
����������
�������

Citation: Bratu, P.; Drăgan, N.;
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Abstract: Based on the research carried out within the Research Institute for Construction Equipment
and Technology—ICECON S.A. Bucharest, consisting of the design and development of vibrating-
action machines and of the technical analysis of optimization of the technological processes with
vibrating equipment for highway construction works in Romania. Moreover, the physical and mathe-
matical modeling of this mechanical system used the data obtained in the activity of the certification
of the technical level of capability of the processing equipment in industry and construction, taking
into account the provisions of procedures and regulations legally enforced by normative documents.
These are based on a parametric analysis of the dynamics of the technological processing vibra-
tory equipment and machines. Thus, both the evaluation method and the parametric optimization
procedure were established. In this context, this paper presents a numerical analytical approach
with discrete and continuous parametric variations, from where favorable areas of operation can
be established. In this way, the optimization criteria in stabilized harmonic vibration regimes are
approached based on the assessment of the vibration amplitude, of the force transmitted to the
processed material and of the energy dissipated in the system. The presented dynamic model as well
as the specific parameters were used in the design and/or numerical and experimental assessment
for vibrating rammers with the amplitude of the perturbing force from 2 kN up to 100 kN, vibrating
compactors with the amplitude of the perturbing force from 100 kN up to 200 kN and vibrating sieves
for mineral aggregates with surface sieves of 6, 12 and 18 sqm. The symmetry/asymmetry properties
are specific to the dynamic response in steady-state technological regime. Thus, the amplitude of
vibrations in resonance presents asymmetry through a functional level necessary for the technological
regime. The maximum force transmitted in the technological process is asymmetric in relation to the
variation of the excitation pulsation; also, the dissipated energy has asymmetries in the postresonance.
Hysteresis loops are symmetrical to the main axis. The originality of the research results comes from
the establishment of dynamic parameters for the amplitude of technological vibration, the force
transmitted to the working part, the energy dissipated on the cycle, hysteresis loops in a steady-state
regime with digital display to identify the dynamic regime and the damping in the system. The
calculation relations are specific to machines with a vibrating action and, on their basis, the vibrating
equipment from Romania were designed, manufactured and tested, as mentioned in this paper.

Keywords: technological vibrations; harmonic forces; dynamic actions; dynamic regime; technologi-
cal regime; hysteresis; dissipated energy

1. Introduction

The technological capability of machines with a vibrating action is defined by the
set of dynamic parameters necessary to ensure the established level of performance. The
level of performance for the vibrating machines, according to the technological process
it determines, is established either in normative documents (according to approved legal
provisions) or via commercial means as a requirement from the beneficiary of the technology
towards the machine manufacturer. The parameters of the dynamic models and the
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performances of the technological vibrations are finalized according to the functional
particularities of the vibrating equipment [1,2].

The most common technologies where vibrating machines have a decisive role in
ensuring the quality of material processing are the following:

(a) sorting of granular and powdery materials for process industries (chemical, construc-
tion materials, pharmaceutical) [3,4];

(b) transport and dosing of granular and pulverulent materials in the cement indus-
try, construction materials, mining, preparation of concrete and asphalt mixtures,
processing of mineral aggregates of gravel (river) and quarry [5,6];

(c) realization of the technological processes in construction for dynamic sticking of the
piles in the field, compaction by vibrations of road structures, the vibro-compaction
of freshly poured concrete [7–9].

In Romania, dynamic equipment for construction were designed and developed, in
which models and dynamic calculation relations were used and the authors of this article
had a decisive role. Thus, the following vibrating action machines were designed, made,
tested and approved: AVP1, AVP2, AVPP vibrating rammers in Timis, oara; CVA 4–5, CVA
10 and CVA 20 vibrating compacting rollers in Ias, i; 6, 12 and18 sqm vibrating sieves with a
number of 2–4 sieves for granules of 0–4 mm, 4–8 mm, 8–16 mm and 16–31 mm in Baia-
Mare; vibratory conveyors and dosing machines of granular and powdery materials with
mass flows of 2 up to 20 t/h in Sibiu and Bras, ov; vertical helical conveyors with dosing
masses of 100 up to 500 kg/h in Pites, ti, Bras, ov [10–13].

