Assessing and Governing Ecosystem Services Trade-Offs in Agrarian Landscapes: The Case of Biogas
<p>Land use in the case study area of the region of Hannover.</p> "> Figure 2
<p>Approach for spatial simulation of crop distribution.</p> "> Figure 3
<p>Locations of biogas plants [<a href="#B23-land-05-00001" class="html-bibr">23</a>] and areas of enhanced pressure from maize cultivation for biogas.</p> "> Figure 4
<p>Results of the spatial simulation of crop distribution in the status quo and the scenarios.</p> "> Figure 5
<p>Results of impact modelling.</p> "> Figure 6
<p>Trade-offs between maize cultivation for biogas (% of farmland used for substrate generation), biodiversity (% of farmland with high or very high field habitat value), food production (% self-sufficiency) and landscape aesthetics (% area with high or very high crop type diversity) in different scenarios.</p> ">
Abstract
:1. Introduction
2. Case Study Area
3. Methods
3.1. Research Design
3.2. Scenario Assumptions
2012 | 2050: Market | 2050: Restrictive Protection | 2050: Conditional Protection | |
---|---|---|---|---|
Assumptions | 280% increase of biogas area (by municipality) | Max. 15% maize | Max. 15% maize | |
Exclusion of protected sites | Exclusion of protected sites | |||
Exclusion of sensitive areas | ||||
Capacity (kW) | 19,729 | 75,100 | 36,689 | 44,669 |
Demanded area (ha) | 7102 | 27,036 | 13,222 | 16,084 |
3.3. Simulating the Spatial Distribution of Crops
- (1)
- Uniformly-distributed random numbers where assigned to each agricultural parcel
- (2)
- Within each biogas plant area of enhanced pressure:
- (a)
- Parcels were selected with reference to the random numbers, while summing up their area until the total summed up area matched the demand of area for maize cultivation for the plant.
- (b)
- Maize cultivation was assigned to the selected parcels.
- (3)
- Within each municipality:
- (a)
- The remaining maize cultivation area was calculated according to the agricultural statistics available.
- (b)
- If the distributed maize cultivation area exceeded the statistical value of that municipality and if areas of enhanced biogas pressure crossed municipal boundaries, then parcels were removed from maize cultivation, in reverse order within the one municipality, and the respective area of demand was repartitioned to the neighboring municipality(s).
- (c)
- The remaining maize cultivation area was distributed by selecting parcels in order of their random numbers and summing up their area until it matched the statistical value. Then, maize cultivation was assigned to the selected parcels.
- (d)
- The other crops were distributed on the remaining parcels using the same method as for maize, but only within the municipal borders.
3.4. Assessing Potential Impacts of Scenarios on Various Ecosystem Services
Biodiversity Refined Habitat Value Scores Following Bredemeier et al. [44] and Urban et al. [45] | Landscape Aesthetics * Shannon Index (Crop Type Diversity) [57] | ||
---|---|---|---|
Raster Cells | Municipalities | ||
Very low value | Habitat value score of ≤1.4 (for example: wheat) | H = 0–0.45 | H = 1.2–1.4 |
Low value | Habitat value score of >1.4–1.5 (maize, sugar beet) | H > 0.45–0.90 | H > 1.4–1.6 |
Medium value | Habitat value score of >1.5–1.6 (barley) | H > 0.90–1.35 | H > 1.6–1.8 |
High value | Habitat value score of >1.6–1.7 | H > 1.35–1.80 | H > 1.8–2.0 |
Very high value | Habitat value score of >1.7 (rye) | H > 1.80–2.26 | H > 2.0–2.2 |
4. Results
4.1. Spatial Crop Distribution in Different Scenarios
4.2. Scenario Impacts on Biodiversity and Ecosystem Services
5. Discussion and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Landesbetrieb für Statistik und Kommunikationstechnologie Niedersachsen. Landwirtschaftszählung 2010—Bodennutzung. Heft 1 teil a—Gemeindeergebnisse; Landesbetrieb für Statistik und Kommunikationstechnologie Niedersachsen: Hannover, Germany, 2012; p. 135. [Google Scholar]
- Kompetenzzentrum Niedersachsen Netzwerk Nachwachsende Rohstoffe. Biogas in Niedersachsen-Inventur 2014; Kompetenzzentrum Niedersachsen Netzwerk Nachwachsende Rohstoffe: Werlte, Germany, 2014; p. 28. [Google Scholar]
- Lupp, G.; Albrecht, J.; Darbi, M.; Bastian, O. Ecosystem services in energy crop production—A concept for regulatory measures in spatial planning? J. Landsc. Ecol. 2011, 4, 49–66. [Google Scholar] [CrossRef]
- Immerzeel, D.J.; Verweij, P.A.; van der Hilst, F.; Faaij, A.P.C. Biodiversity impacts of bioenergy crop production: A state-of-the-art review. GCB Bioenerg. 2014, 6, 183–209. [Google Scholar] [CrossRef]
