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Abstract: Moving object detection (MOD) plays an important role in many applications that aim to
identify regions of interest in videos. However, most existing MOD methods ignore the variability
brought by time-varying information. Additionally, many network frameworks primarily focus on
low-level feature learning, neglecting the higher-level contextual understanding required for accurate
detection. To solve the above issues, we propose a symmetric Dynamic-Aware Network (DAN) for
MOD. DAN explores the interactions between different types of information via structural design and
feature optimization. To locate the object position quickly, we build a Siamese convolutional network
to emphasize changes in the scene. Subsequently, a Change-Aware Module (CAM) is designed, which
can maximize the perception of object change cues by exploiting complementary depth-varying
features and different levels of disparity information, thereby enhancing the feature discrimination
capability of the network. Moreover, to reinforce the effective transfer between features, we devise a
Motion-Attentive Selection Module (MASM) to construct an autonomous decoder for augmenting
detail representation. Experimental results on benchmark datasets indicate the rationality and validity
of the proposed approach.

Keywords: moving object detection; feature selection; time-varying information; complementary
feature

1. Introduction

Moving object detection is a fundamental task in computer vision, which aims to
segment foreground pixels from the background. In the past few decades, MOD has
received continuous attention and plays an important role in many fields, e.g., target recog-
nition [1–3], autonomous driving [4–6], anomaly detection [7–10], video analysis [11–15],
and sports [16,17]. Therefore, high-quality object detection results are crucial in the above
applications. However, real-world scenarios present considerable challenges for moving
object detection due to the presence of complex and variable environmental factors.

Initially, traditional MOD methods were proposed to address the challenges posed by
complex scenarios. Most of them used hand-crafted features to obtain prediction results.
Nevertheless, hand-crafted features often lacked the high-level semantic information nec-
essary for accurate target detection. Moreover, many traditional MOD approaches were
designed to tackle a single challenge and performed poorly when faced with scenarios
involving multiple challenges [18,19]. Recently, the development of deep learning has
overcome the limitations of manual features in traditional methods, and the detection
performance has been significantly improved over traditional techniques. However, there
are still some key issues that need to be addressed in the existing deep learning-based
MOD techniques.

(1) Reasonable utilize spatio-temporal information. In the design of network structure,
some methods [20–22] focus on extracting spatial features and do not fully utilize the
continuity of temporal information, which is a relatively stable clue in video analysis.
In addition, there are also some methods that combine spatio-temporal information
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to obtain moving objects [23,24]. Yet, the method ignores the variability brought by
time-varying information, which is an important feature in moving object detection.

(2) Mining deep features for more meaningful clues. Deep features contain abundant
semantic abstract information, facilitating the acquisition of accurate target details.
Many methods, however, directly feed unprocessed deep information into the decoder
without fully exploiting the value of deep features. Some other approaches obtain
multiscale features by pyramid pooling, but the strategy cannot establish correlations
among different types of features [21,25].

(3) Optimizing the transfer of information between encoder and decoder. As the
network layers become deeper, there is a certain degree of loss in object features.
The conventional approach involves passing encoding features to the decoder via a
skip connection, but the low-level features contain more coarse information [26]. It
is unwise to completely ignore all low-level information that can supply rich spatial
structure characteristics to the network. And yet, the direct use of these features
introduces interference, which will affect detection accuracy.

Based on the above analysis, we propose a new dynamic-aware network (DAN)
to cope with the above issues. It utilizes multi-level change information to explore the
internal connections of spatio-temporal features through dynamic perception. Considering
the prominence of change information in moving object detection, we design a Siamese
convolutional network (SCN) to extract different levels of object change information. To
learn more valuable cues from the deep features, we employ features in different states
to further exploit the dynamic properties of deep change information. Additionally, to
alleviate the degradation of detection accuracy due to the increasing depth of the network,
a selection mechanism is designed to reinforce the learning of motion features.

Overall, the contributions of our method can be summarized as follows.

(1) We propose a Dynamic-Aware Network (DAN) that fully utilizes spatio-temporal in-
formation and salient target features for moving object detection, which can effectively
explore the intrinsic connection between features to obtain accurate predictions.

(2) We design a Change-Aware Module (CAM) using all change information of different
layers and high-level salient features, which can fully leverage the value of deep
information and maximize the perception of object change information.

(3) We devise a Motion-Attentive Selection Module (MASM) to alleviate the target blur
caused by partial loss of detail, which can acquire discriminative features.