For the above vibrating machines, the same dynamic diagram of a linear system with
a degree of freedom—1DOF—which describes the functional behavior with a high level
of confidence is valid. Thus, for all categories of vibratory machines for the specified
technologies, the same linear dynamic model shall be used, based on which the defining
parameters shall be established, namely: amplitude, transmitted force, degree of dynamic
isolation and the dissipated energy with the representation of the hysteresis loop in steady-
state vibration regime. The disruptive force is generated by eccentric masses m0 arranged
at distance r versus the axis of rotation for the specified ω angular speed.

In essence, the inertial character of the dynamic response is drawn from the fact
that the calculation model is provided with the concentrated (punctiform) mass of the
perturbed material system with a harmonic perturbing force F(t) = F0sin(ωt), where
F0 is the amplitude of the force and ω is the excitation pulsation. The amplitude of the
perturbating force is variable depending on ω, expressed as F0 = m0rω2, where m0r is the
static moment of the dynamic imbalance [14–16].

2. Dynamic Calculation Model

The Voigt–Kelvin viscoelastic linear dynamic system is characterized by structural
constituent elements, namely: m—mass, k—coefficient of equivalent stiffness, c—coefficient
of equivalent viscous amortization. In this case, the system can also be symbolized as MKC,
that is mass m, stiffness k, damping c [1,2,14,15].

The harmonic excitation of the system is controlled by generating the dynamic external
force applied to the center of gravity of the dynamic system. The applied harmonic dynamic
force is F = F(t) = F0sin(ωt), also known as disturbing/perturbating force, where ω is
the pulsation of the excitation. The disturbing force in this case is F = m0rω2sin(ωt), with
the system model shown in Figure 1; the inertial excitation is generated by the opposite
symmetric rotational motion of the imbalanced masses with the centrifugal inertia forces
Fc f =

1
2 m0rω2 and the vertical resultant amplitude F0 = m0rω2.
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namic imbalance with mass ଵଶ ݉ and eccentricity ݎ, in relation to the axis of rotation, with normal 
passing through O. 
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system with a single degree of freedom [6,10,17]. 
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Figure 1. Scheme of the linear dynamic system (MCK) excited with force F(t) = m0rω2sin(ωt),
where F0 = F0(ω) = m0rω2 (a) Voigt–Kelvin model dynamic system; (b) eccentric body of the
dynamic imbalance with mass 1

2 m0 and eccentricity r, in relation to the axis of rotation, with normal
passing through O.

The analysis of the unidirectional motion, as a result of the perturbative force F(t)
with vertical direction of action, is performed by the coordinate x = x(t) specific to the
system with a single degree of freedom [6,10,17].

2.1. Dynamic Response of 1DOF System

In case of an excitation in force, the dynamic response is sought as an instantaneous
displacement adequate rule, as x = x(t) [18–20].

The instantaneous dynamic balance is given by the linear differential equation as:

m
..
x + c

.
x + kx = F0sin ωt (1)

It considers the complex function x̃ = X̃0ejωt, in which X̃0 = Ae−jϕ, where ϕ is the
phase difference between the instantaneous displacement x = x(t) and the harmonic per-
turbing force F(t) = F0sin (ωt). In this case, x = Rex̃, where x̃ = X̃0ejωt, with X̃0 = Aejϕ,
and F̃(t) = F̃ = F0ejωt, which enables the transposition of the Equation (1) in complex
formulation, as follows:

m
..
x̃ + c

.
x̃ + kx̃ = F̃(t) (2)

The derivates
..
x̃ and

.
x̃ of coordinate x̃ are:

.
x̃ = jωX̃0ejωt = jωx̃

..
x̃ = −ω2X̃0ejωt = −ω2 x̃

which replaced in (2), leads to:

−mω2 x̃ + jcωx̃ + kx̃ = F0ejωt

or
x̃ =

1
(k−mω2) + jcω

F0ejωt = X̃0ejωt, (3)
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from where results:
X̃0 = F0

1
(k−mω2) + jcω

or

X̃0 = Aejϕ = F0
k−mω2

D
− jF0

cω

D
where

D =
(

k−mω2
)2

+ c2ω2∣∣∣X̃0

∣∣∣, the module of X̃0, results from the relation (3), as follows:

∣∣∣X̃0

∣∣∣2 = A2 = F0
2
(
k−mω2)2

+ c2ω2

D2 = F0
2 D

D2

or ∣∣∣X̃0

∣∣∣ = A = F0
1√

(k−mω2)
2 + c2ω2

(4)

The instantaneous movement law or the instantaneous coordinate x(t) = x can be
expressed as:

x(t) = x = Asin(ωt− ϕ) (5)

Phase ϕ results from relation (3) as follows:

A(cosϕ + jsinϕ) =
F0

D

(
k−mω2

)
− j

F0

D
cω

from where, we have {
Acosϕ = F0

D
(
k−mω2)

Asinϕ = − F0
D cω

(6)

and the phase is:

tanϕ = − cω

k−mω2 → ϕ = arctan
(
− cω

k−mω2

)
(7)

Amplitude A of the instantaneous displacement and the phase ϕ can be expressed
function of the non-dimensional quantities, as follows:

(a) Ω = ω
ωn

-relative pulsation;
(b) ζ = c

2mωn
–the fraction of the critical amortization specific to the linear viscous-elastic

systems with discrete viscous dissipators, characterized by the viscous amortization
coefficient c.

The math relation between ζ and Ω is cω
k = 2ζΩ.

The amplitude in relation (4) can be written

A(ζ, Ω) =
F0

k
1√(

1−Ω2
)2

+ (2ζΩ)2
(8)

and the phase in relation (7) can be written as follows:

tanϕ = − cω

k
1

1− mω2

k

or
tanϕ = − 2ζΩ

1−Ω2 (9)
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The harmonic dynamic response in instantaneous displacement x = x(t) is:

x = x(t) = Asin(ωt + ϕ)

The dynamic regime for a mechanical system with discrete variation of the damping
and of the stiffness may be represented by the variation of amplitude A in relation with
the current variant ω function of the discrete variation of damping coeff c and stiffness k
(Figure 2) [21–23].
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Figure 2. (a) The amplitude of steady-state vibration in dynamic regime—variation of amplitude
function of ω and c; (b) The amplitude of steady-state vibration in dynamic regime—variation of
amplitude function of ω and k.

Figure 2a shows that, for constant stiffness c, at four discrete/different values of
damping c, the dynamic system is stable and without significant influences of damping
variation when the operating mode is in postresonance regime, with pulsation values
ω ≥ 300 rad/s.
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Figure 2b shows that, for constant damping coefficient c, the discrete variation of
the stiffness k leads to the resonance points at discrete values of the pulsation ω. The
maximum values of the forced steady-state vibration amplitude are on the straight line
described by the equation A(ω) = 0.07483 + 0.02525ω

[
×10−3 m

]
(for ω > 100 rad/s).

These points of maximum amplitude characterize the phenomenon of amplitude resonance
of the dynamic system.

2.2. Transmitted Dynamic Force. Dynamic Force Transmitted in the Time Domain

The dynamic force Q transmitted by the Voigt–Kelvin viscous-elastic linear dynamic
system may be complexly formulated as [24,25]:

Q̃ = kx̃ + c
.
x̃ (10)

where if it is taking into consideration x̃ = X̃0ejωt and
.
x̃ = jωx̃ results:

Q̃ = (k + jcω)x̃ (11)

where inserting x̃ given by relation (3), Q̃ becomes:

Q̃ =
k + jcω

(k−mω2)
2 + jcω

F0ejωt (12)

For easier calculation operations, we insert the following notations:

α = k, β = cω, γ = k−mω2

In this case, relation (12) can be written down as:

Q̃ =
α + jβ

γ2 + jβ
F0ejωt

or

Q̃ =
(α + jβ)(γ− jβ)

γ2 + β2 F0ejωt

from where, results:

Q̃ =

[
αγ + β2

γ2 + β2 + j
βγ− αβ

γ2 + β2

]
F0ejωt (13)

Using the notations q1 and q2 for the terms in (13), as follows

q1 =
αγ + β2

γ2 + β2 ; q2 =
βγ− αβ

γ2 + β2

and taking into account the fact that Q̃ = Q̃0ejωt = Q0ejθejωt results:

Q0(cosθ + jsinθ) = (q1 + jq2)F0

from where: {
Q2

0 =
(
q2

1 + q2
2
)

F2
0

tgθ = q1
q2

(14)

The sum q2
1 + q2

2 results as

q2
1 + q2

2 =

(
αγ + β2)2

+ (βγ− αβ)2

(γ2 + β2)2 =
α2 + β2

γ2 + β2 ,
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which leads to the completion of the maximum dynamic force Q0 as:

Q2
0 =

α2 + β2

γ2 + β2 F2
0 (15)

and of the phase θ from the transmitted dynamic force Q(t) and the harmonic perturbing
force F(t), as follows:

tanθ =
βγ− αβ

αγ + β2 (16)

Replacing notations α, β and γ with the previously established physical measures, the
expressions of the dynamic parameters of the transmitted forces become:

Q0(ω) = Q0 = F0

√
k2 + c2ω2

(k−mω2)
2 + c2ω2

(17)

where:
Q0 is the amplitude of the instantaneous dynamic force transmitted (the maximum

dynamic force)

tanθ =
−mcω3

k(k−mω2)
2 + c2ω2

(18)

θ is the phase between the transmitted dynamic force Q(t) and the perturbing force
F(t) [26,27].

In this case, the expression of the transmitted dynamic force is:

Q(t) = Q0sin(ωt + θ) (19)

For the discrete viscous amortization, taking into account the relative measures Ω and
ζ results:

Q0(ζ, Ω) = F0

√√√√√ 1 + (2ζΩ)2(
1−Ω2

)2
+ (2ζΩ)2

(20)

tanθ = − 2ζΩ3(
1−Ω2

)2
+ (2ζΩ)2

(21)

The amplitude of the transmitted force Q0 is represented in Figure 3.
Figure 3a shows that, for a constant value of stiffness k, in postresonance regime mode

(ω ≥ 300 rad/s) the maximum transmitted force Q0 increases linearly with increasing
pulsation ω of the disturbing force F(t) = F0sin(ωt).

In Figure 3b, for the constant damping value c, in postresonance regime mode, the
maximum transmitted force Q0 increases asymptotically to a limit value by a slow variation
in relation to the increase of the pulsation ω of the disturbing force F.

Transmitted force Q = Q(t) may be expressed in relation with the displacement
x = x(t), taking into account that x = Asin(ωt + ϕ) and

.
x = ωAcos(ωt + ϕ).

If it replaces cos(ωt + ϕ) = ±
√

1− x2

A2 in the expression of the speed
.
x, [28–30], the

expression of velocity becomes:

.
x = ±ωA

√
1− x2

A2 , where A = A(ω).

In this case, the transmitted force function of x and
.
x as Q

(
x,

.
x
)
= kx + c

.
x may be

written down only in relation with x, as follows:

Q(ω, x) = kx± cω
√

A2(ω)− x2 (22)
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where A(ω) = A is the amplitude given by the relation (4).
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Using the relative quantities Ω = ω
ωn

and ζ = c
2mωn

, relation (22) may be written:

Q(Ω, x) = k
[

x± (2ζΩ)
√

A2(ζ, Ω)− x2
]

(23)

where A(ζ, Ω) is the amplitude given by the relation (8).
Figure 4 presents the hysteresis loops parameterized by the discrete variation of the

excitation pulsation ω. The family of hysteresis loops in steady-state mode, for 5 values
ω of the pulsation of the disturbing force F, highlights the extent to which the effect of
energy dissipation in the dynamic system can be evaluated, provided that the following
parameters are kept constant: mass m, stiffness k, damping c and the first moment of the
rotating eccentric masses m0r.
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2.3. Dynamic Insulation Capacity

The T coefficient of transmissibility of the force Q(t) = Q0sin(ωt + ϕ), in relation
to the harmonic perturbing force F(t) = F0sinωt, is defined as the relation between the
amplitude of the transmitted force Q0 and the amplitude of the perturbative force F0,
as [10,12,31]:

T =
Q0

F0
(24)

or

T =

∣∣∣∣Q0

F0

∣∣∣∣ (25)

The degree of dynamic insulation I is defined as follows:

I = (1− T) (26)

or punctually
I = (1− T)100, [%] (27)

Taking account of the expressions (17) and (20), the transmissibility coefficient T may
be expressed as follows:

T(ω) =

∣∣∣∣Q0(ω)

F0(ω)

∣∣∣∣ =
√

k2 + c2ω2

(k−mω2)
2 + c2ω2

(28)

T(ζ, Ω) =

∣∣∣∣Q0(ζ, Ω)

F0(Ω)

∣∣∣∣ =
√√√√√ k2 + (2ζΩ)2(

1−Ω2
)2

+ (2ζΩ)2
(29)

The transmissibility coefficient function of ω and c is expressed by the variation T(ω),
as presented in Figure 5. It is found that the neutral point N1 has coordinates ωN1 and
TN1 independent from the discrete variation of c. In relation (28) it is necessary to comply

with the condition k2 =
(
k−mω2)2, from where it results ω2 = 2 k

m or ω =
√

2ωn = ωN1 .
Replacing in the expression of T(ω) it results TN1(ω) = 1.
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The maximum value of T(ω) corresponds to point M1(ωM1 , Tmax
M1

), with the condition
dT(ω)

dω = 0. The following quantities result:

ωM1 =
2k
c

√√
1 +

2c2

km
− 2k

c
(30)

Tmax
M1

(ω) =
1√
2

δ
1√√

1 + 2δ + δ(δ− 1)− 1
(31)

where δ = c2

km or δ = 4ζ2km
km = 4ζ2.

The graphs of the transmissibility T function of Ω and ζ are presented in Figure 6. In
this case, the coordinates of the neutral point N2 result from relation (29), with the condition

1 =
(

1−Ω2
)2

, from where ΩN2 =
√

2 and TN2(ζ, Ω) = 1.
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The point of maximum M2 of function T(ζ, Ω) has coordinates ωM2 and TM2(ζ, Ω),

which emerge from the condition
dTM2

dΩ = 0. Thus, the following results:

ΩM2 =
1

2ζ

1√√
1 + 8ζ2 − 1

(32)

Tmax
M1

(ζ, Ω) =
4√
2

ζ2 1√√
1 + 8ζ2 + 4ζ2(2ζ2 − 1)− 1

(33)

Figure 5a shows the transmissibility T of the vibration, at constant stiffness k and four
discrete values of damping c, as a function of the pulsation ω of the disturbing force F.

Figure 5b shows the transmissibility T of the vibration, at constant damping c and
five values of stiffness k, as a function of the pulsation ω of the disturbing force F. The
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variation graphs of the transmissibility T for the 5 values of stiffness k show the rightward
displacement of the resonance point (towards higher values of the pulsation ω) with
increasing stiffness k at constant damping c. The maximum values of the transmissibility
T are on the straight line described by the equation T(ω) = 0.26166 + 0.04912ω (for
ω > 100 rad/s). These points of maximum amplitude characterize the phenomenon of
transmissibility resonance of the system.

2.4. Dissipated Energy

The dissipated energy on the viscous element is directly proportional with the coeffi-
cient of the linear viscous amortization c with pulsation ω of the excitation movement and
the square of the amplitude of instantaneous displacement A [1,5,32,33].

In this case, the expression of the dissipated energy may be written as:

Wd = πcωA2 (34)

For the disruptive force F(t) = m0rω2 sin ωt, the following expressions for the dissi-
pated energy are obtained, as follows:

Wd(c, ω) = πc(m0r)2 ω5

(k−mω2)
2 + c2ω2

(35)

Wd(ζ, Ω) = πk
(m0r

m

)2 2ζΩ5(
1−Ω2

)2
+ (2ζΩ)2

(36)

Figure 6a,b present the variation of the dissipated energy Wd function of the pulsation
ω, damping c and stiffness k, according to relation (35).

Figure 6a shows the graphs of the dissipated energy for the discrete variation of
damping c and constant stiffness k, function of the pulsation ω of the harmonic disturbing
force F. The analysis of the graphs shows that, for damping values c ≥ 106 Ns/m, the
dissipated energy increases significantly with the pulsation ω of the disturbing force F.

