Moving Mesh Partial Differential Equation Modelling of a 5CB Nematic Liquid Crystal Confined in Symmetric and Asymmetric Pi-Cells: A Review
<p>Geometry of the symmetric pi-cell with nematic molecules in different states, for generic pretilt angles <span class="html-italic">θ<sub>L</sub></span> = <span class="html-italic">θ<sub>U</sub></span>: (<b>a</b>) horizontal alignment with a slight splay; (<b>b</b>) intermediate state, with a thin horizontal wall in the center (OR); (<b>c</b>) mostly vertical alignment (pi-bent).</p> "> Figure 2
<p>Geometry of the asymmetric pi-cell with nematic molecules in different states, for pretilt angles <span class="html-italic">θ<sub>L</sub></span> = 19° and <span class="html-italic">θ<sub>U</sub></span> = −3°: (<b>a</b>) horizontal alignment with a slight splay; (<b>b</b>) intermediate state, with a thin horizontal wall (OR) close to the upper boundary plate; (<b>c</b>) mostly vertical alignment (pi-bent).</p> "> Figure 3
<p>Phase diagram of the biaxial order reconstruction for <span class="html-italic">θ<sub>L</sub></span> = 19°: on the horizontal axis is reported the amplitude of the applied electric pulse <span class="html-italic">E</span>, and on the vertical axis is reported the opposite of the anchoring angles <span class="html-italic">θ<sub>U</sub></span>. Squares and circles refer to numerical experiments presented in [<a href="#B56-symmetry-17-00030" class="html-bibr">56</a>] and [<a href="#B58-symmetry-17-00030" class="html-bibr">58</a>], respectively.</p> ">
Abstract
:1. Introduction
2. Theoretical Overview
3. Numerical Method
1. | A uniform grid xj(0) is generated at t = 0, and the corresponding initial solution uj(0) is computed using the FEM. |
mesh and solution are updated in a temporal loop, putting forward the PDEs (15) and (16): | |
while tn < T | |
the mesh is redistributed in a few steps ν ≥ 0: | |
do | |
2. | The monitor function is evaluated, and the grid is moved from xj(ν) to |
xj(ν + 1) with an iterative procedure equidistributing the monitor function | |
in each subinterval, and a solution uj(ν + 1) is calculated on the newly | |
generated mesh. | |
until ν ≤ νmax | |
3. | The PDE system is put forward on the new mesh xj(ν + 1) to obtain a numerical |
approximation uj(ν + 1) at the new time level tn+1. | |
end. |
4. Numerical Results on Symmetric and Asymmetric Pi-Cell
4.1. Symmetric Pi-Cell
4.2. Asymmetric Pi-Cell
5. Conclusions and Future Work
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Zhang, L.; Zhang, P. Modelling and computation of liquid crystals. Acta Numer. 2021, 30, 765–851. [Google Scholar] [CrossRef]
- Guardià, J.; Reina, J.A.; Giamberini, M.; Montané, X. An Up-to-Date Overview of Liquid Crystals and Liquid Crystal Polymers for Different Applications: A Review. Polymers 2024, 16, 2293. [Google Scholar] [CrossRef]
- Andrienko, D. Introduction to liquid crystals. J. Mol. Liq. 2018, 267, 520–541. [Google Scholar] [CrossRef]
- Sultanov, V.; Kavčič, A.; Kokkinakis, E.; Sebastián, N.; Chekhova, M.V.; Humar, M. Tunable entangled photon-pair generation in a liquid crystal. Nature 2024, 631, 294. [Google Scholar] [CrossRef] [PubMed]