2. Related Work

With this subsection, we briefly summarize the research on MOD. For introduction,
we classify the previous approaches into traditional methods and deep learning-based
methods, as shown below.

2.1. Traditional Methods

In the past decades, scholars have proposed many methods for moving object detection
based on traditional machine learning techniques due to their wide application prospects.
The core processes mainly involved in traditional methods are background model building,
comparison of different video frames, and foreground extraction.

Zhu et al. [27] first differentiated the current frame from the previous frame and next
frame, respectively. After that, the obtained difference result undergoes a summation
operation. Following this, the difference between the result of the previous difference
operation and the subsequent frame is calculated using the dissimilarity operation. At last,
the result of the difference operation is compared with the difference image of the previous
frame to acquire the final detection target. This method can reduce the interference of
clutter and capture the precise target boundary.

Huang et al. [28] investigated a frame difference method based on a self-updating
averaged background model. The goal of this method is to identify the moving object
by averaging techniques on the background, as well as performing difference and logic



Symmetry 2024, 16, 1620 3 of 17

operations on the current frame. Also, a neighborhood binary discriminant filtering method
is proposed to reduce the effect of isolated noise. To solve the challenge of incomplete
objects caused by object overlap in images, Luo et al. [29] proposed a two-layer, three-frame
differential method to fill the empty regions. Meanwhile, a statistical analysis algorithm is
explored for historical location data to eliminate noise in the event of noise interference
during detection.

Sandeep et al. [30] presented a novel approach for detecting moving objects utilizing
the concept of block three-frame difference, thereby effectively mitigating camera jitter and
object size variability. The distinctive element of this method lies in the selection of the
maximum disparity between two difference values, followed by their partitioning into non-
overlapping blocks. Subsequently, the average intensity value of each block is computed,
enabling the identification of foreground and background pixels based on a predefined
threshold and the average intensity value. Building upon their previous research, Sandeep
et al. [31] pursued a comprehensive investigation and put forth an advanced moving object
detection method that integrates the frame difference technique with the W4 algorithm.
This integration serves to partially alleviate the impact of variations in illumination and
noise to a certain extent.

To compute the difference image, Oussama et al. [32] subtracted two input correc-
tion frames on each pixel position and then employed the OTSU algorithm to refine the
foreground. Zeng et al. [33] proposed a general sample-based background differencing
method that constructs a background model using both color features and Haar features. In
addition, the background model is updated from the spatial and temporal domains using a
stochastic strategy.

To enhance the accuracy of MOD at night, Pan et al. [34] first recognized the scene
information by extracting the Weber and texture features from the object. Subsequently,
they implemented a dedicated light detection module to compensate for the challenges
posed by nighttime illumination. Cioppa et al. [35] investigated a background subtraction
method combined with asynchronous semantic segmentation, namely Asynchronous Se-
mantic Background Subtraction (ASBS). The ASBS analyzes the temporal changes in pixel
characteristics and incorporates the results of semantic-based segmentation to update the
background model. To improve the performance of moving object detection in environ-
ments with illumination change and noise, Kalli et al. [36] used a fuzzy C-mean algorithm
based on a partial illumination field to model the background.

2.2. Deep Learning-Based Methods

The deep learning-based approach improves the feature discrimination capability of
the network by acquiring high-level semantic information about objects.

Initially, Braham et al. [37] attempted to build a convolutional neural network (CNN)
to implement background subtraction. In [38], a multi-resolution CNN with a cascade
architecture is integrated into a semi-automatic moving object detection framework. The
framework used images of different resolutions and foreground masks to acquire moving
objects. Based on the research of [38], Lim et al. [25] designed a feature pooling module
and a dilation convolution unit to obtain multiscale information on moving targets.

Fully Convolutional Network (FCN) is a popular choice in computer vision due to
its computational efficiency and compatibility with image inputs of different sizes [39].
Midhula et al. [40] designed a background subtraction method that incorporates WeSamBE
and optical flow algorithms for effective background modeling. Further, the method utilizes
full-residual connectivity to efficiently fuse fine and coarse features.

Lin et al. [41] first acquired the background image using the SuBSENSE [42] algorithm.
Then, the background image is stitched with the current frame, and this result is entered into
the designed deep FCN, which can learn the global discrepancy between the background
and video frame. Qiu et al. [43] designed a Fully Convolutional Encoder-Decoder Spatial-
Temporal Network (FCESNet) for moving object detection. In FCESNet, the spatio-temporal
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correlation between frames is obtained by the constructed spatio-temporal information
transmission module.

