On the Discretization of the Weibull-G Family of Distributions: Properties, Parameter Estimates, and Applications of a New Discrete Distribution
<p>PMF plots of the DWE model.</p> "> Figure 2
<p>HRF plots of the DWE model.</p> "> Figure 3
<p>The MSE of <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>θ</mi> <mo stretchy="false">^</mo> </mover> <mo>,</mo> <mover accent="true"> <mi>β</mi> <mo stretchy="false">^</mo> </mover> <mo>,</mo> <mover accent="true"> <mi>α</mi> <mo stretchy="false">^</mo> </mover> </mrow> </semantics></math> for the DWE (0.5, 0.6, 1.1).</p> "> Figure 4
<p>The MSE of <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>θ</mi> <mo stretchy="false">^</mo> </mover> <mo>,</mo> <mover accent="true"> <mi>β</mi> <mo stretchy="false">^</mo> </mover> <mo>,</mo> <mover accent="true"> <mi>α</mi> <mo stretchy="false">^</mo> </mover> </mrow> </semantics></math> for the DWE (0.2, 0.5, 2.4).</p> "> Figure 5
<p>The MSE of <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>θ</mi> <mo stretchy="false">^</mo> </mover> <mo>,</mo> <mover accent="true"> <mi>β</mi> <mo stretchy="false">^</mo> </mover> <mo>,</mo> <mover accent="true"> <mi>α</mi> <mo stretchy="false">^</mo> </mover> </mrow> </semantics></math> for the DWE (0.05, 0.4, 1.3).</p> "> Figure 6
<p>p-p plots for the DWE and other considered distributions for the first data set.</p> "> Figure 7
<p>Plots of the empirical CDFs of the DWE and other considered distributions for the first data set.</p> "> Figure 8
<p>p-p plots of the DWE and other considered distributions for the second data set.</p> "> Figure 9
<p>Plots of the empirical CDFs of the DWE and other considered distributions for the second data set.</p> "> Figure 10
<p>p-p plots of the DWE and other considered distributions for the third data set.</p> "> Figure 11
<p>Plots of the empirical CDFs of the DWE and other considered distributions for the third data set.</p> ">
Abstract
:1. Introduction
2. Discrete Weibull Exponential Distribution (DWE)
3. Statistical Properties of the DWE Distribution
3.1. The Quantile Function and the Median
3.2. Moments
3.3. The Moment-Generating Function
3.4. The Dispersion Index and Coefficient of Variation
3.5. The Rényi Entropy
3.6. The Order Statistic
4. Parameter Estimation for DWE Distribution
5. Simulation Study
- Case I:
- .
- Case II:
- .
- Case III:
- .
6. Application
- (1)
- Geometric Distribution (Geom)
- (2)
- Poisson distribution (Pois)
- (3)
- Discrete Weibull–Geometric Distribution (DWGeom) [16]:
- (4)
- Discrete fréchet (dfréchet) [17]:
- (5)
- Discrete extended odd Weibull exponential distribution (DEOWE) [18]:
- (6)
- Discrete Weibull Distribution (DWD) [19]:
6.1. First Data Set
6.2. Second Data Set
6.3. Third Data Set
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eliwa, M.; Alhussain, Z.; El-Morshedy, M. Discrete Gompertz-G family of distributions for over-and under-dispersed data with properties, estimation, and applications. Mathematics 2020, 8, 358. [Google Scholar] [CrossRef]