- Manning, P.; Taylor, G.; Hanley, M.E. Bioenergy, food production and biodiversity—An unlikely alliance? GCB Bioenerg. 2015, 7, 570–576. [Google Scholar] [CrossRef]
- Niedersächsisches Ministerium für Ernährung Landwirtschaft und Verbraucherschutz (ML) & Niedersächsisches Ministerium für Umwelt Energie und Klimaschutz (MU). Biogasnutzung in niedersachsen – stand und perspektiven. 4. Überarbeitete auflage; Niedersächsisches Ministerium für Ernährung Landwirtschaft und Verbraucherschutz (ML) & Niedersächsisches Ministerium für Umwelt Energie und Klimaschutz (MU): Hannover, Germany, 2010; p. 24. [Google Scholar]
- Gerbens-Leenes, W.; Hoekstra, A.Y.; van der Meer, T.H. The water footprint of bioenergy. Proc. Nat. Acad. Sci. USA 2009, 106, 10219–10223. [Google Scholar] [CrossRef] [PubMed]
- Von Ruschkowski, E.; Wiehe, J. Balancing bioenergy production and nature conservation in germany: Potential Synergies and Challenges. Yearb. Socioecon. Agric. 2008, 1, 3–20. [Google Scholar]
- Boll, T.; von Haaren, C.; Albert, C. How do urban dwellers react to potential landscape changes in recreation areas? A case study with particular focus on the introduction of dendromass in the hamburg metropolitan region. iForest Biogeosci. For. 2014, 7, 460–470. [Google Scholar] [CrossRef]
- Buhr, N.; Rode, M.; Kanning, H. Effectiveness of planning instruments for minimizing spatial conflicts of biogas production. Eur. Plan. Stud. 2013, 22, 1711–1734. [Google Scholar] [CrossRef]
- Hagen, Z. A basic design for a multicriteria approach to efficient bioenergy production at regional level. Energ. Sustain. Soc. 2012, 2, 16. [Google Scholar] [CrossRef]
- Council of Europe. European Landscape Convention; Council of Europe: Florence, Italy, 2000; Volume 176, p. 8. [Google Scholar]
- Albert, C.; Galler, C.; Hermes, J.; Neuendorf, F.; von Haaren, C.; Lovett, A. Applying ecosystem services indicators in landscape planning and management: The ES-in-Planning Framework. Ecol. Indic. 2015. [Google Scholar] [CrossRef]
- Wiehe, J.; Buhr, N.; Wolf, U.; Kanning, H.; Rode, M. Planerische koordinierung für einen natur- und raumverträglichen ausbau energetischer biomassepfade. In Natur- und Raumverträglicher Ausbau Energetischer Biomassepfade; Rode, M., Kanning, H., Eds.; Ibidem: Stuttgart, Germany, 2010; pp. 241–251. [Google Scholar]
- Wiehe, J.; Rode, M.; Kanning, H. Biomasseanbau, naturschutz und steuerung. Ökologisches Wirtschaft. 2011, 2011, 22–25. [Google Scholar]
- Bryan, B.A.; King, D.; Wang, E. Biofuels agriculture: Landscape-scale trade-offs between fuel, economics, carbon, energy, food, and fiber. GCB Bioenerg. 2010, 2, 330–345. [Google Scholar] [CrossRef]
- Guillem, E.E.; Murray-Rust, D.; Robinson, D.T.; Barnes, A.; Rounsevell, M.D.A. Modelling farmer decision-making to anticipate tradeoffs between provisioning ecosystem services and biodiversity. Agric. Syst. 2015, 137, 12–23. [Google Scholar] [CrossRef]
- Kirchner, M.; Schmidt, J.; Kindermann, G.; Kulmer, V.; Mitter, H.; Prettenthaler, F.; Rüdisser, J.; Schauppenlehner, T.; Schönhart, M.; Strauss, F.; et al. Ecosystem services and economic development in austrian agricultural landscapes—The impact of policy and climate change scenarios on trade-offs and synergies. Ecol. Econ. 2015, 109, 161–174. [Google Scholar] [CrossRef]
- Stürmer, B.; Schmidt, J.; Schmid, E.; Sinabell, F. Implications of agricultural bioenergy crop production in a land constrained economy—The example of Austria. Land Use Policy 2013, 30, 570–581. [Google Scholar] [CrossRef]
- Barthel, R.; Reichenau, T.; Krimly, T.; Dabbert, S.; Schneider, K.; Mauser, W. Integrated modeling of global change impacts on agriculture and groundwater resources. Water Res. Manag. 2012, 26, 1929–1951. [Google Scholar] [CrossRef]
- Helming, K.; Diehl, K.; Bach, H.; Dilly, O.; König, B.; Kuhlman, T.; Perez-Soba, M.; Sieber, S.; Tabbush, P.; Tscherning, K.; et al. Ex ante impact assessment of policies affecting land use, Part A: Analytical Framework. Ecol. Soc. 2011, 16, 27. [Google Scholar]
- Van Ittersum, M.K.; Ewert, F.; Heckelei, T.; Wery, J.; Alkan Olsson, J.; Andersen, E.; Bezlepkina, I.; Brouwer, F.; Donatelli, M.; Flichman, G.; et al. Integrated assessment of agricultural systems—A component-based framework for the European Union (seamless). Agric. Syst. 2008, 96, 150–165. [Google Scholar] [CrossRef]
- EnergymapInfo Region hannover. Available online: http://www.energymap.info/energieregionen/DE/105/116/175/568.html (accessed on 25 October 2012).
