | 1 | 9.7047 | 9.7048 | 9.7048 | 9.7050 | 9.7050 | 9.7052 |
2 | 39.2474 | 39.2478 | 39.2493 | 39.2501 | 39.2496 | 39.2504 | |
3 | 88.2211 | 88.2220 | 88.2302 | 88.2320 | 88.2319 | 88.2338 | |
0.5 | 1 | 9.7024 | 9.7025 | 9.7025 | 9.7027 | 9.7027 | 9.7029 |
2 | 39.2812 | 39.2816 | 39.2830 | 39.2838 | 39.2833 | 39.2841 | |
3 | 88.0779 | 88.0788 | 88.0870 | 88.0888 | 88.0887 | 88.0905 |
ζ2- ζ1 | Mode No | Case I | Case II | Case III | |||
---|---|---|---|---|---|---|---|
GM | FSI | GM | FSI | GM | FSI | ||
0.1 | 1 | 8.5084 | 8.5085 | 8.5661 | 8.5662 | 8.5665 | 8.5669 |
2 | 38.3287 | 38.3294 | 38.3304 | 38.3312 | 38.4645 | 38.4653 | |
3 | 87.2839 | 87.2848 | 87.1596 | 87.1604 | 87.1612 | 87.1621 | |
0.2 | 1 | 8.4736 | 8.4738 | 8.5608 | 8.5610 | 8.5609 | 8.5611 |
2 | 38.2754 | 38.2761 | 38.2771 | 38.2779 | 38.4110 | 38.4118 | |
3 | 87.2311 | 87.2328 | 87.2401 | 87.2409 | 87.2417 | 87.2426 | |
0.3 | 1 | 8.3832 | 8.3834 | 8.5544 | 8.5546 | 8.5547 | 8.5548 |
2 | 38.2754 | 38.2762 | 38.2772 | 38.2779 | 38.4111 | 38.4119 | |
3 | 87.4055 | 87.4064 | 87.4145 | 87.4154 | 87.4162 | 87.4171 | |
0.4 | 1 | 8.2926 | 8.2928 | 8.5492 | 8.5494 | 8.5495 | 8.5497 |
2 | 38.3283 | 38.3290 | 38.3300 | 38.3308 | 38.4642 | 38.4650 | |
3 | 87.3503 | 87.3520 | 87.3593 | 87.3602 | 87.3609 | 87.3618 | |
0.5 | 1 | 8.2052 | 8.2054 | 8.5472 | 8.5474 | 8.5475 | 8.5477 |
2 | 38.2174 | 38.2182 | 38.3627 | 38.3635 | 38.4971 | 38.4978 | |
3 | 87.2085 | 87.2094 | 87.2175 | 87.2183 | 87.2191 | 87.2200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ergut, A. Analysis of Transverse Vibration in a Concentrated Mass Rayleigh Pipe. Symmetry 2025, 17, 371. https://doi.org/10.3390/sym17030371
Ergut A. Analysis of Transverse Vibration in a Concentrated Mass Rayleigh Pipe. Symmetry. 2025; 17(3):371. https://doi.org/10.3390/sym17030371
Chicago/Turabian StyleErgut, Abdulkerim. 2025. "Analysis of Transverse Vibration in a Concentrated Mass Rayleigh Pipe" Symmetry 17, no. 3: 371. https://doi.org/10.3390/sym17030371
APA StyleErgut, A. (2025). Analysis of Transverse Vibration in a Concentrated Mass Rayleigh Pipe. Symmetry, 17(3), 371. https://doi.org/10.3390/sym17030371