EEG Power Band Asymmetries in Children with and without Classical Ensemble Music Training
<p>Electrodes labelled include FC1, FC2, C3, C4, CP5, CP6, F3, F4, T7, and T8. Blue regions highlight pre-SMA regions on the left and right, respectively, associated with FC1/FC2 electrodes. Red regions highlight Inferior Frontal Gyri (left and right respectively) and the proposed association with FC1/FC2. Left hemisphere is on left side, and the anterior end of brain is in the up direction. Note: Greyed electrodes were associated with nonsignificant results in the analyses.</p> "> Figure 2
<p>Mean RTs with ±1 Standard Errors for CEM and Comparison groups in response to the two tones (1100 and 2000 Hz) used in the Go trials. (Comparison: <span class="html-italic">n</span> = 8, CEM: <span class="html-italic">n</span> = 7).</p> "> Figure 3
<p>(<b>Top Panel</b>): Mean difference EEG power of CEM and Comparison groups at FC1/FC2 electrodes at post-P300 time point during inhibitory (No-Go) task at 1100 Hz and 2000 Hz tone frequency. Data presented combined delta, theta, alpha2, beta1, beta2, and gamma bands. Mean power analysis shows significant FC2 left lateralization in the Comparison group compared to an FC1 lateralization CEM for both stimulus tones. * (CEM: <span class="html-italic">n</span> = 7; Comparison: <span class="html-italic">n</span> = 8. GLM-RM, <span class="html-italic">F</span>(1,13) = 5.307, <span class="html-italic">p</span> = 0.038, <span class="html-italic">d</span> = 1.281). (<b>Bottom Panel</b>): Mean power lateralization of CEM and Comparison groups of C3 and C4 electrode for combined delta, theta, alpha 2, beta1, beta2, and gamma bands during an auditory Go task at P300 for 1100 Hz and 2000 Hz tone frequencies showing lower left lateralization for the Comparison group at 1100 Hz tone. ** (CEM: <span class="html-italic">n</span> = 7; Comparison <span class="html-italic">n</span> = 8. GLM-RM, <span class="html-italic">F</span>(1,13) = 7.629, <span class="html-italic">p</span> = 0.016, <span class="html-italic">d</span> = 1.536).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and DATA Selection
2.2. Auditory Screening
2.3. Auditory Go/No-Go Paradigm
2.4. EEG Acquisition and Processing
2.5. Data Analysis
2.6. Statistical Analysis Pipeline
2.6.1. Behavioral Analysis
2.6.2. Diagnostic Preliminary EEG Analysis
2.6.3. Targeted EEG Analysis on ROI Pairs
2.6.4. Follow-Up Analysis on Single Electrodes in Left Hemisphere
2.6.5. Behavioral-EEG Analysis
3. Results
3.1. Behavioral Results
3.1.1. Reaction Times and Accuracy in Go Trials
3.1.2. Intercorrelations between Behavioral and Screening Measures
3.2. EEG Results
3.2.1. Contrasts Comparing ROI Pairs
3.2.2. Follow up Focused Contrasts on Single Electrodes
3.3. Behavioral-EEG Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaser, C.; Schlaug, G. Brain Structures Differ between Musicians and Non-Musicians. J. Neurosci. 2003, 23, 9240–9245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koelsch, S.; Fritz, T.; Schulze, K.; Alsop, D.; Schlaug, G. Adults and children processing music: An fMRI study. Neuroimage 2005, 25, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Koelsch, S.; Siebel, W.A. Towards a neural basis of music perception. Trends Cogn. Sci. 2005, 9, 578–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchinson, S.; Lee, L.; Gaab, N.; Schlaug, G. Cerebellar volume in musicians. Cereb. Cortex 2003, 13, 943–949. [Google Scholar] [CrossRef] [Green Version]