- Landesbetrieb für Statistik und Kommunikationstechnologie Niedersachsen (LSKN). Statistische berichte niedersachsen—Bodennutzung und Ernte: Ergebnisse. Available online: http://www.nls.niedersachsen.de/Tabellen/Landwirtschaft/ernte_2003/ texte/e11.xls (accessed on 21 March 2015).
- LWK-Niedersachsen Wie viele biogasanlagen gibt das land her? Available online: http://www.lwk-niedersachsen.de/index.cfm/portal/6/nav/355/article/20811.html (accessed on 10 June 2015).
- Niedersächsisches Ministerium für Ernährung Landwirtschaft Verbraucherschutz und Landesentwicklung. Biogas in Niedersachsen—Entwicklung, Stand und Perspektiven. 5. Überarbeitete Auflage; Niedersächsisches Ministerium für Ernährung Landwirtschaft, Verbraucherschutz und Landesentwicklung: Hannover, Germany, 2012; p. 24. [Google Scholar]
- Steinitz, C. A Framework for Geodesign: Changing Geography by Design; ESRI Press: Redlands, CA, USA, 2012. [Google Scholar]
- Albert, C.; von Haaren, C.; Vargas-Moreno, J.; Steinitz, C. Teaching scenario-based planning for sustainable landscape development: An evaluation of learning effects in the Cagliari Studio Workshop. Sustainability 2015, 7, 6872–6892. [Google Scholar] [CrossRef]
- Van der Heijden, K. Scenarios: The Art of Strategic Conversation; John Wiley & Sons Ltd: Chichester, UK, 1996. [Google Scholar]
- Peterson, G.D.; Cumming, G.S.; Carpenter, S.R. Scenario planning: A tool for conservation in an uncertain world. Conserv. Biol. 2003, 17, 358–366. [Google Scholar] [CrossRef]
- Wollenberg, E.; Edmunds, D.; Buck, L. Using scenarios to make decisions about the future: Anticipatory learning for the adaptive co-management of community forests. Landsc. Urban. Plan. 2000, 47, 65–77. [Google Scholar] [CrossRef]
- Lamarque, P.; Artaux, A.; Barnaud, C.; Dobremez, L.; Nettier, B.; Lavorel, S. Taking into account farmers′ decision making to map fine-scale land management adaptation to climate and socio-economic scenarios. Landsc. Urban. Plan. 2013, 119, 147–157. [Google Scholar] [CrossRef]
- Albert, C.; Zimmermann, T.; Knieling, J.; von Haaren, C. Social learning can benefit decision-making in landscape planning: Gartow case study on climate change adaptation, Elbe Valley Biosphere Reserve. Landsc. Urban. Plan. 2012, 105, 347–360. [Google Scholar] [CrossRef]
- Region Hannover. Landschaftsrahmenplan der Region Hannover. 2013. [Google Scholar]
- Steinmann, M.S.; Holm-Mueller, K. Thuenen rings of biogas production-the effect of differences in transport costs of energy crops in the choice of renewable resources by biogas plants. Ger. J. Agric. Econ. 2010, 59, 1–12. [Google Scholar]
- Rode, M.; Kanning, H. Natur-und Raumverträglicher Ausbau Energetischer Biomassepfade; Ibidem-Verlag: Stuttgart, Germany, 2010; p. 324. [Google Scholar]
- Verburg, P.; Veldkamp, A. Projecting land use transitions at forest fringes in the philippines at two spatial scales. Landsc. Ecol. 2004, 19, 77–98. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the spatial dynamics of regional land use: The Clue-S Model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef] [PubMed]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Kandziora, M.; Burkhard, B.; Müller, F. Interactions of ecosystem properties, ecosystem integrity and ecosystem service indicators—A theoretical matrix exercise. Ecol. Indic. 2013, 28, 54–78. [Google Scholar] [CrossRef]
