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Abstract: This paper explores fundamental issues in the correct contraction and expansion
of operators, with a primary focus on the concept of symmetry within operator theory. Spe-
cial attention is given to how symmetry influences the behavior of operators, particularly
regarding their approximation and convergence properties. In the domains of quantum
mechanics and condensed matter physics, such operators are essential for modeling phe-
nomena like superconductivity, excitons, and surface states. The symmetric properties of
operators have a profound impact on the physical interpretations and predictions these
models generate. A rigorous analysis is provided regarding the existence of correct con-
tractions and expansions for a specific class of nonlinear operators, demonstrating how
symmetry affects the structural integrity of operators under natural conditions. The study
presents a comprehensive description of the set of all correct contractions, expansions, and
regular expansions, with an application to a third-order nonlinear differential expression.
Additionally, a condition for the unique solvability of a Bitsadze–Samarskii-type problem
is derived, showcasing how symmetry plays a crucial role in guiding the solution of com-
plex physical models. Furthermore, the paper emphasizes the importance of preserving
symmetry in the construction of operators, ensuring the consistency and accuracy of mathe-
matical models. This has significant implications for both theoretical research and practical
applications in various fields, including nuclear physics and quantum theory.

Keywords: operator; correct extension; correct contraction; regular extension; Bitsadze–
Samarskii-type problem

1. Introduction
Problems with extension and contraction arise mainly in the study of differential

operators. Thus, in the works [1–3], questions of the regular extension of the “minimal”
linear operator in the Hilbert space are considered. M.I. Vishik applies his results to the
study of general boundary value problems for elliptic differential equations of the second
order. In the work of A.A. Dezin, the properties of extensions for ordinary differential
equations with constant coefficients and the question of the correct formulation of boundary
value problems for “nonclassical” equations of mathematical physics are investigated.
At the same time, A.A. Dezin simultaneously proves a statement similar to the theorem of
M.I. Vishik, which allows one to describe the class of solvable (“correct”) extensions of the
original operator. In the mentioned works, the Hilbert property of the space and the linearity
of the operators under consideration are essential. Moreover, the regular extensions under
study obeyed both the “maximal” and “minimal” operators simultaneously. And in
the work [4] the requirement of the Hilbert space was removed and it is sufficient that
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the operators under consideration are additive. In this case, correct restrictions of the
“maximal” operator and the questions of extension of the “minimal” operator in a Banach
space are considered separately. This approach to questions concerning the extension
and restriction of operators, as subsequent publications on this topic show, turned out to
be very rich in applications. For example, in the work [5] the relationship between the
correct restrictions on the product of operators and the correct restrictions on its factors is
established, and, using the abstract results obtained, the author manages to formulate a
correct boundary value problem for a hyperbolic equation in a circle and a correct problem
of Bitsadze–Samarskii type. In general, after the 1990s, numerous work applications of the
abstract theories of correct restriction, correct extension, and regular extension, which were
developed in the works [4,6], were published. For example, the theory of correct operators’
restrictions is successfully applied in the study of singular values of differential operators.
In the work [7], the correct restrictions of the Navier–Stokes system are studied in terms of
the correct formulation of boundary value problems. Also worth noting is the work [8],
where a general formula is considered to resolve a correct restriction of an elliptic operator
of the second order. In the work [9], the author, relying on the results of work [10], proves
the non-Volterra property of the Laplace operator.

However, the following questions remain open: (1) is it possible to remove the con-
ditions of the “minimality” and “maximality” of the original operators when studying,
respectively, correct extensions and correct restrictions?; (2) the existence of a correct ex-
tension and a correct restriction for the corresponding original operators; (3) is it possible
to apply the theory of correct extensions and correct restrictions to nonlinear operators?
In the work [11], the author, relying on the results of work [12], proves the non-Volterra
property of the Laplace operator. The same problem is considered in the works [13–17].