The graphs from Figure 6b show that, for constant damping c, at the discrete variation
of the stiffness k, the maximum values of the dissipated energy (at the resonance) strongly
increase with the pulsation ω of the disturbing force F.

2.5. Representation of the Hysteresis Loop

The equation of the hysteresis loop, that is of the ellipsis as function of connection
between the excitation force F = F(t) = F0 sin ωt and instantaneous displacement
x = x(t) = A sin (ωt + ϕ), may be deduced by eliminating the temporal parameter be-
tween the two expressions F(t) and x(t) [10,28].

In this case, it may be written down as trigonometrically developed form the expres-
sion of x(t) as follows:

x = A sin ωt cos ϕ + A sin ϕ cos ωt (37)

where

sin ωt =
F
F0

; cos ωt = ±
√

1− F2

F2
0

so that relation (37) becomes:

x
A

=
F
F0

cos ϕ± sin ϕ

√
1− F2

F0
(38)

If it inserts notations X = x
A and Φ = F

F0
as follows:

X = Φ cos ϕ± sin ϕ
√

1−Φ2 (39)
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Φ2 + X2 − 2ΦX cos ϕ = sin 2 ϕ

with solution

Φ1,2 = X cos ϕ± sin ϕ

√
1− x2

A2

it results

F = F0

 x
A

cos ϕ± sin ϕ

√
1− x2

A2

 (40)

with real solutions for −A ≤ x ≤ +A.
If the amplitude of the harmonic perturbing force is F0 = m0rω2, then results:

F(x) = m0rω2

 x
A

cos ϕ± sin ϕ

√
1− x2

A2

 (41)

Functions sinϕ and cosϕ result from relation (7) as follows:

sin ϕ = − cω√
(k−mω2)

2 + c2ω2
(42)

cos ϕ =
k−mω2√

(k−mω2)
2 + c2ω2

(43)

The hysteresis loops shown in Figure 7a,b highlight the following aspects of the
dynamic behavior of the system:

a. hysteresis ellipses are in quadrants II and IV due to the inertial effect of the mass m
of the working part of the technological equipment;

b. for constant values of stiffness k and damping c, the areas of the hysteresis ellipses
at four discrete values of the pulsation ω of the harmonic disturbing force F change
significantly; thus, at values ofω ≥ 70π rad/s the area of the hysteresis ellipses and,
implicitly, the dissipated energy W increase significantly;

c. for constant values of the stiffness k and the pulsation ω of the disturbing force F, at
the discrete variation of the damping c, distinct values of the areas of the hysteresis
ellipses and, implicitly, of the dissipated energies W, are obtained; as the damping
coefficient c increases, the hysteresis ellipse rotates clockwise.

This case study was performed on a vibrating machine model with the static moment
of the dynamic unbalance masses m0r = 5 kgm; mobile mass m = 104 kg; viscoelas-
tic material in technological processing (clay soil) with discrete variable stiffness from
105 kN/m up to 5× 105 kN/m and viscous damping coefficient c from 2× 102 kNs/m
up to 15× 102 kNs/m, the excitation force pulsation ω in steady-state regime with values
from 200 rad/s up to 500 rad/s [16,34,35].

Figure 7a,b present the hysteresis loops for the discrete variation of ω and for the
discrete variation of c.
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3. Conclusions

Based on the schematized dynamic model and the hypothesis of linear behavior in
steady-state dynamic regime in postresonance, the technological vibrating machines can be
evaluated based on the calculation relationships established in this article.

Thus, the following conclusions can be summarized:

a. the amplitude of the technological vibrations during the postresonance regime is
relatively constant, its variation being insignificant for the working process for values
of the excitation pulsation ω higher than 2–4 times in relation to the resonance
pulsation;

b. the modification to the technological values necessary for the work process can be

done during the postresonance regime,ω = (2 . . . 4)
√

k
m , using relation m0r = Am

from where result the amplitudes A1, A2, . . . An for various values of the static
moment (m0r)1, (m0r)2, . . . , (m0r)n at the same value of mobile mass m;
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c. the force transmitted to the processed material and the energy dissipated by the
system at processing for the postresonance regime are given by the calculation
relations established and verified in practical cases;

d. the hysteresis loops illustrate both the variation of the force in relation to the instan-
taneous displacement x(t) and the dissipated energy depending on the area of the
elliptical surface.