- Weima, S.A.M.; Norouzikudiani, R.; Baek, J.; Peixoto, J.A.; Slot, T.K.; Broer, D.J.; DeSimone, A.; Liu, D. Human interactive liquid crystal fiber arrays. Sci. Adv. 2024, 10, eadp0421. [Google Scholar] [CrossRef] [PubMed]
- Barberi, R.; Ciuchi, F.; Durand, G.; Iovane, M.; Sikharulidze, D.; Sonnet, A.; Virga, E.G. Electric field induced order reconstruction in a nematic cell. Eur. Phys. J. E 2004, 13, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Boyd, G.D.; Cheng, J.; Ngo, P.D.T. Liquid-crystal orientational bistability and nematic storage effects. Appl. Phys. Lett. 1980, 36, 556–558. [Google Scholar] [CrossRef]
- Amoddeo, A.; Barberi, R.; Lombardo, G. Moving mesh partial differential equations to describe nematic order dynamics. Comput. Math. Appl. 2020, 60, 2239–2252. [Google Scholar] [CrossRef]
- Politano, G.G.; Filice, F.; Versace, C. Alignment of Nematic Liquid Crystal 5CB Using Graphene Oxide. Crystals 2023, 13, 1500. [Google Scholar] [CrossRef]
- De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals, 2nd ed.; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- De Gennes, P.G. Phenomenology of short-range-order effects in the isotropic phase of nematic materials. Phys. Lett. A 1969, 30, 454–455. [Google Scholar] [CrossRef]
- Oseen, C.W. The theory of liquid crystals. Trans. Faraday Soc. 1933, 29, 883–899. [Google Scholar] [CrossRef]
- Franck, F.I. Liquid crystals. On the theory of liquid crystals. Discuss. Faraday Soc. 1958, 25, 19–28. [Google Scholar] [CrossRef]
- Biscari, P.; Cesana, P. Ordering effects in electric splay Freedericksz transitions. Contin. Mech. Thermodyn. 2007, 19, 285–298. [Google Scholar] [CrossRef]
- Demus, D.; Goodby, J.; Gray, G.W.; Spiess, H.-W.; Vill, V. Physical Properties of Liquid Crystals; Wiley-VCH: Weinheim, Germany, 1999. [Google Scholar]
- Barberi, R.; Durand, G. Controlled textural bistability in nematic liquid crystals. In Handbook of Liquid Crystals Research; Collings, P.J., Patel, J.S., Eds.; Oxford University Press: New York, NY, USA, 1997; Chapter 15. [Google Scholar]
- Schopohl, N.; Sluckin, T.J. Defect Core Structure in Nematic Liquid Crystals. Phys. Rev. Lett. 1987, 59, 2582–2584. [Google Scholar] [CrossRef] [PubMed]
- Buscaglia, M.; Lombardo, G.; Cavalli, L.; Barberi, R.; Bellini, T. Elastic anisotropy at a glance: The optical signature of disclination lines. Soft Matter 2010, 6, 5434–5442. [Google Scholar] [CrossRef]
- Kleman, M.; Lavrentovich, O.D. Topological point defects in nematic liquid crystals. Philos. Mag. 2006, 86, 4117–4137. [Google Scholar] [CrossRef]
- Aliev, F.; Basu, S. Relaxation of director reorientations in nanoconfined liquid crystal: Dynamic light scattering investigation. J. Non Cryst. Solids 2006, 352, 4983–4987. [Google Scholar] [CrossRef]
- Tjipto, E.; Cadwell, K.D.; Quinn, J.F.; Johnston, A.P.; Abbott, N.L.; Caruso, F. Tailoring the interfaces between nematic liquid crystal emulsions and aqueous phases via layer-by-layer assembly. Nano Lett. 2006, 6, 2243–2248. [Google Scholar] [CrossRef]
- Yi, Y.; Lombardo, G.; Ashby, N.; Barberi, R.; Maclennan, J.E.; Clark, N.A. Topographic-pattern-induced homeotropic alignment of liquid crystals. Phys. Rev. E 2009, 79, 041701. [Google Scholar] [CrossRef]
- Loudet, J.C.; Hanusse, P.; Poulin, P. Stokes Drag on a Sphere in a Nematic Liquid Crystal. Science 2004, 306, 1525. [Google Scholar] [CrossRef]
