Proving Rho Meson Is a Dynamical Gauge Boson of Hidden Local Symmetry
Abstract
:1. Introduction
2. Grassmaniann N Extension
3. Dynamical Generation of Rho Meson
3.1. Case
3.2. Case for Arbitrary Value of a
4. Successful “a = 2” Relations Realized for Any a
5. Conclusions and Discussions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bando, M.; Kugo, T.; Uehara, S.; Yamawaki, K.; Yanagida, T. Is rho meson a dynamical gauge boson of hidden local symmetry? Phys. Rev. Lett. 1985, 54, 1215. [Google Scholar] [CrossRef] [PubMed]
- Bando, M.; Kugo, T.; Yamawaki, K. On the vector mesons as dynamical gauge bosons of hidden local symmetries. Nucl. Phys. 1985, 259, 493. [Google Scholar] [CrossRef]
- Bando, M.; Kugo, T.; Yamawaki, K. Nonlinear Realization and Hidden Local Symmetries. Phys. Rept. 1988, 164, 217. [Google Scholar] [CrossRef]
- Harada, M.; Yamawaki, K. Hidden local symmetry at loop: A New perspective of composite gauge boson and chiral phase transition. Phys. Rept. 2003, 381, 1. [Google Scholar] [CrossRef]
- Yamawaki, K. Hidden Local Symmetry and Beyond. Int. J. Mod. Phys. E 2017, 26, 1740032. [Google Scholar] [CrossRef]
- Coleman, S.R.; Wess, J.; Zumino, B. Structure of phenomenological Lagrangians. I. Phys. Rev. 1969, 177, 2239. [Google Scholar] [CrossRef]
- Callan, C.G., Jr.; Coleman, S.R.; Wess, J.; Zumino, B. Structure of phenomenological Lagrangians. II. Phys. Rev. 1969, 177, 2247. [Google Scholar] [CrossRef]
- Holt, J.W.; Rho, M.; Weise, W. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter. Phys. Rep. 2016, 621, 2–75. [Google Scholar] [CrossRef]
- Yamawaki, K. Dynamical Gauge Boson of Hidden Local Symmetry within the Standard Model. arXiv 2018, arXiv:1803.07271. [Google Scholar]
- Eichenherr, H. SU(N) Invariant Nonlinear Sigma Models. Nucl. Phys. B 1978, 146, 215, Erratum in Nucl. Phys. B 1979, 155, 544. [Google Scholar] [CrossRef]
- Golo, V.L.; Perelomov, A.M. Solution of the Duality Equations for the Two-Dimensional SU(N) Invariant Chiral Model. Phys. Lett. 1978, 79B, 112. [Google Scholar] [CrossRef]
- D’Adda, A.; Luscher, M.; Vecchia, P.D. A 1/n Expandable Series of Nonlinear Sigma Models with Instantons. Nucl. Phys. B 1978, 146, 63. [Google Scholar] [CrossRef]
- D’Adda, A.; Vecchia, P.D.; Luscher, M. Confinement and Chiral Symmetry Breaking in CP**n-1 Models with Quarks. Nucl. Phys. B 1979, 152, 125. [Google Scholar] [CrossRef]
- Witten, E. Instantons, the Quark Model, and the 1/n Expansion. Nucl. Phys. B 1979, 149, 285. [Google Scholar] [CrossRef]
- Arefeva, I.Y.; Azakov, S.I. Renormalization and Phase Transition in the Quantum Cp**(n-1) Model (d = 2, 3). Nucl. Phys. B 1980, 162, 298. [Google Scholar] [CrossRef]
- Haber, H.E.; Hinchliffe, I.; Rabinovici, E. The CP**(n-1) Model with Unconstrained Variables. Nucl. Phys. B 1980, 172, 458. [Google Scholar] [CrossRef]
- Kugo, T.; Terao, H.; Uehara, S. Dynamical Gauge Bosons and Hidden Local Symmetries. Prog. Theor. Phys. Suppl. 1985, 85, 122. [Google Scholar] [CrossRef]
- Weinberg, S. Effective field theories in the large N limit. Phys. Rev. D 1997, 56, 2303. [Google Scholar] [CrossRef]
