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Abstract: The Internet of Things (IoT) is an important component of the smart environment, which
produces a large volume of data that is considered challenging to handle. In addition, the IoT
architecture is vulnerable to many cyberattacks that can target operational devices. Therefore, there
is a need for monitoring IoT traffic to analyze, detect malicious activity, and classify cyberattack
types. This research proposes a security framework to monitor asymmetrical network traffic in an
IoT environment. The framework offers a network intrusion detection system (NIDS) to detect and
classify cyberattacks, implemented using a machine learning (ML) model residing in the middleware
layer of the IoT architecture. A dimensionality reduction technique known as principal component
analysis (PCA) is utilized to facilitate data transmission, which is intended to be sent from the
middleware layer to the cloud layer with reduced complexity and fewer unnecessary inputs without
compromising the information content. Therefore, the reduced IoT traffic data are sent to the cloud
and the PCA data are retransformed to approximate the original data for visualizing the IoT traffic.
The NIDS is responsible for reporting the attack type to the cloud in the event of an attack. Our
findings indicate that the proposed framework has promising results in classifying the attack type,
which achieved a classification accuracy of 98%. In addition, the dimension of the IoT traffic data is
reduced by around 50% and it has a similarity of around 90% compared to the original data.

Keywords: NIDS; IoT; cyberattack; CIC-IoT 2023 Dataset; machine learning; deep learning; PCA

1. Introduction

The Internet of Things (IoT) has started reaching maturity levels with the evolution of
sensors, data analytics, and high capabilities of devices that are connected to the Internet.
There are many application domains such as smart grid, microgrid, and smart industries,
and other domains that depend on various devices for their realization such as smart-
phones, routers, and sensors. These applications utilize devices that sense and preprocess
data including data fusion and filtering tasks locally at the core of the infrastructure of com-
munication, while most of the high-capability data analysis tasks are executed in the cloud.
The IoT provides improved productivity and adaptability, which helps in developing frame-
works that are highly interconnected and lead to new services being enabled [1]. The IoT
paradigm has entered the market of the industry with tailored solutions in the past decades,
thereby the concept and the idea of industrial IoT and industry 4.0 have been defined [2].
The projections of the number of IoT devices will be around 32 billion Internet-connected
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devices, which can be considered as two times the number of Internet-connected devices
in 2024. IoT devices are utilized in both the consumer and corporate sectors [3]. There
are many projections regarding the number of Internet-connected devices, the numbers
might vary but the important aspect here is that the number of Internet-connected devices
is increasing tremendously. This means that many devices will be connected to the Internet,
which will bring many security issues. The networks in IoT are open, and the topology
frequently changes in real time as nodes join and leave the network. This means that they
are susceptible to cybersecurity threats due to a shortage of centralized management for
networks. Every IoT device has characteristics such as small memory size, constrained
storage and power, and limited bandwidth [4]. In IoT infrastructure, these limitations in IoT
devices can impact on the effectiveness of cybersecurity protocols including performance
and growth.

Therefore, monitoring IoT network traffic and detecting and classifying cyberattacks
targeting IoT architecture can be considered challenging because of the overhead that needs
high power of computation. Recently, hackers or attackers started using cutting-edge
strategies to attack and obtain information, which makes cyberattacks more complex for
IDS to detect. The IoT can be connected with anyone or anything, which means that any
user (authorized or not authorized) can interact with the IoT, including sensors, actuators,
protocols, and cloud IoT devices inside the IoT network. In an IoT network, it is difficult to
make decisions on the content, whether it is malicious or normal because it is challenging
to detect the characteristics of the content. Figure 1 illustrates that the attacks can happen
mostly within the networks or between the IoT devices and the cloud in the network. The
figure also shows the architecture of IoT, which mostly consists of four layers named IoT
devices, IoT gateways, middleware, and cloud platform. IoT devices collect data from
the operating environment via sensors, and the collected data are sent to the middleware
through IoT gateways. The middleware layer utilizes data analytics and management. The
cloud has high performance, which can store and handle large amounts of data [5,6].
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As a result, there is a need for innovative and effective methods for real-time network
monitoring and network intrusion detection systems. In the last decade, researchers started
using machine learning and deep learning methods to detect and prevent abnormality
and intrusions [7]. The IoT paradigm allows the integration of sensors and objects, which
enables the exchange of data. The networks of IoT have been efficient in gathering, an-
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alyzing, reporting, and forecasting data to be used in the future [8]. One of the earliest
definitions of IoT is that “The Internet of Things allows people and things to be connected
Anytime, Anyplace, with Anything and Anyone, ideally using Any path/network and
Any service” [9]. In addition, the IoT and Internet help to perform more tasks with fewer
resources and less time. The definition can be updated by adding intelligence to the IoT
because IoT in the current era is not just a connection between humans and things.