- Schlaug, G.; Jäncke, L.; Huang, Y.; Steinmetz, H. In vivo evidence of structural brain asymmetry in musicians. Science 1995, 267, 699–701. [Google Scholar] [CrossRef] [Green Version]
- Schlaug, G.; Jäncke, L.; Huang, Y.; Staiger, J.F.; Steinmetz, H. Increased corpus callosum size in musicians. Neuropsychologia 1995, 33, 1047–1055. [Google Scholar] [CrossRef] [Green Version]
- Hirnstein, M.; Hugdahl, K.; Hausmann, M. How brain asymmetry relates to performance—A large-scale dichotic listening study. Front. Psychol. 2014, 4, 997. [Google Scholar] [CrossRef] [Green Version]
- Brancucci, A.; Lucci, G.; Mazzatenta, A.; Tommasi, L. Asymmetries of the human social brain in the visual, auditory and chemical modalities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 895–914. [Google Scholar] [CrossRef] [Green Version]
- Ellis, R.J.; Bruijn, B.; Norton, A.C.; Winner, E.; Schlaug, G. Training-mediated leftward asymmetries during music processing: A cross-sectional and longitudinal fMRI analysis. Neuroimage 2013, 75, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Herdener, M.; Humbel, T.; Esposito, F.; Habermeyer, B.; Cattapan-Ludewig, K.; Seifritz, E. Jazz Drummers Recruit Language-Specific Areas for the Processing of Rhythmic Structure. Cereb. Cortex 2014, 24, 836–843. [Google Scholar] [CrossRef] [Green Version]
- De Aquino, M.P.B.; Verdejo-Román, J.; Pérez-García, M.; Pérez-García, P. Different role of the supplementary motor area and the insula between musicians and non-musicians in a controlled musical creativity task. Sci. Rep. 2019, 9, 13006. [Google Scholar] [CrossRef] [Green Version]
- Brandler, S.; Rammsayer, T.H. Differences in Mental Abilities between Musicians and Non-Musicians. Psychol. Music 2003, 31, 123–138. [Google Scholar] [CrossRef]
- Witelson, S.F.; Kigar, D.L. Sylvian fissure morphology and asymmetry in men and women: Bilateral differences in relation to handedness in men. J. Comp. Neurol. 1992, 323, 326–340. [Google Scholar] [CrossRef]
- Zatorre, R.J.; Belin, P.; Penhune, V.B. Structure and function of auditory cortex: Music and speech. Trends Cogn. Sci. 2002, 6, 37–46. [Google Scholar] [CrossRef]
- Leisman, G.; Melillo, R.; Mualem, R.; Machado, C. The effect of music training and production on functional brain organization and cerebral asymmetry. In Art, Science and Technology; Domus Argenia: Milano, Italy, 2012; pp. 133–139. [Google Scholar]
- Chan, A.S.; Ho, Y.-C.; Cheung, M.-C. Music training improves verbal memory. Nature 1998, 396, 128. [Google Scholar] [CrossRef]
- Ho, Y.-C.; Cheung, M.-C.; Chan, A.S. Music training improves verbal but not visual memory: Cross-sectional and longitudinal explorations in children. Neuropsychology 2003, 17, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Gelding, R.W.; Thompson, W.F.; Johnson, B.W. Musical imagery depends upon coordination of auditory and sensorimotor brain activity. Sci. Rep. 2019, 9, 16823. [Google Scholar] [CrossRef]
- Talamini, F.; Altoè, G.; Carretti, B.; Grassi, M. Musicians have better memory than nonmusicians: A meta-analysis. PLoS ONE 2017, 12, e0186773. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, G.; Wen, H.; Lu, K.-H.; Liu, Z. Musical Imagery Involves Wernicke’s Area in Bilateral and Anti-Correlated Network Interactions in Musicians. Sci. Rep. 2017, 7, 17066. [Google Scholar] [CrossRef] [Green Version]