- Steutel, F.W.; Van Harn, K. Infinite Divisibility of Probability Distributions on the Real Line; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Yousof, H.M.; Majumder, M.; Jahanshahi, S.; Masoom Ali, M.; Hamedani, G. A new Weibull class of distributions: Theory, characterizations and applications. J. Stat. Res. Iran JSRI 2018, 15, 45–82. [Google Scholar] [CrossRef]
- Bourguignon, M.; Silva, R.B.; Cordeiro, G.M. The Weibull-G family of probability distributions. J. Data Sci. 2014, 12, 53–68. [Google Scholar] [CrossRef]
- Aboraya, M.; M. Yousof, H.; Hamedani, G.; Ibrahim, M. A new family of discrete distributions with mathematical properties, characterizations, Bayesian and non-Bayesian estimation methods. Mathematics 2020, 8, 1648. [Google Scholar] [CrossRef]
- Ibrahim, M.; Ali, M.M.; Yousof, H.M. The discrete analogue of the Weibull G family: Properties, different applications, Bayesian and non-Bayesian estimation methods. Ann. Data Sci. 2021, 10, 1069–1106. [Google Scholar] [CrossRef]
- Alzaatreh, A.; Lee, C.; Famoye, F. A new method for generating families of continuous distributions. Metron 2013, 71, 63–79. [Google Scholar] [CrossRef]
- Alzaatreh, A.; Ghosh, I. On the Weibull-X family of distributions. J. Stat. Theory Appl. 2015, 14, 169–183. [Google Scholar] [CrossRef]
- Cordeiro, G.M.; M. Ortega, E.M.; Ramires, T.G. A new generalized Weibull family of distributions: Mathematical properties and applications. J. Stat. Distrib. Appl. 2015, 2, 13. [Google Scholar] [CrossRef]
- Kemp, A.W. Classes of Discrete Lifetime Distributions. Commun. Stat.—Theory Methods 2004, 33, 3069–3093. [Google Scholar] [CrossRef]
- Elbatal, I.; Alotaibi, N.; Almetwally, E.M.; Alyami, S.A.; Elgarhy, M. On Odd Perks-G Class of Distributions: Properties, Regression Model, Discretization, Bayesian and Non-Bayesian Estimation, and Applications. Symmetry 2022, 14, 883. [Google Scholar] [CrossRef]
- Eliwa, M.S.; El-Morshedy, M.; Yousof, H.M. A Discrete Exponential Generalized-G Family of Distributions: Properties with Bayesian and Non-Bayesian Estimators to Model Medical, Engineering and Agriculture Data. Mathematics 2022, 10, 3348. [Google Scholar] [CrossRef]
- El-Morshedy, M.; Eliwa, M.; Tyagi, A. A discrete analogue of odd Weibull-G family of distributions: Properties, classical and Bayesian estimation with applications to count data. J. Appl. Stat. 2022, 49, 2928–2952. [Google Scholar] [CrossRef]
- Rényi, A. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics; University of California Press: Berkeley, CA, USA, 1961; Volume 4, pp. 547–562. [Google Scholar]
- Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. A First Course in Order Statistics; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Jayakumar, K.; Babu, M.G. Discrete Weibull geometric distribution and its properties. Commun. Stat.—Theory Methods 2018, 47, 1767–1783. [Google Scholar] [CrossRef]
- Nadarajah, S.; Lyu, J. New discrete heavy tailed distributions as models for insurance data. PLoS ONE 2023, 18, e0285183. [Google Scholar] [CrossRef]