IoT needs include many aspects such as data analytics, security monitoring for the
network, and intrusion detection systems for the network. This indicates that there are
evolvements in IoT technology. According to the authors in [10], there is an increase in the
number of attacks that impact IoT systems. It can be considered that IoT-based systems
are more vulnerable to cyber threats and various attacks targeting these systems. As the
number of Internet-connected devices increases, cyberattacks will also increase, which
indicates that maintaining IoT security is crucial [11]. There will be intrusions in the IoT
system, and the intrusion detection system (IDS) is a solution that can be hardware or
software that is designed to detect intrusions of activities while maintaining security. The
authors in [12] state that in cloud and IoT environments, it is essential to utilize intrusion
detection and prevention systems (IDPSs) for securing such environments. The objective
of IDS is to detect device usage that is unauthorized and monitor network traffic for
malicious activity that is traditionally captured with a firewall. There are two groups of IDS
including anomaly-based detection systems (AIDS) and signature-based detection systems
(SIDS) [13]. AIDS can detect new attacks effectively while SIDS is effective with the known
threats [14]. There are many network intrusion detection frameworks proposed particularly
deep learning frameworks considered as common [15]. There are many challenges in IoT
security, and one of the crucial ones is its variety of vulnerabilities.

As the IoT networks expand, the cybersecurity challenges will increase and that will
threaten the security of the connected things and devices [16]. The cybersecurity challenges
include vulnerabilities in IoT devices and things firmware, insecure communication proto-
cols, and the challenges of developing effective measures of security within devices that
are resource-constrained [1]. IoT devices are being integrated into many infrastructures
including smart industries, smart grids, smart homes, and smart healthcare, this will impact
the cybersecurity attacks to grow. These attacks focus on IoT environments that might
cause unauthorized access, possibly physical damage, and data breaches [17], which shows
that there is a need for an effective cybersecurity framework.

There are several methods to exploit vulnerabilities and assess the susceptibility of
devices in IoT [18]. Most of the attacks are executed using connectivity to the Internet and
network, but sometimes there might be physical cyberattacks, which are not out of the scope
of this study. It is known that IoT devices are constrained, thereby utilizing old-fashioned
security techniques may not be an effective choice for securing the vulnerable environment
of IoT [19]. In an IoT environment, the devices produce tremendously high volumes of data,
which makes the process of monitoring and detecting intrusions through these streams
challenging. Utilizing machine learning and deep learning methods can be effective in
addressing this challenge. Therefore, this research proposes a security framework that is
used with asymmetric IoT architecture. The framework enables monitoring of IoT traffic,
which is assumed to be sent from the middleware layer to the cloud layer. The PCA
technique is used to reduce the dimensionality of the data in the middleware layer before
it is transmitted to the cloud. In the cloud layer, the PCA components are retransformed
to approximate the original data, which will be monitored and visualized. In addition,
the proposed framework uses a network intrusion detection system (NIDS), implemented
based on ML to detect and classify the cyberattack type, and then the result is reported to
the cloud.

The contribution of the paper can be summarized as follows:

• A PCA technique is used to reduce the dimensionality of data without compromising
the information content. Therefore, the reduced IoT data are sent to the cloud for
monitoring and visualizing the IoT traffic.



Symmetry 2024, 16, 1121 4 of 20

• The inverse PCA is computed to retransform the PCA components to approximate the
original data for visualizing the IoT traffic.

• The framework offers an NIDS to detect and classify cyberattacks, which is responsible
for sending notifications with the attack type to the cloud in the event of an attack.

• Comparing the performance of NIDS implemented based on various ML models,
which are Long Short-Term Memory, Gated Recurrent Unit (GRU), 1D Convolutional
Neural Networks (1D-CNN), Feedforward Neural Network (FFNN), Decision Tree
(DT), and Random Forest (RF).

The rest of the paper is organized as follows. In Section 2, the related works are
reviewed, followed by Section 3, which discusses methodology, dataset, and experimental
setup. Then, the results and findings are presented and discussed. Finally, the conclusion is
drawn, and the future possible works are mentioned.

2. Literature Review

In this section, the related works in the field of IoT cybersecurity will be presented by
reviewing existing works and exploring the works that used ML and DL methods. Also,
the works focused on intrusion detection systems and explored the challenges that can
exist without the use of IDS. Therefore, this section will discuss the IoT security challenges,
intrusion detection systems in the IoT, and related works.

The IoT includes a significant number of resources, which is considered as an asym-
metric environment such as smart grid, smart industry, and smart city. These environments
have asymmetric resource distribution on various sides of devices including the end user
side, fog side, and cloud side [20].

The authors in [21] proposed a convolutional neural network (CNN) to improve the
security and efficiency of networks in IoT by developing AIDS. Their model has the ability
to detect intrusions and anomalies within the network traffic by utilizing the datasets called
BoT-IoT [22] and network intrusion detection (NID) [23], they have achieved an accuracy
of 92.85% and 99.51%, respectively.