- Leonard, J.A.; Mackey, A.P.; Finn, A.S.; Gabrieli, J.D.E. Differential effects of socioeconomic status on working and procedural memory systems. Front. Hum. Neurosci. 2015, 9, 554. [Google Scholar] [CrossRef] [Green Version]
- Boles, D.B. Socioeconomic status, a forgotten variable in lateralization development. Brain Cogn. 2011, 76, 52–57. [Google Scholar] [CrossRef]
- Lou, W.; Peck, K.K.; Brennan, N.; Mallela, A.; Holodny, A. Left-lateralization of resting state functional connectivity between the presupplementary motor area and primary language areas. Neuroreport 2017, 28, 545–550. [Google Scholar] [CrossRef]
- Raizada, R.D.S.; Richards, T.L.; Meltzoff, A.; Kuhl, P.K. Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. Neuroimage 2008, 40, 1392–1401. [Google Scholar] [CrossRef] [Green Version]
- Demir-Lira, Ö.E.; Asaridou, S.S.; Nolte, C.; Small, S.L.; Goldin-Meadow, S. Parent Language Input Prior to School Forecasts Change in Children’s Language-Related Cortical Structures During Mid-Adolescence. Front. Hum. Neurosci. 2021, 15, 15. [Google Scholar] [CrossRef]
- Romeo, R.R. Socioeconomic and experiential influences on the neurobiology of language development. Perspect. ASHA Spec. Interest Groups 2019, 4, 1229–1238. [Google Scholar] [CrossRef]
- Arredondo, M.M.; Hu, X.-S.; Seifert, E.; Satterfield, T.; Kovelman, I. Bilingual exposure enhances left IFG specialization for language in children. Biling. Lang. Cogn. 2019, 22, 783–801. [Google Scholar] [CrossRef]
- Gomez, P.; Ratcliff, R.; Perea, M. A Model of the Go/No-Go Task. J. Exp. Psychol. Gen. 2007, 136, 389–413. [Google Scholar] [CrossRef]
- Schulz, K.P.; Fan, J.; Magidina, O.; Marks, D.J.; Hahn, B.; Halperin, J.M. Does the emotional go/no-go task really measure behavioral inhibition? Convergence with measures on a non-emotional analog. Arch. Clin. Neuropsychol. 2007, 22, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Xiao, R.; Shida-Tokeshi, J.; Vanderbilt, D.L.; Smith, B.A. Electroencephalography power and coherence changes with age and motor skill development across the first half year of life. PLoS ONE 2018, 13, e0190276. [Google Scholar] [CrossRef] [Green Version]
- Bolden, B.; Corcoran, S.; Butler, A. A scoping review of research that examines El Sistema and Sistema-inspired music education programmes. Rev. Educ. 2021, 9, e3267. [Google Scholar] [CrossRef]
- Hedayati, N.; Schibli, K.; D’Angiulli, A. El Sistema-inspired ensemble music training is associated with changes in children’s neurocognitive functional integration: Preliminary ERP evidence. Neurocase 2016, 22, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Statistics Canada. Table 11-10-0195-01 Low Income Cut-Offs (LICOs) before and after Tax by Community Size and Family Size, in Constant Dollars. 2021. Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1110019501 (accessed on 20 December 2021). [CrossRef]
- Bornstein, M.; Hahn, C.; Suwalsky, J.; Haynes, O. Socioeconomic status, parenting, and child development: The hollingshead four-factor index of social status and the socioeconomic index of occupations. In Socioeconomic Status, Parenting, and Child Development; Bornstein, M.H., Bradley, R.H., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2003. [Google Scholar]
- Lovibond, P.F.; Lovibond, S.H. The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Werner, P.D.; Swope, A.J.; Heide, F.J. The music experience questionnaire: Development and correlates. J. Psychol. 2006, 140, 329–345. [Google Scholar] [CrossRef]