- Smalyukh, I.I.; Lavrentovich, O.D.; Kuzmin, A.N.; Kachynski, A.V.; Prasad, P.N. Elasticity-Mediated Self-Organization and Colloidal Interactions of Solid Spheres with Tangential Anchoring in a Nematic Liquid Crystal. Phys. Rev. Lett. 2005, 95, 157801. [Google Scholar] [CrossRef] [PubMed]
- Musevic, I.; Skarabot, M.; Tkalec, U.; Ravnik, M.; Zumer, S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 2006, 313, 954–958. [Google Scholar] [CrossRef]
- Qian, T. Biaxial ordering and field-induced configurational transition in nematic liquid crystals. Liq. Cryst. 1999, 26, 229–233. [Google Scholar] [CrossRef]
- Ayeb, H.; Lombardo, G.; Ciuchi, F.; Hamdi, R.; Gharbi, A.; Durand, G.; Barberi, R. Surface order reconstruction in nematics. Appl. Phys. Lett. 2010, 97, 104104. [Google Scholar] [CrossRef]
- Martinot-Lagarde, P.; Dreyfus-Lambez, H.; Dozov, I. Biaxial melting of the nematic order under a strong electric field. Phys. Rev. E 2003, 67, 051710. [Google Scholar] [CrossRef]
- Ambrožic, M.; Kralj, S.; Virga, E.G. Defect-enhanced nematic surface order reconstruction. Phys. Rev. E 2007, 75, 031708. [Google Scholar] [CrossRef]
- Biscari, P.; Napoli, G.; Turzi, S. Bulk and surface biaxiality in nematic liquid crystals. Phys. Rev. E 2006, 74, 031708. [Google Scholar] [CrossRef] [PubMed]
- Klemencic, E.; Kurioz, P.; Kralj, S.; Repnik, R. Topological defect enabled formation of nematic domains. Liq. Cryst. 2020, 47, 618–625. [Google Scholar] [CrossRef]
- Wu, J.; Ma, H.; Chen, S.; Zhou, X.; Zhang, Z. Study on concentric configuration of nematic liquid crystal droplet by Landau-de Gennes theory. Liq. Cryst. 2020, 47, 1698–1707. [Google Scholar] [CrossRef]
- Barberi, R.; Ciuchi, F.; Lombardo, G.; Bartolino, R.; Durand, G.E. Time Resolved Experimental Analysis of the Electric Field Induced Biaxial Order Reconstruction in Nematics. Phys. Rev. Lett. 2004, 93, 137801. [Google Scholar] [CrossRef] [PubMed]
- Joly, S.; Dozov, I.; Martinot-Lagarde, P. Comment on “Time Resolved Experimental Analysis of the Electric Field Induced Biaxial Order Reconstruction in Nematics”. Phys. Rev. Lett. 2006, 96, 019801. [Google Scholar] [CrossRef]
- Barberi, R.; Ciuchi, F.; Ayeb, H.; Lombardo, G.; Bartolino, R.; Durand, G.E. Reply to Comment on “Time Resolved Experimental Analysis of the Electric Field Induced Biaxial Order Reconstruction in Nematics”. Phys. Rev. Lett 2006, 96, 019802. [Google Scholar] [CrossRef]
- Ciuchi, F.; Ayeb, H.; Lombardo, G.; Barberi, R.; Durand, G.E. Control of transient biaxial order in calamitic nematics. Appl. Phys. Lett. 2007, 91, 244104. [Google Scholar] [CrossRef]
- Ayeb, H.; Ciuchi, F.; Lombardo, G.; Barberi, R. Metallomesogens as biaxial dopants in a calamitic nematic liquid crystal. Mol. Cryst. Liq. Cryst. 2008, 481, 73–79. [Google Scholar] [CrossRef]
- Lombardo, G.; Ayeb, H.; Ciuchi, F.; De Santo, M.P.; Barberi, R.; Bartolino, R.; Virga, E.G.; Durand, G.E. Inhomogeneous bulk nematic order reconstruction. Phys. Rev. E 2008, 77, 020702. [Google Scholar] [CrossRef] [PubMed]
