Joint Approximation by the Riemann and Hurwitz Zeta-Functions in Short Intervals
Abstract
:1. Introduction
2. Mean Square Estimates
3. Limit Theorem
4. Proof of the Main Theorem
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aref’eva, I.Y.; Volovich, I.V. Quantization of the Riemann zeta-function and cosmology. Int. J. Geom. Meth. Mod. Phys. 2007, 4, 881–895. [Google Scholar] [CrossRef]
- Elizalde, E. Zeta-functions: Formulas and applications. J. Comput. Appl. Math. 2000, 118, 125–142. [Google Scholar] [CrossRef]
- Elizalde, E. Zeta-functions and the cosmos—A basic brief review. Universe 2021, 7, 5. [Google Scholar] [CrossRef]
- Gutzwiller, M.C. Stochastic behavior in quantum scattering. Phys. D Nonlinear Phenom. 1983, 7, 341–355. [Google Scholar] [CrossRef]
- Maino, G. Prime numbers, atomic nuclei, symmetries and superconductivity. In Symmetries and Order: Algebraic Methods in Many Body Sytems: A Symposium in Celebration of the Career of Professor Francesco Iachello, Connecticut, USA, 5–6 October 2018; AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2150, p. 030009. [Google Scholar]
- Voronin, S.M. Theorem on the “universality” of the Riemann zeta-function. Math. USSR Izv. 1975, 9, 443–453. [Google Scholar] [CrossRef]
- Voronin, S.M. Analytic Properties of Arithmetic Objects. Doctoral Thesis, V.A. Steklov Mathematical Institute, Moscow, Russia, 1977. [Google Scholar]
- Gonek, S.M. Analytic Properties of Zeta and L-Functions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1979. [Google Scholar]
- Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph.D. Thesis, Indian Statistical Institute, Calcutta, India, 1981. [Google Scholar]
- Laurinčikas, A. Limit Theorems for the Riemann Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1996. [Google Scholar]
- Steuding, J. Value-Distribution of L-Functions; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; Volume 1877. [Google Scholar]
- Matsumoto, K. A survey on the theory of universality for zeta and L-functions. In Number Theory: Plowing and Starring Through High Wave Forms, Proceedings of the 7th China-Japan Seminar, Fukuoka, Japan, 28 October–1 November 2013; Kaneko, M., Kanemitsu, S., Liu, J., Eds.; Series on Number Theory and Its Applications; World Scientific Publishing Co.: Hackensack, NJ, USA; London, UK; Singapore; Bejing/Shanghai/Hong Kong, China; Taipei, Taiwan; Chennai, India, 2015; pp. 95–144. [Google Scholar]
- Mauclaire, J.-L. Universality of the Riemann zeta function: Two remarks. Ann. Univ. Sci. Budap. Rolando Eötvös Sect. Comput. 2013, 39, 311–319. [Google Scholar]
- Meška, L. Modified Universality Theorems for the Riemann and Hurwitz Zeta-Functions. Ph.D. Thesis, Vilnius University, Vilnius, Lithuania, 2017. [Google Scholar]
- Laurinčikas, A. The joint universality of Hurwitz zeta-functions. Šiauliai Math. Semin. 2008, 3, 169–187. [Google Scholar] [CrossRef]
- Sourmelidis, A.; Steuding, J. On the value distribution of Hurwitz zeta-function with algebraic irrational parameter. Constr. Approx. 2022, 55, 829–860. [Google Scholar] [CrossRef]
- Voronin, S.M. On the functional independence of Dirichlet L-functions. Acta Arith. 1975, 27, 443–453. (In Russian) [Google Scholar]
- Karatsuba, A.A.; Voronin, S.M. The Riemann Zeta-Function; Walter de Gruiter: Berlin, Germany; New York, NY, USA, 1992. [Google Scholar]
- Bagchi, B. Joint universality theorem for Dirichlet L-functions. Math. Z. 1982, 181, 319–334. [Google Scholar] [CrossRef]
- Mishou, H. The joint universality theorem for a pair of Hurwitz zeta-functions. J. Number Theory 2011, 131, 2352–2367. [Google Scholar] [CrossRef]
- Macaitienė, R.; Šiaučiūnas, D. Joint universality of Hurwitz zeta-functions and nontrivial zeros of the Riemann zeta-function. II. Lith. Math. J. 2021, 61, 187–198. [Google Scholar] [CrossRef]