In this paper, it is shown that these restrictions to the “minimality” and “maximality”
of the corresponding initial operators are not essential, and more general approaches to
the issues of operator restriction and extension are put forward. The relevance of this
issue is that there are correct restrictions of the “maximal” operator that are not a correct
extension of the “minimal” operator, for example, the Bitsadze–Samarskii-type problem.
Also, there are correct extensions of the “minimal” operator that are not a correct restriction
of the “maximal” operator, for example, the so-called “loaded equations” (see [10]). It is
also proven that, if the manifold R(A0) is complemented in some specially constructed
Banach space, then, for the operator A0, there is at least one regular extension, Ã (or, for
the operator A, there is at least one regular restriction, Ã).

In the work [4], a complete description of the set of all correct restrictions of the
maximal operator A, the set of all correct extensions of the minimal operator A0, and the
set of all regular extensions of the operator A0 is also given. In this work, a similar
complete description of correct restrictions to the nonlinear operator AN , the set of all
correct extensions of the nonlinear operator A0N , and the set of all regular extensions of
the nonlinear operator are given, A0N ; i.e., for the first time, the theory of extension and
restriction is applied to nonlinear operators acting in a Banach space, while the methods of
the work [7] are significantly used.

As an example, a nonlinear differential expression of the third order in a cube is
considered, [0, 1] × [0, 1] × [0, 1]. The condition of unique solvability of one Bitsadze–
Samarskii-type problem is shown.
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2. Main Results
Let A0 and A be additive closed operators of a Banach space Binto itself, such that the

following conditions are satisfied:

(i) A0 ⊂ A;
(ii) For the operator A0, there is a continuous left inverse, A−1

0l ;
(iii) For the operator, there exists a continuous right inverse, A−1

r and Ker A ̸= 0.

The manifold D(A) with respect to the norm is as follows:

∥u∥M = ∥u∥B + ∥Au∥B, u ∈ D(A), (1)

In this case, we denote the resulting Banach space as M. It is obvious that D(A) = M

and R(A) = M.

Definition 1. An operator A1 is called a regular operator A0 extension (or regular operator A
contraction) if

1. A0 ⊂ A1 ⊂ A;
2. There exists a continuous inverse, A−1

1 , defined on M.

Theorem 1. Let A0 and the additive operators satisfy conditions (i)–(iii), and manifolds R(A0)

and KerA are complemented in space M. Then, there is at least one regular operator expansion, A0

(or at least one regular operator contraction, A).

Proof. To prove this theorem, we first prove Lemma 1. First, we give some notation.
Let closed additive subspaces X1 and be given X2, such that the following decomposi-

tion holds:
M = X1 + X2, (2)

Let us introduce the notation X1 = D(A) ∩ X1, X2 = D(A) ∩ X2, and let M =

AX1, N = AX2. Suppose that the sets M and N are complemented in space M; that is,
there exists a projector, P1, such that R(P1) = M, Ker P1 = N. Then, the lemma holds.

Lemma 1. If the operators A1 and A2 are restrictions of the operator A on the manifolds X1 and X2,
respectively, then, for the operator to be invertible, it is necessary and sufficient that the operators
A1 and are invertible A2. In this case, the following equality holds:

A−1 = A−1
1 P1 + A−1

2 (I − P1) (3)

Proof. Let there exist A−1. Then, for each y ∈ M, there is a unique element, x ∈ D(A),
such that A−1y = x. According to the condition of the lemma, the following expansions
are satisfied:

x = x1 + x2, x1 ∈ X1, x2 ∈ X2,
y = y1 + y2, y1 ∈ M, y2 ∈ N,

and, at the same time, y1 = A1x1, y2 = A2x2. Then, y1 = Ax1. Therefore, x1 = A−1y1 =

A−1P1y. Similarly, x2 = A−1(I − P1)y. From these two relations, we have

A−1
1 P1 = A−1P1,

A−1
2 (I − P1) = A−1(I − P1),
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And, via direct verification, it is easy to obtain that

A1 A−1P1 = A−1P1 A1 = I,

A2 A−1(I − P1) = A−1(I − P1)A2 = I.