- Carbone, G.; Lombardo, G.; Barberi, R.; Musevic, I.; Tkalec, U. Mechanically Induced Biaxial Transition in a Nanoconfined Nematic Liquid Crystal with a Topological Defect. Phys. Rev. Lett. 2009, 103, 167801. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, G.; Ayeb, H.; Barberi, R. Dynamical numerical model for nematic order reconstruction. Phys. Rev. E 2008, 77, 051708. [Google Scholar] [CrossRef] [PubMed]
- Pucci, G.; Lysenko, D.; Provenzano, C.; Reznikov, Y.; Cipparrone, G.; Barberi, R. Patterns of electro-convection in planar-periodic nematic cells. Liq. Cryst. 2016, 43, 216–221. [Google Scholar] [CrossRef]
- Pucci, G.; Carbone, F.; Lombardo, G.; Versace, C.; Barberi, R. Topologically non-equivalent textures generated by the nematic electrohydrodynamic. Liq. Cryst. 2019, 46, 649–654. [Google Scholar] [CrossRef]
- Kralj, S.; Majumdar, A. Order reconstruction patterns in nematic liquid crystal wells. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 470, 20140276. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Z.; Zhang, Q.; Ye, W. Order Reconstruction in a Nanoconfined Nematic Liquid Crystal between Two Coaxial Cylinders. Materials 2015, 8, 8072–8086. [Google Scholar] [CrossRef]
- Sun, Y.; Ye, W.; Zhang, Z. Order reconstruction in inverse twisted nematic cell with an applied electric field. Phys. Lett. A 2016, 380, 1865–1871. [Google Scholar] [CrossRef]
- Lombardo, G.; Amoddeo, A.; Ridha, H.; Ayeb, H.; Barberi, R. Biaxial surface order dynamics in calamitic nematics. Eur. Phys. J. E 2012, 35, 32. [Google Scholar] [CrossRef] [PubMed]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method, 6th ed.; Butterworth-Heinemann: Oxford, UK, 2005. [Google Scholar]
- Known, Y.W.; Bang, H. The Finite Element Method Using Matlab, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Ramage, A.; Newton, C.J.P. Adaptive solution of a one-dimensional order reconstruction problem in Q-tensor theory of liquid crystals. Liq. Cryst. 2007, 34, 479–487. [Google Scholar] [CrossRef]
- Ramage, A.; Newton, C.J.P. Adaptive grid methods for Q-tensor theory of liquid crystals: A one-dimensional feasibility study. Mol. Cryst. Liq. Cryst. 2008, 480, 160–181. [Google Scholar] [CrossRef]
- MacDonald, C.S.; Mackenzie, J.A.; Ramage, A.; Newton, C.J.P. Robust adaptive computation of a one-dimensional Q-tensor model of nematic liquid crystals. Comput. Math. Appl. 2012, 64, 3627–3640. [Google Scholar] [CrossRef]
- MacDonald, C.S.; Mackenzie, J.A.; Ramage, A.; Newton, C.J.P. Efficient moving mesh methods for Q-tensor models of nematic liquid crystals. SIAM J. Sci. Comput. 2015, 37, B215–B238. [Google Scholar] [CrossRef]
- MacDonald, C.S.; Mackenzie, J.A.; Ramage, A. A moving mesh method for modelling defects in nematic liquid crystals. J. Comput. Phys. X 2020, 8, 100065. [Google Scholar] [CrossRef]
- Amoddeo, A.; Lombardo, G.; Barberi, R. An advanced numerical method to describe order dynamics in nematics. In AIP Conference Proceedings, Proceedings of the IUTAM-ISIMM Symposium on Mathematical Modeling and Physical Instances of Granular Flows, Reggio Calabria, Italy, 14–18 September 2009; Goddard, J.D., Jenkins, J.T., Giovine, P., Eds.; American Institute of Physics: Huntington, NY, USA, 2010; Volume 1227. [Google Scholar]
- Amoddeo, A.; Barberi, R.; Lombardo, G. Electric field-induced fast nematic order dynamics. Liq. Cryst. 2011, 38, 93–103. [Google Scholar] [CrossRef]