The authors in [24] utilized CNN for feature extraction in an automated way and
proposed a model called IoT feature extraction convolutional neural network (IoTFECNN).
They designed a version of the capuchin search algorithm (CSA) in an optimized way to se-
lect features using binary multi-objective techniques while enhancing efficiency. They eval-
uated their method using datasets called NSL-KDD and TON-IoT. Their model achieved
an accuracy of 99.85% and 99.99% and feature characteristics detected were 27% and 44%.
Their results were promising when compared with other existing methods in the literature.
The researchers in [25] introduced an IDS framework based on several approaches of recur-
rent neural networks (RNNs) including simple RNN, GRU RNNs, and LSTM while using
XGBoost for feature selection for the datasets called UNSW NB15 and NSL KDD. Their
findings show that the best performance is achieved by using the NSL-KDD dataset and
XGBoost-LSTM with a test accuracy (TAC) of 88.13% and validation accuracy (VAC) of
99.49%. However, their model achieved a test accuracy of 87.07% with the UNSW-NB15
dataset and the XGBoost-Simple-RNN, and it was the most efficient with that dataset.
When it comes to multiclass classification, the XGBoost-LSTM achieved a test accuracy
of 86.93% with the dataset of the NSL-KDD. In addition, the XGBoost-GRU has achieved
a TAC of 78.40% with the dataset of UNSW-NB15. Based on their results the XGBoost
Simple RNN achieved training time shorter than others, which can be considered as a good
choice with IoT devices as minimal resources will be used. The researchers in [26] proposed
a lightweight Random Neural Network for intrusion detection in the field of IoT. Their
method can be considered a good selection for networks in IoT because the framework is
distributed and flexible. The performance of their framework is evaluated on single classes
in the dataset, but in minority classes, the enhancement is not addressed. Their results
show that attack detection has achieved an accuracy of 99.14% in binary and an accuracy of
99.05% in multiclass. They tested their model using a dataset called TON-IoT. Based on
the above-mentioned papers, there is a need to improve the rate of intrusion detection in
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IoT systems. Also, it is important to detect anomalies using IoT devices, which will help in
attack mitigation and security measures enhancement. The researchers did not give full
attention to attack type and anomaly type in the field of IoT.

The authors in [27] proposed deep learning-based IDS by using focal loss to evaluate
three different datasets from IoT domains. Their results showed that DL models using
focal loss have better performance in precision, F1-score, accuracy, and MCC score by 24%,
39%, 39%, and 60%, respectively, when compared to training the models on the datasets
used previously by utilizing cross-entropy loss. They have compared their work with
other methods in the literature and their results were promising. The researchers in [28]
introduced an ensemble learning method aimed to work with imbalance issues and solve
them within intrusion detection datasets that utilize deep neural network-based intrusion
detection systems. They used a classifier called bagging with a deep neural network to be a
base estimator. Their model is evaluated by utilizing four different datasets in intrusion
detection including UNSW-NB-15, NSL-KDD, BoT-IoT, and CIC-IDS-2017. Their analysis
of the result of their approach is presented utilizing several metrics of evaluation including
precision, accuracy, recall, false positive rate, and F1 -score. Furthermore, the results of their
method are tested statistically by utilizing the Wilcoxon signed-rank test and the result was
promising as they achieved an accuracy of 98.99% with the BoT-IoT dataset. The authors
in [29] proposed a model that is based on several deep learning models including LSTM,
CNN, and a hybrid of both LSTM and CNN for intrusion detection in the networks of the
Industrial Internet of Things (IIoT). They achieved high performance with the hybrid model
when applied to two datasets for intrusion detection called X-IIoTID and UNSW-NB15,
the accuracy of the model was 92.9% for multiclass and 93.1% for binary class when it was
used with the UNSW-NB15 dataset. However, when the model was applied to the X-IIoTID
dataset, the accuracy was 99.80% for multiclass and 99.84% for binary class. Researchers
in [10] presented an intrusion detection framework for machine learning (IDFML) for
the Internet of Things networks. They used supervised learning in their techniques and
their model achieved an accuracy of 98.68% while attack detection was performed using a
classifier called Random Forest.

The authors in [30] utilized a Fully Connected Feed Forward Neural Network (FCFFN)
architecture to detect intrusion in network traffic that is focused on IoT devices. The system
utilizes an architecture that is four layers deep and fully connected. They propose a deep
learning-based IDS for IoT devices. Their model detects attacks such as DDoS, blackhole,
sinkhole, and wormhole on IoT networks with an average accuracy of 93.74%. Their
IDS score in average detection is 93.21% rate, which can be considered a good indication
for enhancing IoT network security. The researchers in [31] proposed a classifier that is
flow-based traffic that utilizes the flow transformer method for anonymity and attacks
in IIoT network traffic. Their model uses a multi-head attention method to explore the
significance of the flow sequence and utilizes a layer that has feature extraction that works
to monitor and capture the sequence’s characteristics of the flow. They achieved an accuracy
of 98.5% by utilizing the dataset called CIC-IoT-2022. The authors in [32] introduced a deep
ensemble-based intrusion detection system that utilizes a multi-classifier system that is
lambda architecture, which helps in detecting attacks through classifiers like CNN, ANN,
and LSTM to have the maximum layer batch. The model is trained by batch layer, while the
decisions are made in the speed layer of lambda architecture to have enhanced real-time
evaluation. In binary classification, the LSTM has better accuracy than others. The hybrid
ensemble has an accuracy of 99.93% and the results show that the ensemble presents good
accuracy of detection. The researchers in [33] introduced anomaly detection that is based on
deep learning for the IoT that has the ability to learn and detect robust features that might
not be affected by environments that are unstable. The captured features are then utilized
by a classifier to help improve the accuracy of the malicious detection process. To have
the robustness of features against environments that are heterogeneous in the IoT. Their
results show that their framework is effective when it comes to improving the accuracy of
malicious detection as they compared their work with related works. The authors in [34]
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proposed a model that is based on Mayfly optimization (MFO) with a regularized extreme
learning machine (RELM). The model called MFO-RELM is used to detect and classify
cybersecurity threats in an IoT environment. Their model can effectively identify cyber
threats in the heterogeneous IoT environment. The model preprocesses IoT data to have
more understandable information or format. The model is applied to a dataset called
N-BaIoT to test and help in identifying the cyber threats in IoT. They achieved an average
accuracy of 99.8%.