- Nagy, M.; Almetwally, E.M.; Gemeay, A.M.; Mohammed, H.S.; Jawa, T.M.; Sayed-Ahmed, N.; Muse, A.H. The new novel discrete distribution with application on covid-19 mortality numbers in Kingdom of Saudi Arabia and Latvia. Complexity 2021, 2021, 7192833. [Google Scholar] [CrossRef]
- Augusto Taconeli, C.; Rodrigues de Lara, I.A. Discrete Weibull distribution: Different estimation methods under ranked set sampling and simple random sampling. J. Stat. Comput. Simul. 2022, 92, 1740–1762. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C.L. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Hannan, E.J.; Quinn, B.G. The determination of the order of an autoregression. J. R. Stat. Soc. Ser. B Methodol. 1979, 41, 190–195. [Google Scholar] [CrossRef]
- Gacula, M., Jr.; Kubala, J. Statistical models for shelf life failures. J. Food Sci. 1975, 40, 404–409. [Google Scholar] [CrossRef]
- Nassar, M.; Kumar, D.; Dey, S.; Cordeiro, G.M.; Afify, A.Z. The Marshall–Olkin alpha power family of distributions with applications. J. Comput. Appl. Math. 2019, 351, 41–53. [Google Scholar] [CrossRef]
- Almetwally, E.M.; Abdo, D.A.; Hafez, E.; Jawa, T.M.; Sayed-Ahmed, N.; Almongy, H.M. The new discrete distribution with application to COVID-19 Data. Results Phys. 2022, 32, 104987. [Google Scholar] [CrossRef] [PubMed]
- Birnbaum, Z.W.; Saunders, S.C. Estimation for a family of life distributions with applications to fatigue. J. Appl. Probab. 1969, 6, 328–347. [Google Scholar] [CrossRef]
Mean | var | Sk | K | DSI | COV | |||
---|---|---|---|---|---|---|---|---|
0.9 | 0.8 | 0.8 | 0.63613 | 1.4820365 | 2.623497 | 11.67308 | 2.178932 | 1.764302 |
1.0 | 0.8 | 0.8 | 0.53651 | 1.1562765 | 2.692359 | 12.16114 | 1.955228 | 1.625485 |
1.1 | 0.8 | 0.8 | 0.46758 | 0.9618487 | 2.755160 | 12.46055 | 1.986928 | 1.709372 |
1.2 | 0.8 | 0.8 | 0.40572 | 0.7907006 | 2.827562 | 12.82022 | 2.118363 | 2.330601 |
1.3 | 0.8 | 0.8 | 0.35036 | 0.6422556 | 2.868490 | 13.08421 | 1.194890 | 2.651182 |
1.4 | 0.8 | 0.8 | 0.31317 | 0.5464306 | 2.915547 | 13.27730 | 1.565657 | 2.502524 |
1.5 | 0.8 | 0.8 | 0.27463 | 0.4599740 | 3.007003 | 13.82224 | 1.392622 | 2.460666 |
1.6 | 0.8 | 0.8 | 0.24485 | 0.3937704 | 3.050039 | 13.98168 | 1.111485 | 2.028944 |
1.7 | 0.8 | 0.8 | 0.22099 | 0.3426884 | 3.105343 | 14.22292 | 2.144781 | 3.195817 |
0.7 | 0.9 | 2.5 | 0.63839 | 0.3318948 | 0.2150545 | 2.273680 | 0.6397306 | 1.0325782 |
0.7 | 1.0 | 2.5 | 0.76310 | 0.3838390 | 0.2229947 | 2.591419 | 0.4885216 | 0.7450759 |
0.7 | 1.1 | 2.5 | 0.89339 | 0.4471207 | 0.2431885 | 2.708928 | 0.4970760 | 0.7233519 |
0.7 | 1.2 | 2.5 | 1.01903 | 0.5134084 | 0.2575146 | 2.758525 | 0.4499450 | 0.6674504 |
0.7 | 1.3 | 2.5 | 1.14110 | 0.5835564 | 0.2629662 | 2.781759 | 0.3957219 | 0.6228665 |
0.7 | 1.4 | 2.5 | 1.27459 | 0.6669239 | 0.2675351 | 2.782106 | 0.5070707 | 0.6369117 |
0.7 | 1.5 | 2.5 | 1.39779 | 0.7482641 | 0.2737800 | 2.796096 | 0.5004979 | 0.5936862 |
0.7 | 1.6 | 2.5 | 1.52671 | 0.8363944 | 0.2810906 | 2.799882 | 0.4797980 | 0.5476073 |
0.7 | 1.7 | 2.5 | 1.65514 | 0.9356285 | 0.2849057 | 2.799589 | 0.6695992 | 0.6572667 |