- Dunn, L.M.; Dunn, D.M. PPVT-4: Peabody Picture Vocabulary Test; Pearson Assessments: Minneapolis, MN, USA, 2007. [Google Scholar]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Perceived Stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Nolen-Hoeksema, S. Responses to depression and their effects on the duration of depressive episodes. J. Abnorm. Psychol. 1991, 100, 569–582. [Google Scholar] [CrossRef]
- Goodman, R. The Strengths and Difficulties Questionnaire: A Research Note. J. Child Psychol. Psychiatry 1997, 38, 581–586. [Google Scholar] [CrossRef]
- Benjamini, Y.; Yekutieli, D. The Control of the False Discovery Rate in Multiple Testing under Dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- Fachada, N.; Rosa, A. micompm: A MATLAB/Octave toolbox for multivariate independent comparison of observations. J. Open Source Softw. 2018, 3, 3. [Google Scholar] [CrossRef]
- Ishihara, S. Ishihara’s Tests for Colour Blindness Concise Edition; Kanehara & Co. Ltd.: Tokyo, Japan, 1983. [Google Scholar]
- Hedayati, N.; Schibli, K.; D’Angiulli, A. Effects of socially based ensemble music training on children’s executive functions: ERP evidence. Can. J. Exp. Psychol.-Rev. Can. Psychol. Expérimentale 2016, 70, 379. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Sharp, D.J.; Bonnelle, V.; De Boissezon, X.; Beckmann, C.F.; James, S.G.; Patel, M.C.; Mehta, M.A. Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc. Natl. Acad. Sci. USA 2010, 107, 6106–6111. [Google Scholar] [CrossRef] [Green Version]
- Black, E.; Stevenson, J.L.; Bish, J.P. The Role of Musical Experience in Hemispheric Lateralization of Global and Local Auditory Processing. Perception 2017, 46, 956–975. [Google Scholar] [CrossRef]
- Papagno, C.; Comi, A.; Riva, M.; Bizzi, A.; Vernice, M.; Casarotti, A.; Fava, E.; Bello, L. Mapping the brain network of the phonological loop. Hum. Brain Mapp. 2017, 38, 3011–3024. [Google Scholar] [CrossRef] [Green Version]
- Schaal, N.K.; Kretschmer, M.; Keitel, A.; Krause, V.; Pfeifer, J.; Pollok, B. The significance of the right dorsolateral prefrontal cortex for pitch memory in non-musicians depends on baseline pitch memory abilities. Front. Neurosci. 2017, 11, 677. [Google Scholar] [CrossRef] [Green Version]
- O’Muircheartaigh, J.; Dean, D.C.; Dirks, H.; Waskiewicz, N.; Lehman, K.; Jerskey, B.A.; Deoni, S.C.L. Interactions between White Matter Asymmetry and Language during Neurodevelopment. J. Neurosci. 2013, 33, 16170–16177. [Google Scholar] [CrossRef] [Green Version]
- Gollan, J.K.; Hoxha, D.; Chihade, D.; Pflieger, M.E.; Rosebrock, L.; Cacioppo, J. Frontal alpha EEG asymmetry before and after behavioral activation treatment for depression. Biol. Psychol. 2014, 99, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Schibli, K.; Wong, K.; Hedayati, N.; D’angiulli, A. Attending, learning, and socioeconomic disadvantage: Developmental cognitive and social neuroscience of resilience and vulnerability. Ann. N. Y. Acad. Sci. 2017, 1396, 19–38. [Google Scholar] [CrossRef]
- Schibli, K.; Hobbs, H.; Sheik-Ahmed, A.; Hedayati, N.; D’Angiulli, A. ISDN2014_0311: Cognition and language development in different socioeconomic and environmental settings: A review from Developmental Cognitive Neuroscience. Int. J. Dev. Neurosci. 2015, 47, 94–95. [Google Scholar] [CrossRef]
- Moreno, S.; Marques, C.; Santos, A.; Santos, M.; Castro, S.L.; Besson, M. Musical Training Influences Linguistic Abilities in 8-Year-Old Children: More Evidence for Brain Plasticity. Cereb. Cortex 2009, 19, 712–723. [Google Scholar] [CrossRef] [Green Version]