- Von Haaren, C.; Albert, C.; Barkmann, J.; de Groot, R.; Spangenberg, J.; Schröter-Schlaack, C.; Hansjürgens, B. From explanation to application: Introducing a Practice-Oriented Ecosystem Services Evaluation (PRESET) Model Adapted to the Context of Landscape Planning and Management. Landsc. Ecol. 2014, 29, 1335–1346. [Google Scholar] [CrossRef]
- Bierhals, E.; von Drachenfels, O.; Rasper, M. Wertstufen und regenerationsfähigkeit der biotoptypen in niedersachsen. Informationsdienst Naturschutz Niedersachs 2004, 24, 231–240. [Google Scholar]
- Von Drachenfels, O. Kartierschlüssel Für Biotoptypen in Niedersachsen. Unter Besonderer Berücksichtigung der nach § 28a und § 28b Nnatg Geschützten Biotope Sowie der Lebensraumtypen von Anhang i der Ffh-Richtlinie; Niedersächsisches Landesamt für Ökologie, Abt. Naturschutz: Hildesheim, Germany, 2004; p. 240. [Google Scholar]
- Bredemeier, B.; von Haaren, C.; Rüter, S.; Reich, M.; Meise, T. Evaluating the nature conservation value of field habitats: A model approach for targeting agri-environmental measures and projecting their effects. Ecol. Model. 2015, 295, 113–122. [Google Scholar] [CrossRef]
- Urban, B.; von Haaren, C.; Kanning, H.; Krahl, J.; Munack, A. Methode Zur Bewertung der Biodiversität in Ökobilanzen am Beispiel Biogener Kraftstoffe; Cuvillier: Göttingen, Germany, 2011. [Google Scholar]
- Statistische Ämter des Bundes und der Länder Gemeindeverzeichnis informationssystem (gv-isys). Available online: https://www.destatis.de/DE/ZahlenFakten/LaenderRegionen/Regionales/Gemeindeverzeichnis/Administrativ/AdministrativeUebersicht.html (accessed on 20 July 2015).
- Gedrich, K.; Karg, G. Welche ernährung wäre für die bevölkerung optimal? In Tagungsbericht der 22, Wissenschaftlichen Jahrestagung der AGEV, Bonn, Germany, 11–13 October 2000.
- Food and Agriculture Organization of the United Nations (FAOSTAT) Crops primary equivalent. Available online: http://faostat.fao.org/site/609/default.aspx#ancor (accessed on 28 March 2015).
- Funk, H.; Mohr, R. Die Rapsabrechnung. Ufop-Praxisinformation; Union zur Förderung von Öl- und Proteinpflanzen e.V.: Berlin, Germany, 2010. [Google Scholar]
- Bayerische Landesanstalt für Landwirtschaft. Gruber Tabelle zur Fütterung der Milchkühe, Zuchtrinder, Mastrinder, Schafe, Ziegen; LfL-Informationen Freising-Weihenstephan: Bayerische Landesanstalt für Landwirtschaft: Freising, Germany, 2008; p. 78. [Google Scholar]
- Kleine-Klausing, H. Das energiebewertungssystem für milchkühe in der bundesrepublik und den niederlanden—Ein vergleich. Feed Mag. Kraftfutter 1989, 11, 432–434. [Google Scholar]
- Kroll, F.; Müller, F.; Haase, D.; Fohrer, N. Rural–urban gradient analysis of ecosystem services supply and demand dynamics. Land Use Policy 2012, 29, 521–535. [Google Scholar] [CrossRef]
- Schüpbach, B.; Junge, X.; Briegel, R.; Lindemann-Matthies, P.; Walter, T. Aesthetische Bewertung Landwirtschaftlicher Kulturen Durch die Bevölkerung; ART: Zurich, Switzerland, 2009; Volume 10, p. 122. [Google Scholar]
- Wöbse, H. Landschaftsästhetik; Ulmer Verlag: Stuttgart, Germany, 2003. [Google Scholar]
- Boll, T. Landschaftsbild und akzeptanz von bioenergie. In Bioenergie in der Region Göttingen—Wissenschaftliche Informationen für die Regionale Praxis; Energieagentur Region Göttingen e.V., Forschungsprojekt BEST: Göttingen, Germany, 2014; pp. 10–12. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Urbana, IL, USA, 1949; p. 117. [Google Scholar]
- Wiehe, J.; von Ruschkowski, E.; Rode, M.; Kanning, H.; von Haaren, C. Auswirkungen des energiepflanzenanbaus auf die landschaft—Am bespiel des maisanbaus für die biogasproduktion in niedersachsen. Naturschutz und Landschaftsplanung 2009, 41, 107–113. [Google Scholar]
