Stability Analysis of a Mathematical Model for Adolescent Idiopathic Scoliosis from the Perspective of Physical and Health Integration
<p>Transformation process between susceptible individuals <math display="inline"><semantics> <mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and affected individuals <math display="inline"><semantics> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>.</p> "> Figure 2
<p>The curves of system (15), where the blue and green curves represent <math display="inline"><semantics> <mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, respectively.</p> "> Figure 3
<p>The curves of <math display="inline"><semantics> <mi>t</mi> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mi>t</mi> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> in system (16) for <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, where the blue and green curves respresent <math display="inline"><semantics> <mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, respectively.</p> "> Figure 4
<p>The curves of <math display="inline"><semantics> <mi>t</mi> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mi>t</mi> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> in system (17) with <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>3.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>, where the blue and green curves respresent <math display="inline"><semantics> <mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, respectively.</p> "> Figure 5
<p>Orbits of <math display="inline"><semantics> <mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> for system (17) with <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>3.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>1000</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Orbits of <math display="inline"><semantics> <mrow> <mi>h</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> for system (17) with <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>3.1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>2000</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Formulation of Mathematical Model
3. Stability Analysis
- (1)
- If (7) and (12) hold, all roots of Equation (5) have negative real parts for .
- (2)
- If (7) and (12) hold, all roots of Equation (5) have negative real parts for ; Equation (5) has a pair of pure roots, , for ; Equation (5) has at least one root with a positive real part for .
- (3)
- If (7) and (13) hold, then there exists a positive integer, , such that there are switches from stability to unstability to stability. That is, when
4. Numerical Simulation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- People’s Information. The 8th National Student Physical Fitness and Health Survey Results Announce That Development Indicators Such as Height and Weight of Students Continue to Improve. Available online: https://baijiahao.baidu.com/s?id=1709867909792215991&wfr=spider&for=pc (accessed on 3 September 2021).
- China Daily CCTV News. The Detection Rate of Abnormal Spinal Curvature among Primary and Secondary School Students in China is 2.8%. Available online: http://t.m.china.com.cn/convert/c_zqCLyD6z.html (accessed on 14 July 2021).
- CCTV-13 News Channel News Live Room. Pay Attention to Adolescent Idiopathic Scoliosis—The Number of Primary and Secondary School Students with Scoliosis in China Is Expected to Exceed 5 Million. Available online: https://tv.cctv.com/2022/06/27/VIDEYBWgcLdi5Sn88bBVBxCB220627.shtml (accessed on 27 June 2022).
- Hefti, F. Pathogenesis and biomechanics of adolescent idiopathic scoliosis(AIS). J. Child. Orthop. 2013, 7, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Machida, M.; Weinstein, S.L.; Dubousset, J. Pathogenesis of Idiopathic Scoliosis; Springer Japan K.K.: Tokyo, Japan, 2018. [Google Scholar]
- Anggriani, N.; Ndii, M.Z.; Amelia, R. etc. A mathematical COVID-19 model considering asymptomatic and symptomatic classes with waning immunity. Alex. Eng. J. 2022, 61, 113–124. [Google Scholar] [CrossRef]