According to [35], researchers introduced an ensemble model based on deep learning
that utilizes the power of LSTM and autoencoder architecture to detect abnormal events
for detecting cyber threats in IIoT. The LSTM is used to generate a model based on time
series data that has past and present information, which will help when learning the
normal pattern of the data. Also, the autoencoder is used to identify the features that are
important for data dimension reduction. Furthermore, their model can extract new data
that are balanced from a dataset that is imbalanced. The newly extracted balanced data are
integrated into the model. They compared the results with classifiers in machine learning
such as Random Forest, multi-layer perceptron, Decision Tree, and support vector machine,
the model achieved high accuracy compared to them. They achieved an accuracy of 99.3%
and 99.7% when applying two datasets called GP and SWaT, respectively. Research by [36]
proposed an intrusion detection system that uses a filter-based deep neural network model.
They aimed to solve the issue of imbalanced data. To overcome this issue, they increased
the packets in attack categories in the minority class within the networks of IoT through
generative adversarial networks. Their model achieved an accuracy of 84% in multi-class
when applied to a dataset called UNSW-NB15, whereas generative adversarial networks
achieved an accuracy of 91% in an accuracy class dataset that is balanced. A study in [37]
presented an IDS for the security of fog computing that is automated and utilizes AI for
cyberattack mitigation. The proposed model uses multi-layered recurrent neural networks
(RNNs) that are developed to stand near the data source for fog computing security. The
model has achieved an accuracy of 98.27 when detecting DoS attacks when applied to the
dataset called NSL-KDD. Authors in [38] introduced a framework that is based on deep
learning for cyberattack detection. For evaluation of the performance purposes of LSTM
and FFNN models, they used two datasets including NSL-KDD and BoT-IoT. Their results
were promising as they achieved an accuracy of cyberattacks detection rate of 99.95% with
LSTM and 99.97% with FFNN. Table 1 shows the summary of the literature review.

Table 1. Summary of literature review.

Study Techniques Dataset Key Findings

[21] CNN BoT-IoT and network
intrusion detection (NID) Accuracy of 92.85% and 99.51%

[24] CNN NSL-KDD and TON-IoT 99.85% and 99.99%

[25] Simple RNN, GRU RNNs
and LSTM UNSW NB15 and NSL KDD

NSL-KDD dataset and XGBoost-LSTM with TAC
of 88.13% and VAC of 99.49%. TAC of 87.07%
with UNSW-NB15 dataset and the
XGBoost-Simple-RNN
XGBoost-LSTM achieved a TAC of 86.93% with
NSL-KDD
XGBoost-GRU has achieved a TAC of 78.40%
with UNSW-NB15

[26] Lightweight Random
Neural Network TON-IoT Accuracy of 99.14% in binary and an accuracy of

99.05% in multiclass
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Table 1. Cont.

Study Techniques Dataset Key Findings

[27]

Feed Forward Neural
Networks (FNNs) and
Convolutional Neural
Networks (CNNs)

BoT-IoT

WUSTL-EHMS-2020

WUSTL-IIoT-2021

FNN focal: accuracy of 91.55%
CNN focal: accuracy of 86.77%

FNN focal: accuracy of 98.95%
CNN focal: accuracy of 98.21%

FNN focal: accuracy of 93.26%
CNN focal: accuracy of 93.08%

[28] Deep Neural Network

NSL-KDD
UNSW-NB15
CIC-IDS-2017
BoT-IoT

accuracy of 98.9%
accuracy of 96.7%
accuracy of 98.74%
accuracy of 98.99%

[29] LSTM and CNN UNSW-NB15 Accuracy of 92.9% for multiclass and 93.1% for
binary class

[10] Random Forest IoTID20 Accuracy of 98.68%

[30] FCFFN Generated IoT dataset Accuracy of 93.74%

[31] Flow Transformer CIC-IoT-2022 Accuracy of 98.5%

[32]

Ensemble
ANN
CNN
LSTM

Accuracy in batch mode
Ensemble: 99.6%
ANN: 96.9%
CNN: 97.0%
LSTM: 98.2

[33] DNN DS2OS Traffic Accuracy of 94.9%

[34] MFO-RELM N-BaIoT Accuracy of 99.8%

[35] Ensemble LSTM-Auto
Encoder (AE) GP and SWaT Accuracy of 99.3% and 99.7%

[36] DNN
GAN UNSW-NB15 DNN: Accuracy of 84%

GAN: Accuracy of 91%

[37] RNN NSL-KDD Accuracy of 92.18%

[38] FFNN
LSTM

NSL-KDD

BoT-IoT

FFNN: accuracy of 98.67%
LSTM: accuracy of 96.44%

FFNN: accuracy of 99.97%
LSTM: accuracy of 99.95%

In summary, we have reviewed several papers in the literature, some of these papers
have a limited scope, which might be a limitation when creating comprehensive intrusion
detection systems. The researchers in the literature did not pay full attention to the di-
mension of data. Also, they did not consider the traffic between IoT devices and cloud
computing. Most of the papers have not considered monitoring the network traffic in IoT,
but they focused on intrusion detection systems.