In recent years, the effectiveness of attention mechanisms in image-processing tasks
has been widely recognized [44–46]. Minematsu et al. [47] incorporated an attention
module into the designed moving object detection network to obtain positional cues. Zhang
et al. [48] introduced a moving object detection method that utilizes a dual correlation
attention director, which designed a dual correlation attention module (DCAM) to fuse
features of the same scale.

Numerous studies have demonstrated the effectiveness of 3D convolution in captur-
ing characteristics in both spatial and temporal dimensions in videos. Sakkos et al. [49]
employed 3D convolution to simultaneously capture changes in the temporal and spatial
aspects of objects.

In [50], background subtraction was implemented using a 3D convolutional neural
network (CNN). Specifically, the constructed network has six layers, including alternating
3D convolutional and pooling layers and fully connected layers. Yu et al. [51] designed a
3D-CNN based on spatio-temporal attention for detecting moving objects.

Furthermore, there are many methods that utilize generative adversarial networks to
obtain moving targets. Zheng et al. [52] presented a method that combines parallel vision
and Bayesian generative adversarial networks (BGANs) for moving object detection. Con-
cretely, the approach involves obtaining the background image through median filtering
and performing background subtraction using BGANs. Additionally, parallel vision theory
is employed to enhance the accuracy of detection. Bahri et al. [53] designed an online
incremental moving object detection model using generative adversarial networks. In this
way, the impact of illumination changes and shadows on detection accuracy is alleviated.

To provide a clearer understanding of the details of various methods, we summarize
the above approaches, as shown in Table 1.

Table 1. Relevant data for different methods.

Classification Method Backbone Dataset Running
Time GPU

F1

CDnet
2014 Wallflower USCD SBI

2015

Traditional
methods

Zhu [27] — — 5 FPS — — — — —
Huang [28] — — — — — — — —

Luo [29] — — — — — — — —
Sandeep [30] — CAVIAR — — — — — —
Sandeep [31] — CAVIAR — — — — — —
Oussama [32] — CDnet2014 3.02 s/frame — — — — —

Zeng [33] — CDnet2014 3 FPS — 0.69 — — —
Pan [34] — CDnet2014 — — 0.70 — — —

Cioppa [35] — CDnet2014 — — 0.75 — — —
Kalli [36] — Wallflower — — — 0.78 — —

Deep
learning-based

methods

Braham [37] — CDnet2014 — — 0.90 — — —

Wang [38] — CDnet2014 — GTX
970 0.84 — — —

Lim [25] VGG16 CDnet2014+SBI2015 — — 0.95 — — 0.98

Midhula [40] — CDnet2014 — GTX
970 0.94 — — —

Lin [41] VGG16 CDnet2014 — GTX
1080Ti 0.69 — — —

Qiu [43] ConvLSTM CDnet2014 112 FPS Titan X 0.86 — — —

Minematsu [47] VGG16 CDnet2014 134 FPS GTX
1080Ti 0.85 — — —

Sakkos [49] 3DCNN CDnet2014 — Titan X 0.95 — — —

Gao [50] 3DCNN CDnet2012 — —
0.95
(CD-

net2012)
— — —

Zheng [52] GAN CDnet2014+USCD+SBI2015 23 FPS GTX
970 0.95 — 0.92 0.92

Bahri [53] — CDnet2014+Wallflower 4.9 FPS GTX
1080Ti 0.83 0.85 — —
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3. Methodology

This section describes the presented Dynamic-Aware Network (DAN) in detail. Firstly,
we provide an overview of the structure of DAN. After that, we give detailed analyses of
the designed change-aware module and motion-attentive selection module, respectively.

3.1. Overview

The previous approach fails to properly incorporate spatiotemporal information and
neglects the dynamic cues provided by time-varying information. However, in moving
object detection, leveraging time-varying information is crucial for accurately locating
the target position. Unlike existing methods [20,21,23], we leverage the network design
to effectively capture change information and intelligently utilize it to enhance network
performance. Figure 1 illustrates the overall pipeline of the DAN. Briefly, a Siamese
convolutional network is devised to extract different levels of encoded features and exploit
them to obtain information about changes at different scales. It should be noted that the
single-branch encoder consists of 5 convolutional blocks with the number of channels 32,
64, 128, 256, and 256, respectively. Further, we design a Change-Aware Module (CAM) for
mining semantic information of deep-level features. In the decoding stage, we propose a
Motion-Attentive Selection Module (MASM) that utilizes change information, reference
frame, and current frame information to autonomously optimize the target features and
generate high-quality prediction results. CAM is dedicated to mining the value of depth
change information, while MASM optimizes the motion cues at each stage from the features
of different states. The joint use of the above two designs can provide complementary
and comprehensive object information for the decoder through mutual learning between
features and mutual influence.
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3.2. Change-Aware Module