- Batistela, C.M.; Correa, D.P.F.; Bueno, A.M. etc. SIRSi compartmental model for COVID-19 pandemic with immunity loss. Chaos Soliton. Frac. 2021, 142, 110388. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, G.; Dong, Y.P. Stability and Hopf bifurcation of an HIV infection model with two time delays. Math. Biosci. Eng. 2023, 20, 1938–1959. [Google Scholar] [CrossRef] [PubMed]
- Parvin, T.; Biswas, M.H.A.; Datta, B.K. Mathematical analysis of the transmission dynamics of skin cancer caused by UV radiation. J. Appl. Math. 2022, 2022, 5445281. [Google Scholar] [CrossRef]
- Vitalii, S.; Cemil, T. Stability of abstract linear switched impulsive differential equations. Automatica 2019, 107, 433–441. [Google Scholar]
- Cemil, T.; Osman, T. On the stability, integrability and boundedness analyses of systems of integro-differential equations with time-delay retardation. RACSAM 2021, 115, 115. [Google Scholar]
- Besse, A.; Clapp, G.D.; Bernard, S. Stability analysis of a model of interaction between the immune system and cancer cells in chronic myelogenous leukemia. Bull. Math. Biol. 2018, 80, 1084–1110. [Google Scholar] [CrossRef] [PubMed]
- Negrini, S.; Donzelli, S.; Aulisa, A.G.; Czaprowski, D.; Schreiber, S.; de Mauroy, J.C.; Diers, H.; Grivas, T.B.; Knott, P.; Kotwicki, T.; et al. 2016 SOSORT guidelines:orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis 2018, 13, 1–48. [Google Scholar]
- Chinese Preventive Medicine Association; Spinal Disease Prevention and Control Committee; Chinese Preventive Medicine Association, Sports Exercise and Population. Implementation pathway of exercise therapy for adolescent idiopathic scoliosis guided by sports and medicine integration: Based on expert consensus. Chi. J. Prev. Med. 2023, 24, 7–14. [Google Scholar]
- Peter, O.N. Adolescent Idiopathic Scoliosis; People’s Health Publishing House: Beijing, China, 2006. [Google Scholar]
- Chen, Y.; Li, L.; Yang, H.; Hu, W.; Jia, F.; Zhai, F. Current status and influencing factors of scoliosis of children in Shijiazhuang. Chin. J. Sch. Health 2021, 42, 1674–1678. [Google Scholar]
- Huo, H.F.; Li, W.T.; Nieto, J.J. Periodic solutions delayed predator–prey model with the Beddington–DeAngelis functional response. Chaos Soliton. Frac. 2007, 33, 505–512. [Google Scholar] [CrossRef]
- Liu, S.; Beretta, E.; Breda, D. Predator–prey model of Beddington–DeAngelis type with maturation and gestation delays. Nonlinear Anal. Real World Appl. 2010, 11, 4072–4091. [Google Scholar] [CrossRef]
- Sun, X.K.; Huo, H.F.; Xiang, H. Bifurcations and stability analysis in predator–prey model with a stage-structure for predator. Nonlinear Dynam. 2009, 58, 497–513. [Google Scholar] [CrossRef]
- Zeng, G.; Wang, F.; Nieto, J.J. Complexity and a delayed predator–prey model with impulsive harvest and Holling type II functional response. Adv. Complex Syst. 2008, 11, 77–97. [Google Scholar] [CrossRef]
- Ma, Z.E.; Zhou, Y.C. Qualitative and Stability Methods for Ordinary Differential Equation; Science Press: Beijing, China, 2013; pp. 174–198. [Google Scholar]
- Hassard, B.D.; Kazarinoff, N.D.; Wan, Y.H. Theory and Applications of Hopf Bifurcation; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Li, H. Stability Analysis of a Mathematical Model for Adolescent Idiopathic Scoliosis from the Perspective of Physical and Health Integration. Symmetry 2023, 15, 1609. https://doi.org/10.3390/sym15081609
Zhang Y, Li H. Stability Analysis of a Mathematical Model for Adolescent Idiopathic Scoliosis from the Perspective of Physical and Health Integration. Symmetry. 2023; 15(8):1609. https://doi.org/10.3390/sym15081609
Chicago/Turabian StyleZhang, Yuhua, and Haiyin Li. 2023. "Stability Analysis of a Mathematical Model for Adolescent Idiopathic Scoliosis from the Perspective of Physical and Health Integration" Symmetry 15, no. 8: 1609. https://doi.org/10.3390/sym15081609
APA StyleZhang, Y., & Li, H. (2023). Stability Analysis of a Mathematical Model for Adolescent Idiopathic Scoliosis from the Perspective of Physical and Health Integration. Symmetry, 15(8), 1609. https://doi.org/10.3390/sym15081609