3. Methodology

This research proposes an efficient IoT security framework for monitoring network
traffic and classifying cyberattacks. It monitors network traffic and offers a network
intrusion detection system (NIDS) to detect and classify cyberattacks. Network traffic is
transmitted to the cloud after applying the PCA transformation technique to reduce the
dimensions of the data, which helps to send data with a smaller size. In the cloud, the
PCA components are transformed back to approximate the original data; therefore, system
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administrators can monitor that data. In the meantime, the NIDS, which is implemented
based on ML, performs detection and classification to find malicious activity and report it
to the cloud. The results of NIDS are transmitted to the cloud to show the presence of a
cyberattack and its type.

3.1. The Proposed Framework Architecture

The proposed framework of this research is illustrated in Figure 2. The core function-
ality of the framework is to monitor the IoT traffic and detect and classify cyberattacks.
As depicted, IoT devices usually involve sensors that collect different data types, such as
temperature, humidity, camera monitoring, etc. In our case, IoT devices are applied to
capture real-time data from the IoT network traffic within IoT environments. Subsequently,
data preprocessing is performed in order to randomly select sufficient and clean records
of the dataset. The sampled dataset is then transmitted in two directions, the first is used
for monitoring IoT traffic, and the second direction is used for detecting and classifying
cyberattack types.
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The PCA transformation subsystem is responsible for reducing the dimensions of data,
leading to efficient data collection, transmission, and processing. The PCA parameters are
then transmitted and once they arrive in the cloud, the inverse PCA subsystem is used to
approximate the original data. The inverse PCA subsystem uses a restoration technique
that occurs in the cloud and involves an algorithm that inverts the PCA transformation and
restores the original data characteristics. Finally, the cloud and IoT data are monitored and
visualized using the ThingSpeak platform.

ThingSpeak is an IoT platform that allows streamed data to be visualized and analyzed
in the cloud. Therefore, it enables real-time visualizations of data that are produced by
connected devices. The data can be sent to ThingSpeak using REST API or Message
Queuing Telemetry Transport (MQTT) [39]. Our research utilizes ThingSpeak to aggregate
and visualize the IoT traffic through the REST API protocol.

The NIDS subsystem is implemented using an ML model to detect and classify attack
types. The sampled data are transmitted to the NIDS as shown in Figure 2 and after
completing the detection and classifying procedure, the attack type is sent to ThingSpeak
to be viewed by the end user. By integrating IoT cloud-based monitoring and ML classifier,
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the proposed system will provide a comprehensive security framework for IoT network
traffic monitoring and cyberattack classification.

3.2. IoT Dataset

The Canadian Institute for Cybersecurity published the CIC-IoT 2023 Dataset, which
contains real-time IoT traffic [40,41]. The dataset comprises 169 files of IoT network traffic
data. The total records for all files are approximately 46,686,579. Each record includes
information about 33 classes of different attacks and one benign class. The number of
features for each class is 46. Figure 3 shows the original class distribution for each attack.
We randomly collected a maximum of 40,000 records of each dataset class and merged them
into one file, as shown in Figure 4. It is common in cybersecurity that dataset suffers from
imbalance. We have mitigated the imbalance by collecting a maximum of 40,000 records
of each dataset and ensured a more equal representation of each attack class. This is a
very important preprocessing step to enhance the ML model’s capability to recognize the
patterns and effectively classify a wide range of attacks. From Figure 4, we can notice
certain attack classes, like DDoS-Slow Loris, Dictionary Brute Force, and DDoS-HTTP
Flood have relatively high instance counts, ranging from around 13,000 to 29,000. However,
a minimum number of other attack classes, like Backdoor Malware, Browser Hijacking,
Command Injection, Recon-PingSweep, SQL Injection, Uploading Attack, and XSS, have
lower instance counts, in the low thousands.
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3.3. Principal Component Analysis

PCA, a statistical technique for reducing dimensionality in high-dimensional datasets,
transforms the original data into a new set of axes known as principal components (PCs). It
does this while preserving the original data’s most informative characteristics [42,43]. This
ensures that despite the dimensionality reduction, the data remains rich in its informative
content, instilling confidence in the data transformation process.

In the following, we will show the steps for computing the PCA in a mathematical
concept [43].

The observed dataset X has n rows and p columns denoted by X1, X2, . . . , Xp, where
n represents the number of observations, and p is the number of features. This dataset
can be described as an n × p matrix. From this original dataset X, we can derive a n × p
sample correlation matrix R. This correlation matrix captures the relationships between the
p variables in the dataset.

The key step in principal component analysis (PCA) is to find the eigenvalues and
eigenvectors of the correlation matrix R.

Let
(
λp, ep

)
defines p as pairs of eigenvalues and eigenvectors of the matrix Z:

(λ1, e1), (λ2, e2), (λ3, e3), . . . ,
(
λp, ep

)
(1)

PCA then uses these eigenvectors to transform the original dataset X into a new
dataset Y, according to the following equation:

Y = R·X (2)

The PCs can be calculated as follows:

yi = eT
i ( x − x) (3)

where i = 1, 2, . . . .p.
And the ith eigenvector can be calculated as follows:

ei = ( ei1, ei2, ei3, . . . . . . . . . ei p)
T (4)

The sample mean of the observation x is defined as:

x = (∑n
i=1 xi)/ n (5)

The eigenvalues are defined as follows:

Re = λ e (6)

Assume that we have a vector of observations defined as follows:

Z =
(
z1,z2,z3,....zp

)
′ (7)

z = (x − x) (8)

Equation (3) can be re-written as:

yi = eT
i z (9)

where z is expressed as:
z = (x − x) (10)

The PCA possesses a few key characteristics summarized as follows [43]:

• The principal components (PCs) are uncorrelated.
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• The first PC captures the highest variance in the data, followed by the second PC, and
so on. All the PCs’ combined variance equals the original variables’ total variance.
X1, X2, . . . , Xp.