The identification of information changes is crucial for moving object detection as
it allows for the quick detection of discrepancies in the scene. This operation plays a
pivotal role in the accurate detection of moving objects, which is conducive to improving
the efficiency of the detection process. However, many existing methods fail to consider
the target cues from time-varying information, resulting in the inability to accurately
perceive scene elements. Based on the above analysis, we design a symmetric Siamese
Convolutional network (SCN) to acquire change features. First, we use five convolutional
layers to extract coding features from both the current frame and reference frame. Next, the
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change information is captured hierarchically by pixel-wise subtraction, as illustrated in
Figure 2.
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Figure 2. Illustration of the architecture of Siamese convolutional network (SCN).

After obtaining the target change information from various levels through the afore-
mentioned process, we proceed to merge the change information from the five levels.
Typically, in the subsequent step, the highest-level encoded features and change informa-
tion are combined and sent to the decoder. However, deep-level encoded features possess
rich semantic cues and strong feature discrimination capabilities. Simply stitching them
together with previously acquired change information or adding them up by element may
result in a lack of context awareness in the network. Therefore, to effectively exploit the
benefits of deep features, we aim to maximize the perception of object change information
by extracting multiscale deep change characteristics. Based on this, we designed a module
called the Change-Aware Module (CAM), as shown in Figure 3. The following section
outlines the detailed implementation steps for this approach.
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First, we utilize SCN to acquire different levels of encoded features Fi
C Fi

R. Also,
change information Fi

S is obtained through the above features. Fi
S can be represented by

Equation (1).
Fi

S =
∣∣∣Fi

C − Fi
R

∣∣∣ (1)

where i ∈ {1, 2, 3, 4, 5}. Fi
C and Fi

R denote information of the current frame and reference
frame at different levels, respectively.
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Next, the deep features are processed using hierarchical dilation convolution to obtain
sufficient target information, which is calculated as follows.

dl
C = Dr=j( f 3×3(F5

C)) (2)

dl
R = Dr=j( f 3×3(F5

R)) (3)

dl
S = Dr=j( f 3×3(F′

S)) (4)

where F′
S =

5
∑

i=1
Fi

S, Dr=j(·) is dilated convolution operation, j denotes the dilation rate, and

j ∈ {1, 2, 5}, l ∈ {1, 2, 3}.
Then, pixel-level subtraction is performed on features at different scales to obtain

complementary change information (i.e., Ci i ∈ {1, 2, 3, 4, 5, 6}), which can be written
as follows.

C1 =
∣∣∣d1

C − d2
R

∣∣∣, C2 =
∣∣∣d2

C − d1
R

∣∣∣, C3 =
∣∣∣d3

C − d1
R

∣∣∣ (5)

C4 =
∣∣∣d1

C − d3
R

∣∣∣, C5 =
∣∣∣d2

C − d3
R

∣∣∣, C6 =
∣∣∣d3

C − d2
R

∣∣∣ (6)

Finally, feature fusion at different levels contributes to improving network perfor-
mance. Thus, we aggregate complementary information (Fm and F′

m) and obtain global
information by global average pooling (GAP). The above operations help the network to
select useful channel features while reducing redundant connections. Meanwhile, their
unique information is retained by element-wise addition. The whole process can be formu-
lated as:

Fm = cat(C1, C2, C3, C4, C5, C6) (7)

F′
m = cat(Fd

R, Fd
C, Fd

S ) (8)

FCA = f 1×1(cat(Fm, F′
m)) (9)

F′
CA = FCA ⊕ [δ( f 1×1(GAP( f 3×3,relu(FCA))))⊗ FCA] (10)

where cat(·) is a concatenation operation.
Overall, the change-aware module acquires differential features at different levels

to help the network quickly locate target locations. Moreover, important target features
are emphasized by extracting complementary change information. This method maxi-
mizes the acquisition and utilization of differential features in an effective way to improve
detection efficiency.