It results that the parametric analysis for any dynamic regime in the technological
process can be conducted based on the calculation relationships and the graphical repre-
sentations that must individualize the dynamic model by its structural parameters (m, k, c)
and excitation characteristics (m0r, ω).

Potential multidisciplinary applications of the paper:

- industry: smart building and road vibrating equipment with real-time management
of the technological parameters using analogue sensors, digital data processing and
Neural Networks and Neuro-Fuzzy techniques [16,36];

- environment protection: reduction of harmful vibrations transmitted by dynamic
action equipment through foundations (passive/active damping in real-time);

- health research: dynamic analysis of the human body modeled as a biomechanical
system with (m,c,k) linear characteristics.

The limitations of the analyzed model may appear due to the following causes:

- the hypothesis of linearity of damping and elasticities;
- mass/moment of inertia modifications during technological processes;
- a more complex rheological model of the interaction between the vibrating machine

and the working environment that can radically change the dynamic response of the
system and its operating energy parameters.

Author Contributions: Conceptualization, P.B.; methodology, P.B.; software, N.D.; validation, P.B.,
C.D., N.D.; formal analysis, C.D.; investigation, C.D.; data curation, N.D.; writing—original draft
preparation, P.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rao, M. Mechanical Vibrations; Addison-Wesley Pub. Co.: Boston, MA, USA, 1986.
2. Sireteanu, T.; Giuclea, M.; Mitu, A.M. An analitical approach for approximation of experimental hysteretic by Bouc.-Wen model.

Procc. Rom. Acad. Ser. A 2009, 10, 43–54.
3. Nit,u, M.C. Parametric evaluation of the vibrating screens for performance assurance in sorting mineral aggregates. ACTA Teh.

Napoc. Appl. Math. Mech. Eng. 2020, 63, 331–334.
4. Stamatiade, C. The influences upon the quality of the mineral aggregates induced by technological vibrations during the sorting

process. Rom. J. Acoust. Vib. 2009, VI, 1.
5. Bratu, P.; Dobrescu, C. Evaluation of the Dissipated Energy in Vicinity of the Resonance, depending on the Nature of Dynamic

Excitation. Rom. J. Acoust. Vib. 2019, 16, 66–71.
6. Vasile, O. Active vibration control for viscoelastic amortization systems under the action of inertial forces. Rom. J. Acoust. Vib.

2017, 14, 54–58.
7. Bratu, P. Multibody system with elastic connections for dynamic modeling of compactor vibratory rollers. Symmetry 2020, 12, 1617.

[CrossRef]
8. Dragan, N. Nonlinear approach of the systems between the dynamic modeling difficulties and the advantages of using it in

mechanical designing. Rom. J. Acoust. Vib. 2010, 2, 2.
9. Dobrescu, C.F. Analysis of Dynamic Earth Stiffness depending on Structural Parameters in the Process of Vibration Compaction.

Rom. J. Acoust. Vib. 2019, 16, 174–177.

http://doi.org/10.3390/sym12101617


Symmetry 2022, 14, 539 16 of 16

10. Dobrescu, C.F. Dynamic Response of the Newton Voigt–Kelvin Modelled Linear Viscoelastic Systems at Harmonic Actions.
Symmetry 2020, 12, 1571. [CrossRef]

11. Pint,oi, R.; Bordos, R.; Bragut,a, E. Vibration Effects in the Process of Dynamic Compaction of Fresh Concrete and Stabilized Earth.
J. Vib. Eng. Technol. 2017, 5, 247–254.

12. Bejan, S. Dynamic Response Analysis of the Road System Compaction According to the Forced Vibration Mode. Rom. J. Acoust.
Vib. 2014, XI, 164–166.

13. Capatana, G.F. Dynamic simulation of the vibratory roller-terrain interaction using an elastoplastic approach. In Annals of
University Dunărea de Jos din Galaţi, XIV, Mechanical Engineering; Galati University Press: Galati, Romania, 2013.