0.5 | 0.5 | 0.9 | 0.65577 | 1.2787146 | 2.273438 | 9.417977 | 2.0405504 | 1.719686 |
0.5 | 0.5 | 1.0 | 0.58157 | 0.9162312 | 2.025603 | 7.960426 | 1.5180573 | 1.442058 |
0.5 | 0.5 | 1.1 | 0.53670 | 0.7277665 | 1.831957 | 6.841325 | 1.4842629 | 1.466665 |
0.5 | 0.5 | 1.2 | 0.49981 | 0.5927157 | 1.657637 | 5.929515 | 1.2475738 | 1.564041 |
0.5 | 0.5 | 1.3 | 0.46878 | 0.4969840 | 1.498745 | 5.175420 | 0.9437229 | 1.835876 |
0.5 | 0.5 | 1.4 | 0.45180 | 0.4368885 | 1.351888 | 4.502136 | 0.8915989 | 1.474663 |
0.5 | 0.5 | 1.5 | 0.43161 | 0.3865797 | 1.242426 | 4.034442 | 0.7800224 | 1.316580 |
0.5 | 0.5 | 1.6 | 0.41877 | 0.3507332 | 1.133300 | 3.592376 | 0.7650417 | 1.289626 |
0.5 | 0.5 | 1.7 | 0.40692 | 0.3244679 | 1.049193 | 3.242691 | 0.8106648 | 1.373050 |
Sample Size | Parameter | Case I | Case II | Case III | |||
---|---|---|---|---|---|---|---|
MLE | MSE | MLE | MSE | MLE | MSE | ||
0.5074528 | 0.003882414 | 0.2025147 | 2.214930 × 10−4 | 0.05138392 | 5.946656 × 10−5 | ||
0.5964033 | 0.002817521 | 0.5015774 | 3.806611 × 10−5 | 0.40195144 | 6.627253 × 10−6 | ||
1.1929766 | 0.087645668 | 2.5298629 | 1.904817 × 10−1 | 1.35938594 | 4.455467 × 10−2 | ||
0.5025115 | 0.0010940215 | 0.2011377 | 6.642254 × 10−5 | 0.05058812 | 1.721367 × 10−5 | ||
0.5989836 | 0.0007626512 | 0.5013801 | 1.236618 × 10−5 | 0.40171244 | 3.818087 × 10−6 | ||
1.1241868 | 0.0179010381 | 2.4408913 | 4.721245 × 10−2 | 1.31816245 | 1.151682 × 10−2 | ||
0.5010536 | 0.0005443831 | 0.2007682 | 3.185856 × 10−5 | 0.05029812 | 8.172484 × 10−6 | ||
0.5996454 | 0.0003819548 | 0.5014658 | 7.656253 × 10−6 | 0.40149683 | 2.769827 × 10−6 | ||
1.1114204 | 0.0085155657 | 2.4174074 | 2.289356 × 10−2 | 1.30845216 | 5.572183 × 10−3 | ||
0.5006724 | 0.0002112696 | 0.2006683 | 1.355192 × 10−5 | 0.05026356 | 3.346773 × 10−6 | ||
0.5998296 | 0.0001473779 | 0.5012536 | 3.362149 × 10−6 | 0.40140377 | 2.338581 × 10−6 | ||
1.1045133 | 0.0033042406 | 2.4075469 | 8.797369 × 10−3 | 1.30385604 | 2.169917 × 10−3 |
Distributions | DWE | GEOM | Pois | DWGeom | DFrechet | DEOWE | DW |
---|---|---|---|---|---|---|---|
Parameter estimation | = 0.0505 | = 0.0233 | = 42.884 | = 0.1166 | = 35.906 | = 2.6158 | = 0.9941 |
(0.0995) | (0.0045) | (1.2843) | (0.3936) | (2.1594) | (0.2543) | (0.0037) | |
= 2.4137 | = 0.9959 | = 3.4671 | = 0.6271 | = 1.3578 | |||
(4.751) | (0.0021) | (0.5085) | (0.8295) | (0.1654) | |||
= 4.3467 | = 1.4229 | = 0.0162 | |||||
(0.6987) | (0.1404) | (0.0006) | |||||
−logL | 100.1117 | 123.4158 | 114.7385 | 116.5324 | 104.1828 | 103.9409 | 116.8963 |
AICc | 207.3144 | 248.9983 | 231.6436 | 240.1557 | 212.8872 | 214.9728 | 238.3143 |
AIC | 206.2235 | 248.8316 | 231.4769 | 239.0648 | 212.3655 | 213.8819 | 237.7925 |
BIC | 209.9978 | 250.0897 | 232.7350 | 242.8391 | 214.8817 | 217.6562 | 240.3087 |
HQIC | 207.3103 | 249.1939 | 231.8392 | 240.1517 | 213.0901 | 214.9688 | 238.5171 |
p-Value | 6.7108 × 10−1 | 1.2006 × 10−4 | 3.9658 × 10−2 | 3.6631 × 10−3 | 4.0413 × 10−1 | 5.5648 × 10−1 | 1.4349 × 10−3 |
Distributions | DWE | GEOM | Pois | DWGeom | DFrechet | DEOWE | DW |
---|---|---|---|---|---|---|---|