• The PCs are arranged in descending order based on their corresponding eigenvalues,
denoted as λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λp > 0.

Note that the ratio of λi divided by the sum of all the eigenvalues characterizes the
contribution of the ith PC to the overall variance of the data:

λi/
(
∑q

i=1 λi

)
(11)

Figure 5 shows the steps for performing PCA. First, data are fed into the covariance
matrix after normalization. Normalization is a crucial step since the data have different
scales. If the data are not normalized, biased results will arise. Second, the covariance
matrix is computed from normalized data. Third, eigenvalue decomposition (EVD) on the
covariance matrix is performed to factorize it into a set of eigenvectors and eigenvalues.
Fourth, selecting the k-largest eigenvalues, which describe the highest variance in the data
for a given direction. Finally, the principal component is computed by selecting only the
eigenvectors with the k-largest eigenvalues, as the eigenvectors represent the principal
directions of variation in the data. Note that the direction of the first PC is the direction in
which the variance is maximum. The direction of the second PC is perpendicular to the
first PC, in which the spread of the data is the largest. The third- and higher-order PCs are
constructed similarly.
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3.4. Monitoring of IoT Traffic Algorithms

The monitoring of IoT traffic comprises three algorithms. Algorithm 1 is used to
transform the original data (IoT network traffic) into PCA components to reduce its dimen-
sionality. Algorithm 2 is used to approximate the original data from the PCA components.
Algorithm 3 sends the approximation of the original data to the ThingSpeak platform for
monitoring the IoT traffic.

Algorithm 1 focuses on transforming IoT datasets into PCA components to reduce the
dataset’s dimensionality and is intended to run in the middleware layer. It takes the original
dataset OriginalData.csv and the number of principal components numComponents as inputs
to produce three outputs, which are the reduced dataset PCA_Data.csv, the pcaVariance
object, and the data normalization object scaler. pcaVariance and scaler are saved to be
used in Algorithm 2, especially when performing the inverse of PCA components as will
be presented.

The procedure involves normalizing the features using the class from “sklearn.preprocessing”
module, which is called StandardScaler() in the Scikit-learn library [44]. Then the PCA transforma-
tion is computed using the PCA function that is called from the “sklearn.decomposition” module
to capture the largest variation of the data for predefined number of numComponents, which
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creates a reduced dataset [45]. The algorithm then saves the reduced dataset, the pcaVariance
object, and the normalization object scaler.

Algorithm 1: PCA Transformation

Input:
1: Load OriginalData.csv,
2: data = Read(“OriginalData.csv”),
3: numComponents = 20
Output:
4: The PCA components data,
5: pcaVariance,
6: scaler
Procedure:
7: scaler = StandardScaler()
8: normalizedFeatures = scaler.fit_transform(data)
9: pcaVariance = PCA(numComponents)
10: reducedFeatures = pcaVariance.fit_transform(normalizedFeatures)
11: Save reducedFeatures to “PCA_Data.csv”
12: Save the pcaVariance and the scaler variables
End Algorithm

Algorithm 2 is used to approximate the original dataset by applying the inverse
of PCA transformation. It is intended to be used in the cloud. Algorithm 2 takes the
CSV file of PCA components, PCA_Data.csv, the previously saved pcaVariance, and scaler
objects as inputs. The output of the algorithm is to approximate the original dataset. The
procedure involves computing the inverse PCA transformation to approximate the original
normalized features with the help of the function called “pca.inverse_transform()” from
Scikit-learn library in Python. It then applies the normalization parameters to retrieve the
original feature values. The algorithm saves this approximated dataset to a new CSV file
called approximateOriginalDataset.csv.

Algorithm 2: PCA to Original

Input:
1: Load PCA_Data.csv,
2: data = Read(“PCA_Data.csv”),
3: Load pca,
4: Load scaler,

Output:
5: Approximating the orignal data

Procedure:
6: approxNormalizedFeatures = pca.inverse_transform(data)
7: approxOriginalFeatures = scaler.inverse_transform(approxNormalizedFeatures)
8: Save approxOriginalFeatures to “approximateOriginalDataset.csv”

End Algorithm

Algorithm 3 transmits data to the ThingSpeak platform, which is used to monitor the
IoT traffic. The initial step of the input parameter is to load the CSV file approximateOrig-
inalDataset.csv, which was produced by Algorithm 2. Then the data of the CSV are read,
and the data are stored in the variable data. After that, the configuration of communication
with ThingSpeak channel is needed. This is achieved by assigning the unique values of the
channelID and the writeAPIKey from the ThingSpeak account. The number of rows of the
dataset is defined to be used later with a loop. The last parameter of the input is assigning
the number of seconds to the seconds variable, which is used to pause the transmission to
meet with ThingSpeak rate limit. The expected output of Algorithm 3 is to send data from
the CSV file to the ThingSpeak platform. The procedure handles the sending of the data to
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the corresponding fields of ThingSpeak, which is achieved by looping until each record
is sent. Each field corresponds to a feature from the data, so the number of fields should
match the number of features. In each iteration, one record of the data is transmitted every
specific number of seconds to ThingSpeak.