3.3. Motion-Attentive Selection Module

When the network is extended to deeper layers, some details are lost during the process
of feature extraction, resulting in issues like indistinct target outlines and incomplete targets
in the detection results [54]. In the face of the above problems, a conventional method is to
use a skip connection to directly transfer the information from the encoding stage to the
decoder. However, this technique will introduce irrelevant information, such as noise. To
alleviate this problem, we design a Motion-Attentive Selection Module (MASM) to enhance
the effective transfer between features. Figure 4 presents the details of MASM.
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The motion-attentive selection module selects and enhances motion information auto-
matically using change information, current frame, and reference frame features to provide
powerful target features for the decoder. Specifically, we discard the lower-level change
information due to its excessive coarse details and high background noise. The proposed
MASM consists of 3 parts. First, global and local operations are applied to the change
information to aggregate the target cues. In the global channel, the dependencies between
channels are integrated using max-pooling (MP) and average pooling (AP). In the local
channel, a 3×3 convolution is employed to capture the local context. The above process
can be written as follows.

S0 = MP(Fi
S)⊕ AP(Fi

S) (11)

S1 = [ f 1×1( f 1×1,relu(S0))]⊕ [ f 3×3( f 3×3,relu(Fi
S))] (12)

where f 1×1(·) is 1×1 convolution, f 3×3(·) denotes 3×3 convolution, and relu is the activa-
tion function.

Meanwhile, we notice that salient object characteristics can be obtained from both the
current frame and reference frame while also optimizing motion information. To obtain
more accurate cues, we employ the current frame and the reference frame as the input
of MASM to learn their correlation. Concretely, we aggregate these two types of features
(Fi

C, Fi
R), then acquire a scale factor using average pooling and a fully connected layer to

adaptively adjust the fusion information. Last, the reinforced information is employed
to obtain the change information S3 and salient target features S2 further, which can be
formulated as follows.

B0 = Fi
C ⊗ δ( fc(AP(cat(Fi

C, Fi
R)))) (13)

B1 = Fi
R ⊗ δ( fc(AP(cat(Fi

C, Fi
R)))) (14)

S2 = [Fi
C ⊕ B0]⊕ [Fi

R ⊕ B1] (15)

S3 = Sub[B0, B1] (16)

where fc(·) denotes fully connected layer, Sub(·) represents pixel-wise subtraction, and δ is
sigmoid function.

Next, we integrate change information (S1 and S3) in different states by element-wise
addition. Further, the integrated information is used to refine the motion features (B2
and B3). Ultimately, the global and local contextual features are aggregated to obtain
fine-grained motion information Fout. The whole process is implemented as follows.

B2 = Fi
S ⊗ (δ( f 3×3(S1 ⊕ S3))) (17)

B3 = S2 ⊗ (δ( f 3×3(S1 ⊕ S3))) (18)
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Fout = Fi
S ⊕ B2 ⊕ B3 (19)

The designed CAM and MASM help to improve the accuracy of moving object detec-
tion. However, CAM has a slightly simpler fusion mechanism for the same type of features,
and the extraction and fusion of key information can be enhanced by the attention mech-
anism in subsequent research. MASM adopts the same processing strategy for different
levels of change information and salient information; it can be considered to construct
a sub-strategy processing mechanism in MASM for the characteristics of different levels
of features.

4. Experiments
4.1. Datasets and Evaluation Metrics

(1) Datasets: To verify the validity of our devised DAN, we conduct experimental com-
parisons on three commonly used benchmark datasets, including LASIESTA [55],
CDnet2014 [56], and INO [57]. The LASIESTA dataset contains 48 videos acquired
from indoor and outdoor scenes with a size of 352×288 pixels. CDnet2014 is a large-
scale moving object detection dataset that includes 11 categories of video scenes. The
INO dataset contains a wealth of videos of outdoor scenes captured by the VIRxCam
platform installed outdoors.

(2) Evaluation metrics: F1 is one of the most commonly used comprehensive evaluation
metrics in MOD, which is the reconciled average of precision and recall. Moreover, we
used seven other metrics to analyze the performance of different models, including
accuracy (Acc), FPR, FNR, Sp, AUC, mIoU, and PWC. Detailed information about the
above metrics can be found in [18,56,58].

4.2. Implementation Details

We performed experimental deployments on the TensorFlow framework. The training
process is performed on an NVIDIA RTX 3060 GPU. We optimized the proposed DAN
using Adam and set the initial learning rate to 0.0001. The loss function adopts binary
cross-entropy. Additionally, we set the epoch and batch size to 50 and 2, respectively.