Conversely, let there exist inverse operators, A−1
1 , A−1

2 . If y ∈ M, y1 = P1y ∈ M, y2 =

(I − P1)y ∈ N, then there exist unique elements, x1 ∈ X1 and x2 ∈ X2, such that A−1
1 y1 =

x1, A−1
2 y2 = x2. Now, we define the operator Ã−1 by the following formula:

Ã−1y = A−1
1 P1y + A−1

2 (I − P1)y, y ∈ M.

According to this definition, R
(

Ã−1) = D(A), and AÃ−1y = y, y ∈ M. On the other
hand, via the expansion (2) for each x ∈ D(A), we have

x = x1 + x2, x1 ∈ X1, x2 ∈ X2.

That is why
Ã−1 Ax = Ã−1y = A−1

1 P1y + A−1
2 (I − P1)y =

= A−1
1 y1 + A−1

2 y2 = x1 + x2 = x.

Then, the inverse operator A−1 is defined, and moreover, A−1 = Ã−1. The lemma has
been completely proven.

Proof of Theorem 1. According to the conditions of the theorem M ⊂ M, for which
M = R(A0) +M, given N , there is a maximal additive variety of D(A), such that AN =

M (this is possible since R(A) = M). Obviously, Ker A ⊂ N . Set R = M− Ker A, and let
W = N ∩R. Hence, AW = M.

Furthermore, if A1 is the restriction to the operator A for the manifolds W , then we will
show that the operator is invertible. In fact, let A1 : W → M hold the equalities A1x1 = y
for some x1, x2 ∈ W , y ∈ M A1x2 = y. Then, A(x1 − x2) = 0 or x1− x2 ∈ KerA.
But, according to condition ℜ ∩ Ker A = 0, all the more so, W ∩ Ker A = {0}. Therefore,
x1 = x2. Consequently, there exists A−1

1 . Let us define the set.

D(Ã) = {x = x0 + ω : x0 ∈ D(A0), ω ∈ W}

and an operator, Ã, with domain D(Ã), acting according to the law

Ãx = A0x0 + A1ω,

where x ∈ D(Ã), x0 ∈ D(A0), ω ∈ W , x = x0 + ω. By definition, A0 ⊂ Ã ⊂ A, and
R(Ã) = M. Therefore, based on Lemma 1, there is an inverse operator, Ã−1, to the operator
Ã. Since the operator Ã−1 is closed and defined throughout the space M, it is continuous.
The theorem is proven.

Let R1 denote the set of all continuous mappings K : B → D(A), satisfying the
following condition: KR(A0) ⊆ D(A0), ∀K ∈ R1.

Theorem 2. Let A be a fixed regular extension of the operator A0. Then, the following applies:

(a) If K ∈ R1, then the operator A−1
k , defined by the formula

A−1
k f = Ã−1 f + K f − Ã−1AK f , f ∈ B, (4)

is the inverse of some regular extension, Ak, of the operator A0 with respect to A;
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(b) And, if AK is some regular extension of the operator A0 with respect to A, then there exists
K ∈ R1, such that equality (4) is satisfied.

Proof. (a) Let K ∈ R1; then, it is clear that A−1
k , defined by Formula (4), is defined on

the entire space B, and it is easy to show that there exists an inverse operator for it,
Ak. Since Ã ⊂ A and A

(
K f − Ã−1AK f

)
= 0, then Aκ ⊂ A. Now, we will show that

A0 ⊂ Ak. Indeed, if u0 ∈ D(A0), ∃ f0 ∈ R(A0) : A−1
0 f0 = u0. Therefore,

A−1
k f0 = Ã−1 f0 + K f0 − Ã−1AK f0 = Ã−1 f0 + K f0 − K f0 = u0

i.e., A0 ⊂ Ak and Ak are a regular extension of the operator A0.
(b) Let Ak be a regular extension of the operator. Then, with A0, we can take the operator