- Bartha-Doering, L.; Kollndorfer, K.; Kasprian, G.; Novak, A.; Schuler, A.-L.; Fischmeister, F.P.S.; Alexopoulos, J.; Gaillard, W.D.; Prayer, D.; Seidl, R.; et al. Weaker semantic language lateralization associated with better semantic language performance in healthy right-handed children. Brain Behav. 2018, 8, e01072. [Google Scholar] [CrossRef]
- Ono, K.; Nakamura, A.; Yoshiyama, K.; Kinkori, T.; Bundo, M.; Kato, T.; Ito, K. The effect of musical experience on hemispheric lateralization in musical feature processing. Neurosci. Lett. 2011, 496, 141–145. [Google Scholar] [CrossRef]
- Trujillo-Pozo, I.; Martín-Monzón, I.; Rodríguez-Romero, R. Brain lateralization and neural plasticity for musical and cognitive abilities in an epileptic musician. Front. Hum. Neurosci. 2013, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Bitan, T.; Lifshitz, A.; Breznitz, Z.; Booth, J.R. Bidirectional connectivity between hemispheres occurs at multiple levels in language processing but depends on sex. J. Neurosci. 2010, 30, 11576–11585. [Google Scholar] [CrossRef] [Green Version]
- McGraw, K.O.; Wong, S.P. A common language effect size statistic. Psychol. Bull. 1992, 111, 361–365. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, Y.; Ge, Y. Frontal EEG Asymmetry and Middle Line Power Difference in Discrete Emotions. Front. Behav. Neurosci. 2018, 12, 225. [Google Scholar] [CrossRef] [Green Version]
- Froese, T.; Gonzalez-Grandon, X. How passive is passive listening? Toward a sensorimotor theory of auditory perception. Phenomenol. Cogn. Sci. 2020, 19, 619–651. [Google Scholar] [CrossRef]
- Schiavio, A.; Küssner, M.B.; Williamon, A. Music Teachers’ Perspectives and Experiences of Ensemble and Learning Skills. Front. Psychol. 2020, 11, 291. [Google Scholar] [CrossRef] [Green Version]
- Dell’Anna, A.; Leman, M.; Berti, A. Musical Interaction Reveals Music as Embodied Language. Front. Neurosci. 2021, 15, 15. [Google Scholar] [CrossRef]
Measure | Group a | Z | FDR-p b | |
---|---|---|---|---|
CEM | Comparison | |||
Child Age | 11.201 ± 0.311 (11.36) | 9.759 ± 0.657 (5.06) | 2.724 | 0.234 |
Parent/ Guardian Age | 43.83 ± 1.014 (7.17) | 43.00 ± 1.746 (6.86) | 0.144 | 1.000 |
SES | 39.000 ± 5.520 (4.33) | 54.570 ± 4.908 (9.29) | 2.292 | 0.322 |
EHI | 54.000 ± 27.049 (7.75) | 45.000 ± 24.694 (6.36) | 0.645 | 1.000 |
PPVT | 175.00 ± 3.885 (7.14) | 170.14 ± 10.958 (7.86) | 0.320 | 1.000 |
PSS | 14.50 ± 1.668 (8.58) | 10.86 ± 2.187 (5.64) | 1.368 | 1.000 |
RRS | 36.67 ± 5.044 (7.75) | 31.43 ± 2.680 (6.36) | 0.644 | 1.000 |
SDQ-I | 3.142 ± 1.388 (6.71) | 4.285 ± 1.539 (8.29) | 0.710 | 1.000 |
SDQ-E | 3.286 ± 1.459 (6.29) | 5.571 ± 1.325 (8.71) | 1.104 | 1.000 |
SDQ-Total | 7.50 ± 3.085 (6.00) | 9.86 ± 1.908 (7.58) | 0.858 | 1.000 |
DASS-D | 7.00 ± 4.058 (7.42) | 2.86 ± 1.370 (6.64) | 0.378 | 1.000 |
DASS-A | 7.33 ± 4.310 (7.50) | 2.57 ± 1.288 (6.57) | 0.458 | 1.000 |
DASS-S | 8.00 ± 3.425 (6.92) | 9.14 ± 2.988 (7.07) | 0.072 | 1.000 |
Music Experience (child) | 7 Yes | 3 Yes | 2.280 | 0.322 |
Music Experience (parent/ guardian) | 5 Yes | 1 Yes | 2.392 | 0.322 |
Child Gender | 2 Female | 4 Female | 0.816 | 1.000 |
Bilingualism | 4 Monolingual | 3 Monolingual | 0.760 | 1.000 |
Behavioral/Screening Measures | |||||
---|---|---|---|---|---|
Conditions | PPVT | Go Accuracy | Reaction Time, Combined Average | Auditory Sensitivity, Right | Auditory Sensitivity, Left |