Algorithm 3: Send to ThingSpeak

Input:
1: Load approximateOriginalDataset.csv,
2: data = read (“approximateOriginalDataset.csv”),
3: Set channelID,
4: Set writeAPIKey,
5: Set numRows,
6: Set seconds

Output:
7: Sending data to ThingSpeak

Procedure:
8: For each iteration (i = 1 to numRows)
9: field1 = data.Flow_duration(i)

10: field2 = data.Header_Length(i)
11: field3 = data.ProtocolType(i)
12: . . .. . .. . ..
13: field46 = data.Weight(i)
14: response =thingSpeakWrite(channelID,‘Fields’,[1,. . .,46],‘Values’,
15: [field1,. . .,field46, ‘WriteKey’, writeAPIKey)
16:
17: pause(seconds)
18: End for
End Algorithm

4. Results and Discussion

This section demonstrates the experimental setup and discusses the research findings.
It also shows the evaluation result to verify and validate the proposed framework.

The environment setup of this research is summarized in Table 2. It lists the tools used
to conduct the results, the purpose of using each tool, and its specifications.

Table 2. Experimental setup.

Component Name Purpose of Use Specifications

MATLAB It is used to preprocess the dataset and connect
to ThingSpeak. Version R2023b.

Python
It is used to compute PCA transformation,
compute inverse PCA, and implement and

evaluate NIDS.

PyCharm version 2023.3.2, Python
version 3.8.

ThingSpeak It is used to monitor and visualize the IoT data. A platform.

Desktop Computer It is used to perform the experiments.
GPU: NVIDIA® GeForce RTX™ 4090,
Processor: Intel Core i9, RAM 32 GB,

Hard disk 1TB SSD.

The proposed model is evaluated using a dataset named CIC-IoT Dataset 2023. The
evaluation procedure of the proposed model is carried out in two main stages. Stage 1
discusses the assessment of approximating the original data after PCA transformation.
In this stage, we compared the data reversed from the PCA transformation with the
original dataset to measure the similarity between both datasets. The reason is to prove
the effectiveness of the PCA transformation in reducing the dimension of transmitted
data to the cloud for monitoring network traffic by the end users. Stage 2 discusses the
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evaluation of a network intrusion detection system (NIDS) in detecting and classifying
malicious activity in network traffic data that is transmitted to the cloud to alert the network
administrator of the presence of a cyberattack. The NIDS is implemented using various
models of machine learning and deep learning.

4.1. Stage 1: Evaluating PCA and Inverse PCA Transformation

The details of PCA transformation were discussed in the previous section. Initially,
the dataset was transformed into PCA components, then the PCA components were
reconstructed to approximate the original data. To measure the similarity of the original
data and the approximated data, we used Pearson correlation coefficient. It is a statistical
method to find the linear correlation between two variables. Let us assume that X is the first
variable and Y is the second variable. To find Pearson correlation coefficient between the
two variables, we can use Equation (12) [46], where r is the Pearson correlation coefficient,
Xi is the sample point of the first data, and Yi is the sample point of the second data. X
holds the mean of the first data, and Y holds the mean of the second data.

r =
∑
(
Xi − X

) (
Yi − Y

)√
∑
(
Xi − X

)2
∑
(
Yi − Y

)2
(12)

The value of r ranges from [−1,1], −1 indicates a perfect negative correlation while
1 indicates a perfect positive correlation. Figure 6 lists the similarity of each feature in
percentage between the original data and the approximated data after applying PCA
transformation technique using Pearson correlation coefficient. X-axis represents each
feature ordered by the similarity in percentage from high to low and the Y-axis represents
the similarity in percentage. It is observed that 36 out of 46 features have a similarity
percentage more than or equal to 90%, which shows a strong correlation between the two
data. The overall average of the similarity between the two data is 94.43%.
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4.2. Stage 2: Evaluation of NIDS

The NIDS is implemented based on ML models. We used various ML models, which
are Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), 1D Convolutional
Neural Networks (1D-CNN), Feedforward Neural Network (FFNN), Decision Tree (DT)
and Random Forest (RF). Each model is evaluated based on classification metrics named
test accuracy, precision, recall, and F1-score. Those metrics are shown in Equations (13)–(16),
respectively [47]. Figure 7 illustrates the test accuracy of the ML models that are used
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when predicting the attack type in IoT network traffic. The test accuracy is used to show
the effectiveness of each machine learning in estimating the attack type by comparing the
predicted data with the actual data. The test accuracy results range between 89.19% and
98.13%. The FFNN produces the lowest accuracy, and the LSTM produces the highest
accuracy. LSTM and GRU are types of recurrent neural network (RNN) and both models
score comparable accuracy results, they are effective with sequence learning and time
series data [48,49]. 1D-CNN reports a test accuracy of 94.19%, and it uses convolutional
filters. Additionally, it is effective in extracting features [50]. FFNN has the lowest accuracy
of 89.19% and it is a basic model for neural networks. The DT is a simple model that
predicts cyberattack types by splitting data into branches. The DT reaches an accuracy of
93.61%, however, RF has an accuracy slightly higher than DT, which is equal to 94.23%.
The reason is that RF is an ensemble of decision trees, consisting of multiple trees that share
the decision of the prediction of cyberattack type.