4.3. Ablation Study

We provide a series of ablation analyses on the LASIESTA, CDnet2014, and INO
datasets to validate each component in the DAN. Table 2 presents the quantitative com-
parison of ablation analysis. Moreover, Figure 5 shows the qualitative results of different
combinations for a more intuitive comparison. In particular, the red rectangular boxes
show where there are large differences in the results obtained from different combinations
of modules.

Change-Aware Module (CAM). We employ CAM to quickly capture differences
in the scene, which is a crucial step to improve the detection efficiency. As shown in
combination 3⃝ in Table 2, when we remove the CAM under the proposed framework, the
F1 decreases from 87.9% to 85.69%, which is a 2.21% performance reduction. Figure 5 gives
the visualization results of the ablation experiment. As can be seen in column 5 of Figure 5,
interference information appears in the detected objects after the removal of CAM. The
above results indicate that the design of CAM is an important part of the overall framework.
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Table 2. Effectiveness of each module in the designed model. (w/o: without. ETDD: The encoder
transmits information directly to the decoder. ↑ means the higher the better, ↓ means the lower
the better).

Modules
Metrics

Acc↑ Precision↑ Recall↑ F1↑ PWC↓ FPR↓ FNR↓ Sp↑ AUC↑
1⃝ Ours 0.9709 0.882 0.8903 0.879 0.8906 0.0061 0.1097 0.9939 0.9842

2⃝ w/o MASM 0.9692 0.8702 0.8443 0.846 1.0411 0.0061 0.1557 0.9939 0.9695
3⃝ w/o CAM 0.9678 0.8532 0.8828 0.8569 1.218 0.0095 0.1172 0.9905 0.9813

4⃝ w/o MASM + CAM 0.9696 0.8541 0.8309 0.8263 1.0899 0.0066 0.1691 0.9934 0.9564
5⃝ w/o MASM + CAM + ETDD 0.9649 0.7693 0.7791 0.7481 1.6923 0.011 0.2209 0.989 0.9479
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Motion-Attentive Selection Module (MASM). As described in Section 3.3, we design
MASM to enhance the expressiveness of features. In Table 2, combination 2⃝ displays the
quantitative results obtained by removing MASM from combination 1⃝. As can be seen from
the results, the performance of F1 is reduced by 3.3% (from 87.9% to 84.6%). Furthermore,
the qualitative results are presented in column 6 of Figure 5. From the figure, it can be
noticed that there are voids in the captured moving objects after removing the MASM. Both
quantitative and qualitative results reflect the rationality of the proposed MASM.

Effectiveness of our designed structure. From the previous analysis, we verify
the efficacy of CAM and MASM, respectively. In this part, we validate whether the
combination of these two modules improves the network performance. We also analyze
the way information is transmitted between the encoder and decoder. Combination 4⃝ in
Table 2 gives the performance after removing MASM and CAM in DAN. Specifically, F1
is 82.63%, compared with the combination 1⃝, 2⃝, and 3⃝, the performance is reduced by
5.27%, 1.97%, and 3.06%, respectively. Based on the combination 4⃝, the combination 5⃝
is obtained by removing the way that the encoder transmits information directly to the
decoder (ETDD). In combination 5⃝, the decrease in F1 is more obvious. Compared with
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combinations 1⃝, 2⃝, 3⃝, and 4⃝, the performance decreased by 13.09%, 9.79%, 10.88%, and
7.82%, respectively. Besides, the visual results shown in Figure 5 indicate that there are
problems, such as incomplete objects and wrong object judgments in the results obtained
by combinations 4⃝ and 5⃝. The above analysis indicates that our designed structure can
effectively improve the accuracy of moving object detection. Also, we test the real-time
speed on the employed platform, with the proposed model taking approximately 0.056 s to
process one frame.

4.4. Comparisons to the State-of-the-Arts

To further validate the validity of our method, we compare it with state-of-the-art
algorithms on LASIESTA, CDnet2014, and INO datasets.

(1) LASIESTA dataset: In Table 3, we report the quantitative performance of nine tech-
niques on the LASIESTA dataset. Figure 6 illustrates the performance trends in
different approaches on the LASIESTA dataset. It can be seen that our designed
network is competitive compared with others. The last row of Table 3 presents the
average F1 obtained by the different algorithms, where our method achieves 89%.
The performance is improved by 8%, 54%, 49%, 5%, 5%, 3%, 4% and 2% compared
to Cuevas [59], FgSegNet-M-55 [25], MSFS-55 [21], Fast-D [60], 3DCD-55 [61], Par-
das [62], DFC-D [63], and CUAN [64], respectively. Besides, our method also presents
a superior performance on single-type videos.