A−1
k as K. It is clear that K = A−1

k ∈ R1. Taking into account the identities A−1
k f =

Ã−1 f + A−1
k f − Ã−1 f and AÃ−1 = I, we have

A−1
k f = Ã−1 f + K f − Ã−1AK f , f ∈ B

The theorem is proven.
This theorem is also proven as the corresponding theorem from [5].
Now, under the conditions of the notation adopted above, we consider some bijective

mapping, N : B → B. Then, the N(0) = 0 operator is defined, AN = A · N, in space M

since there is a right inverse, A−1
r and Ker A ̸= {0}; then, for the operator AN , there is

also a right inverse, A−1
Nr , A−1

Nr = N−1 · A−1
r , and Ker AN = N(Ker A) ̸= 0. If Ã is a fixed

regular extension of the operator A0, then the operator ÃN = Ã · N is a regular extension
of the operator A0N = A0 · N.

Let {A0, A} be the set of all regular extensions of the operator A0, and let {A0N , AN}
be the set of all regular extensions of the operator A0N . Then, we have the case in which
the operator N implements a one-to-one correspondence between the sets {A0, A}, and
{A0N , AN}. Moreover, if A1 ∈ {A0, A}, then A1 · N ∈ {A0N , AN}, and conversely, if ÃN ∈
{A0N , AN}, then N−1 · ÃN ∈ {A0, A}. Thus, we have proven the following theorem.

Theorem 3. A bijective mapping, N : B → B, establishes a one-to-one correspondence between
sets {A0, A} and {A0N , AN}. Moreover, if A1 ∈ {A0, A}, then A1 · N ∈ {A0N , AN}, and
conversely, if ÃN ∈ {A0N , AN}, then N−1 · ÃN ∈ {A0, A}.

If Theorem 2 describes a set, {A0, A}, in the language of some continuous mappings, K :
B → D(A), (KR(A0) ⊆ D(A0), ∀K ∈ R1), then a similar theorem is valid to describe the set
{A0N , AN}.

Theorem 4. Let A be a fixed regular extension of the operator A0. Then, the following applies:

(a) If K ∈ R1, then the operator A−1
NK defined by the formula

A−1
NK f = N−1

(
Ã−1 f + K f − Ã−1AK f

)
, f ∈ M, (5)

is the inverse of some regular operator expansion, ANK A0N .
(b) And, if ANK is some regular extension of the operator A0N , then there exists K ∈ R1, such

that equality (5) is satisfied.

Similar statements are true for the correct contraction and correct expansion of the
corresponding operators. For completeness, we recall some definitions and concepts. An
operator is given, A0 : D(A0) → B, in a Banach space, B, for which there exists a continuous
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left inverse, A−1
0l ; i.e., on R(A0) ⊂ B, there is a continuous left inverse, A−1

0l if the operator
A1 : D(A1) → Bs satisfies the following conditions:

1. A0 ⊂ A1;
2. In the space B, there exists a continuous inverse, A−1

1 ; then, the operator A1 is called a
correct extension of the operator A0.

Now, let a Ban operator be defined, A : D(A) → B, in a Banach space, D(A) ⊂ B, for
which there exists a continuous right inverse, A−1

r and Ker A ̸= {0}.D(A). We close the
manifold with respect to the norm:

∥u∥M = ∥u∥B + ∥Au∥B, u ∈ D(A), (6)

In this case, we denote the resulting Banach space as M. It is obvious that D(A) = M, and
R(A) = M if the operator A1 : D(A1) → M satisfies the following conditions:

1. A1 ⊂ A;
2. In the space M, there exists a continuous inverse, A−1

1 ; then, the operator A1 is called
a correct restriction of the operator A.

If the relationA0 ⊂ A1 ⊂ A holds, then the operator A1 is a regular extension of
the operator A0 (or a regular contraction of the operator A). That is, the operator A1 is
simultaneously both a regular extension of the operator A0 and a regular contraction of the
operator A.