- Amoddeo, A.; Barberi, R.; Lombardo, G. Surface and bulk contributions to nematic order reconstruction. Phys. Rev. E 2012, 85, 061705. [Google Scholar] [CrossRef]
- Amoddeo, A.; Barberi, R.; Lombardo, G. Nematic order and phase transition dynamics under intense electric fields. Liq. Cryst. 2013, 40, 799–809. [Google Scholar] [CrossRef]
- Amoddeo, A. Nematodynamics modelling under extreme mechanical and electric stresses. J. Phys. Conf. Ser. 2015, 574, 012102. [Google Scholar] [CrossRef]
- Amoddeo, A. Concurrence of bulk and surface order reconstruction to the relaxation of frustrated nematics. J. Phys. Conf. Ser. 2016, 738, 012089. [Google Scholar] [CrossRef]
- Amoddeo, A.; Barberi, R. Phase diagram and order reconstruction modeling for nematics in asymmetric π-cells. Symmetry 2021, 13, 2156. [Google Scholar] [CrossRef]
- Mottram, N.J.; Newton, C.J.P. Introduction to Q-tensor theory. arXiv 2014, arXiv:1409.3542. [Google Scholar]
- Tang, T. Moving Mesh Methods for Computational Fluid Dynamics. Contemp. Math. 2005, 383, 141–173. [Google Scholar]
- Haegland, B.; Skaflestad, B. A Survey of Some Methods for Moving Grid and Grid Adaption; Preprint numerics no. 2/2002; Norwegian University of Science and Technology: Trondheim, Norway, 2002. [Google Scholar]
- Acikgoz, N.; Bottasso, C.L. Metric-driven mesh optimization using a local simulated annealing algorithm. Int. J. Numer. Methods Eng. 2007, 71, 201–223. [Google Scholar] [CrossRef]
- Barrett, J.W.; Feng, X.; Prohl, A. Convergence of a fully discrete finite element method for a degenerate parabolic system modelling nematic liquid crystals with variable degree of orientation. Math. Model. Numer. Anal. 2006, 40, 175–199. [Google Scholar] [CrossRef]
- Patricio, P.; Tasinkevych, M.; Telo da Gama, M.M. Colloidal dipolar interactions in 2D smectic-C films. Eur. Phys. J. E 2002, 7, 117–122. [Google Scholar] [CrossRef]
- James, R.; Willman, E.; Fernandez, F.A. Finite-Element Modeling of Liquid-Crystal Hydrodynamics with a Variable Degree of Order. IEEE Trans. Electron. Devices 2006, 53, 1575–1582. [Google Scholar] [CrossRef]
- Mackenzie, J.A.; Mekwi, W.R. An hr-adaptive method for the cubic nonlinear Schrödinger equation. J. Comput. Appl. Math. 2020, 364, 112320. [Google Scholar] [CrossRef]
- Huang, W.; Russel, R.D. Adaptive Moving Mesh Methods; Springer: New York, NY, USA, 2011. [Google Scholar]
- De Boor, C. Good approximation by splines with variable knots. II. In Proceedings of the Conference on the Numerical Solution of Differential Equations, Dundee, Scotland, 3–6 July 1973; Watson, G.A., Ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1974; Volume 363, pp. 12–20. [Google Scholar] [CrossRef]
- Pereyra, V.; Sewell, E.G. Mesh selection for discrete solution of boundary problems in ordinary differential equations. Numer. Math. 1974, 23, 261–268. [Google Scholar] [CrossRef]
- Russell, R.D.; Christiansen, J. Adaptive mesh selection strategies for solving boundary value problems. SIAM J. Numer. Anal. 1978, 15, 59–80. [Google Scholar] [CrossRef]
- White, A.B. On Selection of Equidistributing Meshes for Two-Point Boundary-Value Problems. SIAM J. Numer. Anal. 1979, 16, 472–502. [Google Scholar] [CrossRef]