Table 3. Performance comparison of different approaches in terms of F1 on the LASIESTA dataset.
(Bold indicates the best result).

Videos
Methods

Cuevas
[59]

FgSegNet-
M-55 [25]

MSFS-55
[21]

Fast-D
[60]

3DCD-55
[61]

Pardas
[62]

DFC-D
[63]

CUAN
[64]

DAN
(Ours)

O_SN 0.78 0.19 0.31 0.88 0.69 0.86 0.90 0.89 0.85
O_SU 0.72 0.25 0.37 0.87 0.85 0.87 0.82 0.87 0.87
O_RA 0.87 0.18 0.35 0.94 0.90 0.90 0.93 0.90 0.94
O_CL 0.93 0.22 0.41 0.94 0.87 0.80 0.94 0.84 0.92
I_SI 0.88 0.43 0.39 0.93 0.87 0.88 0.93 0.84 0.85

I_OC 0.78 0.31 0.37 0.92 0.91 0.90 0.92 0.83 0.93
I_MB 0.94 0.71 0.64 0.94 0.89 0.78 0.94 0.93 0.95
I_IL 0.65 0.32 0.35 0.50 0.92 0.82 0.51 0.82 0.83

I_CA 0.84 0.69 0.40 0.89 0.82 0.89 0.94 0.89 0.93
I_BS 0.66 0.21 0.36 0.62 0.72 0.85 0.63 0.86 0.86

Average 0.81 0.35 0.40 0.84 0.84 0.86 0.85 0.87 0.89
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Figure 6. Analysis of the performance of various approaches on the LASIESTA dataset (Metrics are
F1 and average F1).
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(2) CDnet2014 dataset: Table 4 presents the quantitative results of different techni
ques [23,24,26,65–69] on the CDnet2014 dataset. Specifically, the proposed DAN
achieves 89% on the average F1. Although DAN does not outperform advanced meth-
ods in overall performance, our method demonstrates relative stability when facing
different types of challenges. For example, in video turbulence0, the performance of
approaches BMN-BSN [23] and BSUV-Net [26] fluctuates significantly, with F1 of only
2% and 44%. In the low frame rate video turnpike_0_5fps, the F1 value obtained by
Deepbs [24] is only 49%. In short, the designed network is more suitable for scenes
with variability. Furthermore, Figure 7 shows the performance trends in different
techniques on the CDnet2014 dataset.

Table 4. Performance comparison of different methods in terms of F1 on the CDnet2014 dataset. (Bold
indicates the best result).

Videos
Methods

IUTIS-5
[65]

SemanticBGS
[66]

Deepbs
[24]

BMN-
BSN [23]

RT-SBS-
V1 [67]

BSUV-
Net [26]

GSTO
[68]

ISFLN
[69] Ours

highway 0.95 0.96 0.97 0.95 0.95 0.98 0.88 0.93 0.95
office 0.97 0.96 0.98 0.97 0.93 0.97 0.84 0.94 0.93

PETS2006 0.94 0.94 0.94 0.92 0.88 0.95 0.83 0.92 0.92
canoe 0.95 0.95 0.98 0.82 0.94 0.91 0.84 0.91 0.91

turbulence1 0.65 0.30 0.77 0.56 0.14 0.66 0.32 0.85 0.84
sofa 0.79 0.84 0.81 0.91 0.77 0.89 0.73 0.93 0.93

turnpike_0_5fps 0.88 0.88 0.49 0.72 0.90 0.91 0.79 0.81 0.80
peopleInShade 0.91 0.92 0.92 0.89 0.92 0.90 0.97 0.89 0.87

lakeSide 0.60 0.66 0.65 0.51 0.57 0.76 NA 0.84 0.79
cubicle 0.92 0.98 0.94 0.63 0.97 0.92 0.78 0.90 0.90

turbulence0 0.89 0.89 0.80 0.02 0.63 0.44 0.46 0.84 0.84
diningRoom 0.92 0.93 0.90 0.87 0.78 0.91 NA 0.96 0.95
copyMachine 0.93 0.96 0.95 0.96 0.95 0.84 0.84 0.95 0.95

Average 0.87 0.86 0.85 0.75 0.79 0.85 0.75 0.90 0.89
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Figure 7. Analysis of the performance of various approaches on the CDnet2014 dataset (Metrics are
F1 and average F1).