- Rode, M.; Schneider, K.; Ketelhake, G.; Reisshauer, D. Naturschutzverträgliche Erzeugung und Nutzung von Biomasse zur Wärme—Und Stromgewinnung. Ergebnisse aus DEM f+e-Vorhaben 80283040 des Bundesamtes für Naturschutz; Bundesamt für Naturschutz: Bonn, Germany, 2005. [Google Scholar]
- Rode, M.W. Bioenergieproduktion—Auswirkungen einer neuen raumnutzung auf den naturschutz. In Abschlussdokumentation "Bioenergie–Fluch Oder Segen für Nationale Naturlandschaften"; Eppler & Buntdruck GmbH: Berlin, Germany, 2009; pp. 20–25. [Google Scholar]
- Wiehe, J.; Rode, M.; Kanning, H. Raumanalyse i—Auswirkungen auf natur und landschaft. In Natur- und Raumverträglicher Ausbau Energetischer Biomassepfade; Rode, M., Kanning, H., Eds.; Ibidem-Verlag: Stuttgart, Germnay, 2010; pp. 21–90. [Google Scholar]
- Saathoff, W.; von Haaren, C.; Rode, M. Scale-relevant impacts of biogas crop production: A Methodology to Assess Environmental Impacts and Farm Management Capacities. In Sustainable Bioenergy Production—An Integrated Approach; Ruppert, H., Kappas, M., Ibendorf, J., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2013; pp. 181–216. [Google Scholar]
- Von Haaren, C.; Palmas, C.; Boll, T.; Rode, M.; Reich, M.; Niederstadt, F.; Albert, C. Erneuerbare energien—Zielkonflikte zwischen natur-und umweltschutz. In Jahrbuch für Natuschutz und Landschaftspflege; Berufsverband Beruflicher Naturschutz: Bonn, Germany, 2013. [Google Scholar]
- Dolginow, J.; Massey, R.E.; Kitchen, N.R.; Myers, D.B.; Sudduth, K.A. A stochastic approach for predicting the profitability of bioenergy grasses. Agron. J. 2014, 106, 2137–2145. [Google Scholar] [CrossRef]
- Albert, C.; von Haaren, C.; Othengrafen, F.; Krätzig, S.; Saathoff, W. Scaling policy conflicts in ecosystem services governance: A Framework for Spatial Analysis. J. Environ. Plan. Policy 2016. submitted. [Google Scholar] [CrossRef]
- Alcamo, J. Scenarios as Tools for International Environmental Assessments; Office for Official Publications of the European Communities, European Environmental Agency: Luxembourg, 2001. [Google Scholar]
- Schwartz, P. The Art of the Long View; Doubleday: New York, NY, USA, 1996. [Google Scholar]
- Pahl-Wostl, C. Participation in building environmental scenarios. In Environmental Futures: The Practice of Environmental Scenario Analysis; Alcamo, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 2, pp. 105–122. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albert, C.; Hermes, J.; Neuendorf, F.; Von Haaren, C.; Rode, M. Assessing and Governing Ecosystem Services Trade-Offs in Agrarian Landscapes: The Case of Biogas. Land 2016, 5, 1. https://doi.org/10.3390/land5010001
Albert C, Hermes J, Neuendorf F, Von Haaren C, Rode M. Assessing and Governing Ecosystem Services Trade-Offs in Agrarian Landscapes: The Case of Biogas. Land. 2016; 5(1):1. https://doi.org/10.3390/land5010001
Chicago/Turabian StyleAlbert, Christian, Johannes Hermes, Felix Neuendorf, Christina Von Haaren, and Michael Rode. 2016. "Assessing and Governing Ecosystem Services Trade-Offs in Agrarian Landscapes: The Case of Biogas" Land 5, no. 1: 1. https://doi.org/10.3390/land5010001
APA StyleAlbert, C., Hermes, J., Neuendorf, F., Von Haaren, C., & Rode, M. (2016). Assessing and Governing Ecosystem Services Trade-Offs in Agrarian Landscapes: The Case of Biogas. Land, 5(1), 1. https://doi.org/10.3390/land5010001