- Beckett, G.; Mackenzie, J.A.; Ramage, A.; Sloan, D.M. On The Numerical Solution of One-Dimensional PDEs Using Adaptive Methods Based on Equidistribution. J. Comput. Phys. 2001, 167, 372–392. [Google Scholar] [CrossRef]
- Beckett, G.; Mackenzie, J.A. Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem. Appl. Numer. Math. 2000, 35, 87–109. [Google Scholar] [CrossRef]
- Huang, W. Practical Aspects of Formulation and Solution of Moving Mesh Partial Differential Equations. J. Comput. Phys. 2001, 171, 753–775. [Google Scholar] [CrossRef]
- Huang, W.; Ren, Y.; Russell, R.D. Moving Mesh Partial Differential Equations (MMPDES) Based on the Equidistribution Principle. SIAM J. Numer. Anal. 1994, 31, 709–730. [Google Scholar] [CrossRef]
- Amoddeo, A. Adaptive grid modelling for cancer cells in the early stage of invasion. Comput. Math. Appl. 2015, 69, 610–619. [Google Scholar] [CrossRef]
- Amoddeo, A. Moving mesh partial differential equations modelling to describe oxygen induced effects on avascular tumour growth. Cogent Phys. 2015, 2, 1050080. [Google Scholar] [CrossRef]
- Amoddeo, A. Oxygen induced effects on avascular tumour growth: A preliminary simulation using an adaptive grid algorithm. J. Phys. Conf. Ser. 2015, 633, 012088. [Google Scholar] [CrossRef]
- Amoddeo, A. A moving mesh study for diffusion induced effects in avascular tumour growth. Comput. Math. Appl. 2018, 75, 2508–2519. [Google Scholar] [CrossRef]
- Amoddeo, A. Modelling avascular tumor growth: Approach with an adaptive grid numerical technique. J. Multiscale Model. 2018, 9, 1840002. [Google Scholar] [CrossRef]
- MacDonald, G.; Mackenzie, J.A.; Nolan, M.; Insall, R.H. A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis. J. Comput. Phys. 2016, 309, 207–226. [Google Scholar] [CrossRef] [PubMed]
θL/U = +/−10° | θL/U = +/−19° | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E (V/μm) | 11.4 | 10 | 11 | 12 | 13 | 14 | 18 | 20 | 32 | 40 | 60 | 90 |
Δτ (μs) | 55 | 38.5 | 31 | 25 | 21 | 17.5 | 8 | 6 | 2 | 1 | 0.3 | 0.2 |
E = 10 V/μm | E = 11 V/μm | E = 12 V/μm | E = 13 V/μm | E = 14 V/μm | ||
---|---|---|---|---|---|---|
θU | Δτ (μs) | δH (μm) | ||||
0° | NT | NT | NT | NT | NT | // |
−1° | NT | NT | NT | NT | SOR for t ≥ 58 | // |
−2° | NT | NT | NT | SOR for t ≥ 85 | 21 | 0.03 |
−3° | 48 | 36 | 27 | 23 | 19 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoddeo, A. Moving Mesh Partial Differential Equation Modelling of a 5CB Nematic Liquid Crystal Confined in Symmetric and Asymmetric Pi-Cells: A Review. Symmetry 2025, 17, 30. https://doi.org/10.3390/sym17010030
Amoddeo A. Moving Mesh Partial Differential Equation Modelling of a 5CB Nematic Liquid Crystal Confined in Symmetric and Asymmetric Pi-Cells: A Review. Symmetry. 2025; 17(1):30. https://doi.org/10.3390/sym17010030
Chicago/Turabian StyleAmoddeo, Antonino. 2025. "Moving Mesh Partial Differential Equation Modelling of a 5CB Nematic Liquid Crystal Confined in Symmetric and Asymmetric Pi-Cells: A Review" Symmetry 17, no. 1: 30. https://doi.org/10.3390/sym17010030
APA StyleAmoddeo, A. (2025). Moving Mesh Partial Differential Equation Modelling of a 5CB Nematic Liquid Crystal Confined in Symmetric and Asymmetric Pi-Cells: A Review. Symmetry, 17(1), 30. https://doi.org/10.3390/sym17010030