Test Accuracy =

(
True Positive + True Negative

True Positive + False Positive + True Negative + False Negative

)
× 100 (13)

Precision =

(
True Positive

True Positive + False Positive

)
× 100 (14)

Recall =
(

True Positive
True Positive + False Negative

)
× 100 (15)

F1 score = 2 ×
(

Precision × Recall
Precision + Recall

)
× 100 (16)
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The macro average is used to calculate the average of precision, recall, and F1-score
in Equation (17) [51]. The macro average treats each class equally when computing the
average, which is preferred to be utilized with balanced data. Table 3 lists the macro average
outcomes of different ML models to comprehensively compare them. It is essential to know
the macro average is used to evaluate the overall performance of each ML in predicting
cyberattack type with equal weight for each class. The LSTM model scores the highest
results in each metric. This is reasonable because LSTM also has the highest test accuracy as
discussed before. By contrast, FFNN has the lowest performance in this comparison. The
GRU model approximates the performance of LSTM with precision, recall, and F1-score
close to 95.70%. 1D-CNN demonstrates a decent performance, however, it is marginally less
than the performance of LSTM and GRU models. The DT displays moderate performance
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for precision, recall, and F1-score with 87.32%, 87.26%, and 87.24%, respectively. RF has a
better precision value than DT, but it demonstrates lower recall and F1-score scores than DT.

Macro Average =
∑ metric

Number o f Classes
(17)

Table 3. Macro average of ML models.

Model # Precision Recall F1-Score

LSTM 97.47% 97.29% 97.29%
GRU 95.71% 95.79% 95.79%

1D-CNN 91.53% 90.56% 90.15%
FFNN 78.82% 76.24% 76.53%

DT 87.32% 87.26% 87.24%
RF 91.79% 84.59% 86.82%

In addition, the weighted average for precision, recall, and F1-score is calculated using
Equation (18) [52]. Initially, each metric is computed individually, then each metric value is
weighted by the number of instances (support) for each class. After that, the sum of the
weighted values is computed and finally, it is divided by the total number of supports.
The weighted average is preferred to be utilized with imbalanced data. Table 4 presents
the weighted average for precision, recall, and F1-score of different ML models. Overall,
the results of Table 4 closely follow the results of Table 3 with slightly higher performance.
According to the experiment result, LSTM demonstrates robust performance compared
with other ML models; therefore, it can be selected when implementing NIDS for IoT traffic.
In addition, GRU also performs a decent performance when predicting the cyberattack
type. The reason for the high performance of LSTM and GRU is that they obtain good
performance with time series data, which is a common characteristic of IoT traffic [53].

Table 4. Weighted average of ML models.

Model # Precision Recall F1-Score

LSTM 98.23% 98.20% 98.14%
GRU 96.91% 96.83% 96.94%

1D-CNN 95.24% 94.25% 93.96%
FFNN 89.03% 89.27% 88.98%

DT 93.73% 93.68% 93.63%
RF 94.32% 94.39% 94.25%

In contrast, FFNN illustrates the lowest performance when predicting cyberattack
type.

Weighted Average =
∑(metric × Support)

∑ Support
(18)

4.3. ThingSpeak Dashboard

An example of a ThingSpeak dashboard is illustrated in Figure 8. The dashboard can
be used to visualize and observe each feature of the IoT traffic. We show only four features
for discussion purposes. The dashboard allows the end user to monitor and analyze the
streamed data of IoT traffic. As the figure shows, each feature can be visualized in a small
plot that has an x-axis and a y-axis. The x-axis refers to the time and the y-axis refers to the
value of the feature.
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5. Conclusions

In conclusion, this research proposed a comprehensive security framework for asym-
metrical IoT architecture. It monitors network traffic and offers an NIDS to detect and
classify cyberattacks. Network traffic is transmitted to the cloud after applying the PCA
transformation technique to reduce the dimensionality of the data, which helps to send data
to the cloud with less dimension. At the cloud, the PCA components are retransformed
back to approximate the original data, therefore that data can be monitored by an end user
to observe the stream traffic. Meanwhile, the NIDS, which was implemented based on ML
performs classification to find malicious activity and report it to the cloud. The experiments
of this research were evaluated to ensure their validity using two stages. In stage 1, we
evaluated the performance of approximating the original data from the PCA components
using the Pearson correlation coefficient. The overall average of the similarity between
the approximated original data and the original data reached 94%, which demonstrated
a strong correlation between the two data. In stage 2, we evaluated the performance of
several well-known ML models using popular evaluation metrics such as test accuracy,
precision, recall, and F1-score. Then we calculated the macro and weighted averages of
each ML model and found out that LSTM produced superior performance, accomplishing
98% of test accuracy. Therefore, our security framework illustrated a promising result for
monitoring IoT traffic and classifying cyberattack types. Our proposed security framework
concentrates more on the computation aspect of performing the dimensionality reduction
technique (PCA) of the data that are intended to be sent to the cloud with less complexity.
In addition, it performs retransformation of the reduced data to approximate the original
data (inverse PCA). In future work, we recommend researchers focus on applying our
framework with the application side to assess its effectiveness in real-world scenarios while
maintaining data integrity, security performance, and system scalability. In addition, since
IoT traffic data have the characteristics of a time series, we recommend using different time
series classification algorithms.
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