- Brezin, E.; Hikami, S.; Zinn-Justin, J. Generalized Nonlinear Σ Models with Gauge Invariance. Nucl. Phys. B 1980, 165, 528. [Google Scholar] [CrossRef]
- Bando, M.; Taniguchi, Y.; Tanimura, S. Dynamical gauge boson and strong-weak reciprocity. Prog. Theor. Phys. 1997, 97, 665. [Google Scholar] [CrossRef]
- Weinberg, S.; Witten, E. Limits on Massless Particles. Phys. Lett. 1980, 96, 59. [Google Scholar] [CrossRef]
- Igarashi, Y.; Johmura, M.; Kobayashi, A.; Otsu, H.; Sato, T.; Sawada, S. Stabilization of Skyrmions via ρ Mesons. Nucl. Phys. B 1985, 259, 721. [Google Scholar] [CrossRef]
- Bardeen, W.A.; Hill, C.T.; Lindner, M. Minimal Dynamical Symmetry Breaking of the Standard Model. Phys. Rev. D 1990, 41, 1647. [Google Scholar] [CrossRef] [PubMed]
- Miransky, V.A.; Tanabashi, M.; Yamawaki, K. Dynamical Electroweak Symmetry Breaking with Large Anomalous Dimension and t Quark Condensate. Phys. Lett. B 1989, 221, 177. [Google Scholar] [CrossRef]
- Harada, M.; Kugo, T.; Yamawaki, K. Proving the low-energy theorem of hidden local symmetry. Phys. Rev. Lett. 1993, 71, 1299. [Google Scholar] [CrossRef]
- Gounaris, G.J.; Sakurai, J.J. Finite width corrections to the vector meson dominance prediction for rho —> e+ e−. Phys. Rev. Lett. 1968, 21, 244. [Google Scholar] [CrossRef]
- Harada, M.; Schechter, J. Effects of symmetry breaking on the strong and electroweak interactions of the vector nonet. Phys. Rev. D 1996, 54, 3394. [Google Scholar] [CrossRef]
- Benayoun, M.; David, P.; DelBuono, L.; Jegerlehner, F. Upgraded Breaking of the HLS Model: A Full Solution to the τ−e+e− and ϕ Decay Issues and Its Consequences on g-2 VMD Estimates. Eur. Phys. J. C 2012, 72, 1848. [Google Scholar] [CrossRef]
- Harada, M.; Yamawaki, K. Conformal phase transition and fate of the hidden local symmetry in large N(f) QCD. Phys. Rev. Lett. 1999, 83, 3374. [Google Scholar] [CrossRef]
- Komargodski, Z. Vector Mesons and an Interpretation of Seiberg Duality. J. High Energy Phys. 2011, 1102, 019. [Google Scholar] [CrossRef]
- Kitano, R. Hidden local symmetry and color confinement. J. High Energy Phys. 2011, 1111, 124. [Google Scholar] [CrossRef]
- Seiberg, N. Exact results on the space of vacua of four-dimensional SUSY gauge theories. Phys. Rev. D 1994, 49, 6857. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, S.; Ohki, H.; Yamawaki, K. Dark Side of the Standard Model: Dormant New Physics Awaken. arXiv 2016, arXiv:1608.03691. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamawaki, K. Proving Rho Meson Is a Dynamical Gauge Boson of Hidden Local Symmetry. Symmetry 2023, 15, 2209. https://doi.org/10.3390/sym15122209
Yamawaki K. Proving Rho Meson Is a Dynamical Gauge Boson of Hidden Local Symmetry. Symmetry. 2023; 15(12):2209. https://doi.org/10.3390/sym15122209
Chicago/Turabian StyleYamawaki, Koichi. 2023. "Proving Rho Meson Is a Dynamical Gauge Boson of Hidden Local Symmetry" Symmetry 15, no. 12: 2209. https://doi.org/10.3390/sym15122209
APA StyleYamawaki, K. (2023). Proving Rho Meson Is a Dynamical Gauge Boson of Hidden Local Symmetry. Symmetry, 15(12), 2209. https://doi.org/10.3390/sym15122209