(3) INO dataset: In Table 5, we utilize four metrics to compare the performance of
different approaches [20,58,69–73] on the INO dataset. The data presented in the
table indicates that our method performs well overall and has advantages in several
metrics. In particular, the proposed model obtains 98% on AUC, which improves
the performance by 8%, 17%, and 2% compared to the recent advanced techniques
SPAMOD [20], Qiu [58], and ISFLN [69], respectively.
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Table 5. Performance comparison of different methods on the INO dataset. (Bold indicates the best
result. ↑ means the higher the better, ↓ means the lower the better).

Metrics
Methods

Li
[70]

Akula-CNN
[71]

DL
[72]

MRF
[73]

SPAMOD
[20]

Qiu
[58]

ISFLN
[69] Ours

Acc↑ 0.75 0.79 0.80 0.81 0.98 0.83 0.98 0.98
recall↑ 0.70 0.73 0.75 0.79 0.62 0.80 0.77 0.78

Sp↑ 0.28 0.26 0.20 0.19 0.90 0.16 0.99 0.99
AUC↑ 0.70 0.73 0.74 0.78 0.90 0.81 0.96 0.98

(4) Visual analysis: Figures 8 and 9 illustrate the qualitative comparison of different meth-
ods and our approach [23,24,26,65,67,69]. These examples involve many challenging
and complex scenarios, such as shadows, lighting variations, small-sized objects, at-
mospheric turbulence, and background disturbances. Clearly, the proposed network
is able to correctly localize the object position and acquire moving objects with clear
contours. The qualitative results highlight the effectiveness of our method in suppress-
ing background interference and accurately distinguishing the object area. Moreover,
the designed DAN exhibits the capability to detect objects at different scales.
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Figure 9. Visual results on the INO dataset.

(5) Complexity analysis: The main constraints for model application are the number of
FLOPs and parameters. Table 6 illustrates a comparison of the model complexity of
some advanced techniques [21,24,25,61,69,74,75]. Notably, the number of parameters
and FLOPs of our model are 4.64 M and 6.87 G, respectively. Collectively, the presented
model exhibits impressive performance compared to other approaches.
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Table 6. Comparison of Parameters and FLOPs for different approaches.

Methods DeepBS
[24]

FgSegNet-
M-55 [25]

MSFS
[21]

3DCD
[61]

ISFLN
[69]

BSUV-Net 2.0
[74]

MAAN
[75] Ours

#Params 3.15 M 15.83 M 7.49 M 0.13 M 5.27 M 15.9 M 2.97 M 4.64 M
FLOPs 1750 G 220 G 181 G NA 19.49 G 540 G 12.3 G 6.87 G

4.5. Limitations and Future Work

The designed dynamic-aware network performs well in most situations, but when
the scene changes considerably, the object capture ability decreases obviously. The main
reasons for the above problems can be summarized as the following two points: (i) the
amount of information provided on the input side is not sufficient; (ii) the types of cues
that can be captured in the network are single. To address these issues, the following
two aspects will be investigated in the next work: (i) provide additional reference frame
information for the network, for example, adding the averaging result of the frame before
the current frame to the input; (ii) construct an edge information supervision mechanism to
guide the network to extract more complete object features.

5. Conclusions

In this paper, we propose a moving object detection model named Dynamic-Aware
Network (DAN). Our core idea is to fully utilize time-varying information and complemen-
tary features to enhance the model's reasoning ability. To this end, we first build a Siamese
convolutional network to extract time-varying information. Then, we design CAM to learn
the intrinsic connection between depth-varying features and time-varying information,
which enhances the context-awareness of the proposed model. Further, we construct the
MASM to guide the transfer of high-quality information between the encoder and decoder.
The whole design concept improves the feature representation of the model and reduces
the interference of background information. Experimental results on three datasets exhibit
the capability of the proposed approach to achieve competitive performance. In the future,
we will adequately exploit the target position relationship for moving object detection.
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Nomenclature

Dr=j dilated convolution operation δ sigmoid function
cat concatenation operation Sub pixel-wise subtraction
GAP global average pooling f 1×1(·) 1 × 1 convolution
f 3×3(·) 3 × 3 convolution AP average pooling
MP max-pooling ⊗ element-wise multiplication
⊕ element-wise addition fc fully connected layer
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