C3, 1100 Hz, Go, P300 | − | Beta2 (47.855) Beta1 (8.878) Alpha2 (−9.077) Theta (2.044) R2 = 0.695 F= 8.979 (d = 3.019) p = 0.011 * | − | Beta1 (−3.890) R2 = 0.141 F = 3.305 (d = 0.810) p = 0.098 | - |
C3, 2000 Hz, Go, P300 | − | Alpha2 (3.238) R2 = 0.134 F = 3.174 (d = 0.787) p = 0.098 | Beta2 (−360.313) Beta1 (101.222) Alpha2 (−21.501) Theta (20.375) R2 = 0.788 F = 13.987 (d = 3.856) p = 0.001 * | Beta1 (10.613) R2 = 0.304 F = 7.111 (d = 1.322) p = 0.042 * | - |
FC1, 1100 Hz, No-Go, post-P300 | − | − | − | Gamma (7.451) Theta (1.159) R2 = 0.305 F = 4.067 (d = 1.325) p = 0.071 ** | Theta (0.980) R2 = 0.231 F = 5.210 (d = 1.096) p = 0.071 ** |
FC1, 2000 Hz, No-Go, post-P300 | Beta1 (−52.204) Beta2 (−7.165) Theta (−34.122) R2 = 0.601 F = 7.526 (d = 2.455) p = 0.016 * | Delta (94.667) R2 = 0.143 F = 3.339 (d = 0.817) p = 0.098 | Delta (−8.107) R2 = 0.146 F = 3.384 (d = 0.827) p = 0.098 | Delta (−1.221) R2 = 0.453 F = 12.610 (d = 1.820) p = 0.015 * | - |
Analysis | Result |
---|---|
Behavioral | Go trial (2000 Hz) reaction time was faster in CEM than in the Comparison group |
Go trial (combined) reaction time was faster in CEM than in the Comparison group. | |
Go trial accuracy is inversely correlated with Go trial (1100 Hz) and Go trial (combined) reaction times. | |
Go trial accuracy positively correlated with auditory sensitivity and Go trial (combined) reaction time. | |
EEG | Left lateralization (FC1) in the CEM group compared to right lateralization (FC2) in the Comparison group (post-P300, No-Go trial). |
Left lateralization (C3) in the CEM group (both tone frequencies) compared to left lateralization (C3) in the Comparison group (2000 Hz only) (P300, Go trial). | |
Reduced left lateralization (CP5) in CEM compared to Comparison group (1100 Hz only) (post-P300, No-Go trial). | |
Higher mean power in T7 electrode in CEM group compared to the Comparison group (combined 1100 Hz and 2000 Hz) (P300, combined Go and No-Go trial). | |
Higher power in F3 electrode in CEM compared to the Comparison group (combined 1100 Hz and 2000 Hz) (P300, No-Go trial). | |
Behavioural-EEG | C3/C4 electrode pair (P300, Go trial) showed both right and left lateralization effects associated with Go accuracy and right auditory sensitivity. |
FC1/FC2 electrode pairs (post-P300, No-Go trial) right lateralization was associated with PPVT score and right and left auditory sensitivity. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byczynski, G.; Schibli, K.; Goldfield, G.; Leisman, G.; D’Angiulli, A. EEG Power Band Asymmetries in Children with and without Classical Ensemble Music Training. Symmetry 2022, 14, 538. https://doi.org/10.3390/sym14030538
Byczynski G, Schibli K, Goldfield G, Leisman G, D’Angiulli A. EEG Power Band Asymmetries in Children with and without Classical Ensemble Music Training. Symmetry. 2022; 14(3):538. https://doi.org/10.3390/sym14030538
Chicago/Turabian StyleByczynski, Gabriel, Kylie Schibli, Gary Goldfield, Gerry Leisman, and Amedeo D’Angiulli. 2022. "EEG Power Band Asymmetries in Children with and without Classical Ensemble Music Training" Symmetry 14, no. 3: 538. https://doi.org/10.3390/sym14030538
APA StyleByczynski, G., Schibli, K., Goldfield, G., Leisman, G., & D’Angiulli, A. (2022). EEG Power Band Asymmetries in Children with and without Classical Ensemble Music Training. Symmetry, 14(3), 538. https://doi.org/10.3390/sym14030538