Parameter estimation | = 0.0362 | = 0.0442 | = 22.623 | = 0.0211 | = 14.604 | = 7.8043 | = 0.9925 |
(0.0836 ) | (0.0055) | (0.609) | (0.36163 ) | (1.2822) | (1.5493) | (0.0031) | |
= 0.9462 | = 0.9923 | = 1.5544 | = 17.578 | = 1.5259 | |||
(2.1857 ) | (0.0044) | (0.1407) | (6.7639) | (0.1236) | |||
= 1.9434 | = 1.5108 | = 0.0883 | |||||
(0.1868) | (0.1346) | (0.012) | |||||
−logL | 235.5084 | 249.8884 | 349.2768 | 238.6766 | 245.6704 | 248.2538 | 238.3603 |
AICc | 477.4378 | 501.8445 | 700.6214 | 483.7743 | 495.5477 | 502.9286 | 480.9276 |
AIC | 477.0168 | 501.7767 | 700.5536 | 483.3533 | 495.3408 | 502.5076 | 480.7207 |
BIC | 483.3494 | 503.8876 | 702.6645 | 489.6859 | 499.5625 | 508.8402 | 484.9424 |
HQIC | 479.4986 | 502.6040 | 701.3809 | 485.8351 | 496.9953 | 504.9894 | 482.3752 |
p-Value | 8.3373 × 10−1 | 1.0404 × 10−3 | 3.245 × 10−4 | 4.3862 × 10−1 | 2.4088 × 10−1 | 6.9468 × 10−3 | 2.0653 × 10−1 |
Distributions | DWE | GEOM | Pois | DWGeom | DFrechet | DEOWE | DW |
---|---|---|---|---|---|---|---|
Parameter estimation | = 0.0165 | = 0.0146 | = 68.34 | = 0.165 | = 50.9829 | = 5.4788 | = 0.9952 |
(0.0188) | (0.0014) | (0.8267) | (0.1901) | (3.7091) | (0.5196) | (0.0013) | |
= 1.2586 | = 0.9952 | = 1.4642 | = 11.866 | = 1.2614 | |||
(1.4371) | (0.0014) | (0.0834) | (1.8745) | (0.0663) | |||
= 3.2033 | = 1.2306 | = 0.0163 | |||||
(0.232921) | (0.070508) | (0.001101) | |||||
−logL | 454.2379 | 521.7143 | 678.2322 | 509.1632 | 513.9630 | 511.3819 | 503.4051 |
AICc | 914.7257 | 1045.4694 | 1358.5051 | 1024.5765 | 1032.0497 | 1029.0138 | 1010.9339 |
AIC | 914.4757 | 1045.4286 | 1358.4643 | 1024.3265 | 1031.9260 | 1028.7638 | 1010.8102 |
BIC | 922.2912 | 1048.0338 | 1361.0695 | 1032.1420 | 1037.1363 | 1036.5793 | 1016.0205 |
HQIC | 917.6388 | 1046.4829 | 1359.5187 | 1027.4895 | 1034.0347 | 1031.9269 | 1012.9189 |
P-Value | 6.5356 × 10−1 | 3.0345 × 10−12 | 6.5006 × 10−5 | 1.1408 × 10−9 | 1.895 × 10−6 | 2.9103 × 10−12 | 1.5569 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balubaid, A.; Klakattawi, H.; Alsulami, D. On the Discretization of the Weibull-G Family of Distributions: Properties, Parameter Estimates, and Applications of a New Discrete Distribution. Symmetry 2024, 16, 1519. https://doi.org/10.3390/sym16111519
Balubaid A, Klakattawi H, Alsulami D. On the Discretization of the Weibull-G Family of Distributions: Properties, Parameter Estimates, and Applications of a New Discrete Distribution. Symmetry. 2024; 16(11):1519. https://doi.org/10.3390/sym16111519
Chicago/Turabian StyleBalubaid, Abeer, Hadeel Klakattawi, and Dawlah Alsulami. 2024. "On the Discretization of the Weibull-G Family of Distributions: Properties, Parameter Estimates, and Applications of a New Discrete Distribution" Symmetry 16, no. 11: 1519. https://doi.org/10.3390/sym16111519
APA StyleBalubaid, A., Klakattawi, H., & Alsulami, D. (2024). On the Discretization of the Weibull-G Family of Distributions: Properties, Parameter Estimates, and Applications of a New Discrete Distribution. Symmetry, 16(11), 1519. https://doi.org/10.3390/sym16111519