- Nakamura, T. The existence and the non-existence of joint t-universality for Lerch zeta-functions. J. Number Theory 2007, 125, 424–441. [Google Scholar] [CrossRef]
- Mishou, H. The joint value-distribution of the Riemann zeta function and Hurwitz zeta functions. Lith. Math. J. 2007, 47, 32–47. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Šiaučiūnas, D. The mean square of the Hurwitz zeta-function in short intervals. Axioms 2024, 13, 510. [Google Scholar] [CrossRef]
- Atstopienė, J. Discrete Universality Theorems for the Riemann and Hurwitz Zeta-Functions. Ph.D. Thesis, Vilnius University, Vilnius, Lithuania, 2015. [Google Scholar]
- Genys, J.; Račkauskienė, S.; Macaitienė, R.; Šiaučiūnas, D. A mixed joint universality theorem for zeta-functions. Math. Model. Anal. 2010, 15, 431–446. [Google Scholar] [CrossRef]
- Pocevičienė, V.; Šiaučiūnas, D. A mixed joint universality theorem for zeta functions. II. Math. Model. Anal. 2014, 19, 52–65. [Google Scholar] [CrossRef]
- Kačinskaitė, R.; Matsumoto, K. The mixed joint universality for a class of zeta-functions. Math. Nachrichten 2015, 288, 1900–1909. [Google Scholar] [CrossRef]
- Janulis, K. Mixed Joint Universality for Dirichlet L-Functions and Hurwitz Zeta-Functions. Ph.D. Thesis, Vilnius University, Vilnius, Lithuania, 2015. [Google Scholar]
- Kačinskaitė, R.; Matsumoto, K. Remarks on the mixed joint universality for a class of zeta-functions. Bull. Aust. Math. Soc. 2017, 95, 187–198. [Google Scholar] [CrossRef]
- Balčiūnas, A.; Jasas, M.; Macaitienė, R.; Šiaučiūnas, D. On the Mishou theorem for zeta-functions with periodic coefficients. Mathematics 2023, 11, 2042. [Google Scholar] [CrossRef]
- Vadeikis, G. Weighted Universality Theorems for the Remann and Hurwitz Zeta-Functions. Ph.D. Thesis, Vilnius University, Vilnius, Lithuania, 2021. [Google Scholar]
- Laurinčikas, A. Universality of the Riemann zeta-function in short intervals. J. Number Theory 2019, 204, 279–295. [Google Scholar] [CrossRef]
- Andersson, J.; Garunkštis, R.; Kačinskaitė, R.; Nakai, K.; Pańkowski, Ł.; Sourmelidis, A.; Steuding, R.; Steuding, J.; Wananiyakul, S. Notes on universality in short intervals and exponential shifts. Lith. Math. J. 2024, 64, 125–137. [Google Scholar] [CrossRef]
- Laurinčikas, A. Universality of the Hurwitz zeta-function in short intervals. Bol. Soc. Mat. Mex. 2025, 31, 17. [Google Scholar] [CrossRef]
- Ivič, A. The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications; John Wiley & Sons: New York, NY, USA, 1985. [Google Scholar]
- Conway, J.B. Functions of One Complex Variable; Springer: New York, NY, USA, 1973. [Google Scholar]
- Billingsley, P. Convergence of Probability Measures, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Mergelyan, S.N. Uniform Approximations to Functions of a Complex Variable; American Mathematical Society Translations, No. 101; American Mathematical Society: Providence, RI, USA, 1954. [Google Scholar]
- Walsh, J.L. Interpolation and Approximation by Rational Functions in the Complex Domain; American Mathematical Society Colloquium Publications; American Mathematical Society: Providence, RI, USA, 1960; Volume 20. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laurinčikas, A. Joint Approximation by the Riemann and Hurwitz Zeta-Functions in Short Intervals. Symmetry 2024, 16, 1707. https://doi.org/10.3390/sym16121707
Laurinčikas A. Joint Approximation by the Riemann and Hurwitz Zeta-Functions in Short Intervals. Symmetry. 2024; 16(12):1707. https://doi.org/10.3390/sym16121707
Chicago/Turabian StyleLaurinčikas, Antanas. 2024. "Joint Approximation by the Riemann and Hurwitz Zeta-Functions in Short Intervals" Symmetry 16, no. 12: 1707. https://doi.org/10.3390/sym16121707
APA StyleLaurinčikas, A. (2024). Joint Approximation by the Riemann and Hurwitz Zeta-Functions in Short Intervals. Symmetry, 16(12), 1707. https://doi.org/10.3390/sym16121707