Let it be as before with N : B → B being a bijective mapping, such that N(0) = 0.
Then, the operator M is defined in the space AN = A · N since there is a right inverse,
A−1

r and Ker A ̸= {0}; then, for AN , there is also a right inverse for the operator A−1
Nr ,

and A−1
Nr = N−1 · A−1

r and Ker AN = N(Ker A) ̸= {0}. If Ã, a fixed correct restriction of
the operator A, then ÃN = Ã · N is a correct restriction of the operator AN . As {A} and
{AN}, we denote the set of all correct restrictions of the operators A and AN , respectively.
Then a statement similar to Theorem 4 is true. Namely, if P, Q ⊂ M, then H(P, Q); we
denote the set of all continuous mappings, K : P → Q, and Then the theorem is valid:

Theorem 5. Let Ã be a fixed correct restriction of the operator A. Then, the following applies:

(a) If K ∈ H(M, D(A)), then the operator A−1
NK, defined by the formula

A−1
NK f = N−1

(
Ã−1 f + K f − Ã−1AK f

)
, f ∈ M (7)

is the inverse of some correct restriction, ANK, of the operator AN .
(b) And, if ANK ∈ {AN}, then there exists K ∈ H(M, D(A)), such that equality (7) is satisfied.

3. Example
Here, as an application of the above results, we consider the cubed differential expres-

sion Q =
{
(x, y, z) ∈ R3 : 0 ≤ x, y, z ≤ 1

}
.

Au ≡ ∂3u
∂x∂y∂z

(8)

Let A be the closure of the operator ∂3

∂x∂y∂z , initially defined in C∞(Q), followed by the
closure in the norm of the space C(Q).
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∂3u
∂x∂y∂z

= f (x, y, z), f ∈ C(Q) (9)

∂2u
∂y∂z

= 0, 0 ≤ y, z ≤ 1 (10)

∂u
∂z

= 0, 0 ≤ x, z ≤ 1 (11)

u/y=0 = 0, 0 ≤ x, y ≤ 1 (12)

is uniquely solvable for any right-hand-side f ∈ C(Q), and the only solution to the specified
problem has the form

u(x, y, z) =
∫ z

0

∫ y

0

∫ x

0
f (t, τ, ϑ)dtdτdϑ

For any solution to the equation

∂3u
∂x∂y∂z

= 0

in space C(Q) we can represent as

Ker A = u(x, y, z) =
∫ z

0

∫ y

0
φ3(t, τ)dtdτ +

∫ z

0
φ2(x, τ)dτ + φ1(x, y),

where φi(t, τ) ∈ C([0, 1]× [0, 1]), i = 1, 2, 3.
Next, integrating the boundary condition (10) twice in the intervals (0, x) and (0, y),

we obtain the following relation.

u(0, y, z) = u(0, y, 0) + u(0, 0, z)− u(0, 0, 0), 0 ≤ y, z ≤ 1 (13)

Integrating the boundary condition (11), we obtain

u(x, 0, z) = u(x, 0, 0), 0 ≤ x, z ≤ 1 (14)

and from condition (12), we come to the conclusion,

u(0, y, 0) = u(x, 0, 0) = u(x, 0, 0) = u(0, 0, 0) = 0

From this and from (13) and (14), it follows that problems (9)–(12) are equivalent to the
following problem:

∂3u
∂x∂y∂z

= f (x, y, z), f ∈ C(Q),

u/x=0 = 0, 0 ≤ y, z ≤ 1

u/y=0 = 0, 0 ≤ x, z ≤ 1

u/z=0 = 0,

Now consider the bijective mapping N : C(Q) → C(Q), acting according to the
formula Nu = u3, u ∈ C(Q). The operator generated via the last boundary value prob-
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lem is denoted as Ã, which is a correct restriction to the original operator A. Therefore,
the operator ÃN = Ã · N is generated via the following boundary value problem:

u2 ∂3u
∂x∂y∂z

+ 2Pu = f (x, y, z), f ∈ C(Q) (15)

u/x=0 = 0, 0 ≤ y, z ≤ 1 (16)

u/y=0 = 0, 0 ≤ x, z ≤ 1 (17)

u/z=0 = 0, 0 ≤ x, y ≤ 1 (18)

where P denotes the following non-linear operator:

Pu = u
[

∂2u
∂x∂y

· ∂u
∂z

+
∂2u

∂x∂z
· ∂u

∂y
+

∂2u
∂z∂y

· ∂u
∂x

]
+

∂u
∂x

· ∂u
∂y

· ∂u
∂z

(19)

The only solution to the boundary value problem (15)–(18) is written as follows:

u(x, y, z) =
(

3 ·
∫ z

0

∫ y

0

∫ x

0
f (t, τ, ϑ)dtdτdϑ

) 1
3

(20)

Let equation z = φ(x, y) be a certain smooth surface located in a cube, Q, such that
each line parallel to the axis O opposite the cube intersects this surface at only one point. It
is also easy to show the following theorem.

Theorem 6. The operator A1 is generated via the following Bitsadze–Samarskii-type problem:

∂3u
∂x∂y∂z

= f (x, y, z), f ∈ C(Q),

u(0, y, z) = 0, 0 ≤ y, z ≤ 1,

u(x, 0, z) = 0, 0 ≤ x, z ≤ 1,

a1u(x, y, 0) + a2u(x, y, φ) + a3u(x, y, 1) = 0, 0 ≤ x, y ≤ 1,

where ai = ai(x, y) ∈ C([0, 1]× [0, 1]), i = 1, 2, 3 is a correct contraction of operator A that is
necessary and sufficient for a∗(x, y) ̸= 0. Here,

a∗(x, y) = a1(x, y) + a2(x, y) + a3(x, y).

Moreover, the inverse operator A−1
1 has the following form:(

A−1
1 f

)
(x, y, z) =

=
∫ x

0

∫ y

0

[
a2 + a3

a∗

∫ z

0
f (t, τ, ϑ)dtdτ +

a2

a∗

∫ φ(t,τ)

0
f (t, τ, ϑ)dtdτ

+
a3

a∗

∫ 1

0
f (t, τ, ϑ)dtdτ

]
dϑ (21)

Based on Theorems 5 and 6, we have the following theorem.
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Theorem 7. In order for the Bitsadze–Samarskii-type problem

u2 ∂3u
∂x∂y∂z

+ 2Pu = f (x, y, z), f ∈ C(Q),

u(0, y, z) = 0, 0 ≤ y, z ≤ 1,

u(x, 0, z) = 0, 0 ≤ x, z ≤ 1,

a1u(x, y, 0) + a2u(x, y, φ) + a3u(x, y, 1) = 0, 0 ≤ x, y ≤ 1,

to occur and be uniquely solvable, it is necessary and sufficient that a∗(x, y) ̸= 0, the unique
solution to this problem, has the following form:

u(x, y, z) =
(

3 ·
(

A−1
1 f

)
(x, y, z)

) 1
3

Here, the non-linear operator P is defined by Formula (19), and the value
(

A−1
1 f

)
(x, y, z) is

found via equality (21).

4. Conclusions
There is no doubt that the general approach to the theory of correct contraction and

correct expansion considered here will significantly expand the scope of application of this
theory. It can be successfully applied in the construction of “explicitly solvable” models of
physics and technology.

The role of “explicitly solvable” models in physics is well known, and attention to
them has been growing in recent years. It is worth paying attention to the possibility
of modeling a section of operator theory, the theory of correct contraction and correct
expansion. For example, the diffraction problem has been studied, and here, a model of
scattering on a resonator with a small hole has been constructed using the correct expansion.

Among the mathematical problems that arise in connection with the scheme described
here, we note that it can be successfully applied in the correct formulation of boundary value
problems, Bitsadze–Samarskii-type problems, various so-called “multipoint” problems for
nonlinear equations of mathematical physics, and many loaded equations.
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