14. Le Tallec, P. Introduction à la Dynamique des Structures; Cépaduès: Toulouse, France, 2000.
15. Rades, , M. Mechanical Vibrations; Editura Printech: Bucures, ti, Romania, 2006.
16. Edincliler, A.; Cabalar, A.F.; Cevik, A. Modelling dynamic behaviour of sand–waste tires mixtures using Neural Networks and

Neuro-Fuzzy. Eur. J. Environ. Civ. Eng. 2013, 17, 720–741. [CrossRef]
17. Inman, D. Vibration with Control; John Wiley & Sons Ltd.: London, UK, 2007.
18. Adam, D.; Kopf, F. Theoretical Analysis of Dynamically Loaded Soils, European Workshop: Compaction of Soils and Granular Materials;

ETC11 of ISSMGE: Paris, France, 2000.
19. Mooney, M.A.; Rinehart, R.V. In-Situ Soil Response to Vibratory Loading and Its Relationship to Roller-Measured Soil Stiffness. J.

Geotech. Geoenviron. Eng. ASCE 2009, 135, 1022–1031. [CrossRef]
20. Mooney, M.A.; Rinehart, R.V.; White, D.J.; Vennapusa, P.K.; Facas, N.W.; Musimbi, O.M. Intelligent Soil Compaction Systems;

NCHRP project 21-09 final report; Transportation Research Board: Washington, DC, USA, 2010.
21. Adam, D. Continuous Compaction Control (CCC) with Vibratory Roller, GeoEnvironment Revue; Balkema Rotterdam: Bouazza,

Morocco, 1997.
22. Adam, D.; Kopf, F. Sophisticated Roller Compaction Technologies and Roller-Integrated Compaction Control, Compaction of Soils-Granulates

and Powders; Editura Kolymbas & Fellin: Rotterdam, The Netherlands, 2000.
23. Forssblad, L. Vibratory Soil and Rock Fill Compaction; Robert Olsson Tryckeri AB: Stockholm, Sweden, 1981.
24. Floss, R.; Kloubert, H.-J. Newest Developments in Compaction Technology. In Proceedings of the European Workshop Compaction

of Soils and Granular Materials, Presses Ponts et Chaussées, Paris, France, 19 May 2000; pp. 247–261.
25. Capatana, G.F. Dynamic behaviour of complex interaction between vibratory drum equipment and natural terrain based

on rheological evaluations. In Proceedings of the 10th HSTAM International Congress on Mechanics Chania, Crete, Greece,
25–27 May 2013.

26. Adam, D.; Kopf, F. Operational Devices for Compaction Optimization and Quality Control (Continuous Compaction Control &
Light Falling Weight Device). In Proceedings of the International Seminar on Geotechnics in Pavement and Railway Design and
Construction, Athens, Greece, 16–17 December 2004; pp. 97–106.

27. Anderegg, R. ACE Ammann Compaction Expert–Automatic Control of the Compaction. In Proceedings of the European
Workshop Compaction of Soils and Granular Materials, Paris, France, 19 May 2000; pp. 229–236.

28. Bratu, P. Hysteretic Loops in Correlation with the Maximum Dissipated Energy, for Linear Dynamic Systems. Symmetry 2019,
11, 315. [CrossRef]

29. Brandl, H.; Adam, D. Sophisticated continuous compaction control of soils and granular materials. In Proceedings of the 14th
International Conference on Soil Mechanics & Foundation Engineering, Hamburg, Germany, 6–12 September 1997; Volume 1,
pp. 31–36.

30. Mooney, M.A.; Rinehart, R.V. Field Monitoring of Roller Vibration During Compaction of Subgrade Soil. J. Geotech. Geoenviron.
Eng. ASCE 2007, 133, 257–265. [CrossRef]

31. Tonciu, O. Parametric analysis of vibrating equipment for the insertion of piles into the ground. ACTA Tech. Napoc. Appl. Math.
Mech. Eng. 2020, 63, 95–100.

32. Bejan, S. Rheological Models of the Materials for the Road System in the Compaction Process. Rom. J. Acoust. Vib. 2014, XI, 67.
33. Capatana, G.F. Analysis of the Dynamics of Vibratory Compactor Rollers for Road Works. Doctoral Thesis, “Dunarea de Jos”

University of Galati, Galat, i, Romania, 2014.
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