Urban Geomorphology Methods and Applications as a Guideline for Understanding the City Environment
<p>Location map of the selected case studies. (<b>On the top</b>), a global view of the countries involved; (<b>below left</b>), the 6 Italian cities selected all along the Italian peninsula: Genoa, Perugia, Rome, Pozzuoli, Benevento, and Potenza, and the Greek city—Patras; (<b>below right</b>), the city located in southern Brazil—São João da Barra.</p> "> Figure 2
<p>Schematic drawings of the landform diversity in Rome, focusing on still recognizable natural landforms modified by human activities (<b>a</b>) and anthropogenic landforms of accumulation (<b>b</b>–<b>d</b>), erosion (<b>e</b>), and mixed examples of both (<b>f</b>). In the top right corner, a geomorphological map excerpt and related legend are depicted showing the mapping of the above-mentioned landforms.</p> "> Figure 3
<p>On the left, drainage network modifications and flood prone areas of the morphological amphitheater on which the historic center of Genoa lies. Legend: (1) poorly modified and/or natural riverbed; (2) culverted stream; (3) concrete channel; (4) eaves channel; (5) abandoned channel; (6) exposed buildings; (7) flooding area with returned period > 200 years; and (8) historical flooded area. On the right, the figures show the upper sector of the Lagaccio stream valley affected by relevant man-made morphological modifications: (<b>a</b>) the present-day situation, with the sports facilities on the fills along the stream; (<b>b</b>) the Lagaccio dam lake in the 1960s; and (<b>c</b>) geomorphological section (BH = boreholes).</p> "> Figure 4
<p>(<b>Upper</b>): Geomorphological map of the emerged and submerged coastland of Pozzuoli: 1, La Starza marine terrace rim; 2, retreating shoreline; 3, edge of continental platform: 3a, retreating; 3b, prograding; 4, valley; 5, edge of marine terrace; 6, underwater bar; 7, submerged paleo fan; 8; submerged paleo sea cliff; 9, volcanic rim; 10, underwater cave; 11, sea stack; 12, undersea gas emission; 13 landslide pile; 14, marine terrace; 15, morphostructural depression; 16, gravel; 17, coarse sand; 18, medium sand; 19, fine sand; 20, very fine sand; 21, silt; 22, silt and clay; 23, pyroclastics (Pleistocene-Holocene); 24, submerged tuff (Late Pleistocene-Holocene); 25, reworked pyroclastics, and alluvial and marine deposits (Holocene); 26, submerged archaeological ruins (Roman age). Depth is in meters a.s.l. and the geographic coordinate system is WGS84. (<b>Lower</b>): Geothematic map of the lowering curves of the Phlegraean Fields coastland related to vertical movements between the Greco-Roman period and the present (after [<a href="#B51-land-13-00907" class="html-bibr">51</a>]). Subsidence is in mm/year and the geographic coordinate system is WGS84; DTM Lidar from MATTM—Environmental Remote Sensing Plan (PT-A).</p> "> Figure 5
<p>Patras (urban area), damage recovery on road in coastal zone affected by powerful sea erosion in November 2021.</p> "> Figure 6
<p>Satellite image of 1985 coastline overlapped with the current one, showing the areal gap due to erosion (modified from [<a href="#B69-land-13-00907" class="html-bibr">69</a>]). Below: coastal sector of the municipality of São João da Barra (Rio de Janeiro) consumed by coastal erosion. The yellow dotted line represents the past position of an avenue (N-S view) (Photo: Laboratory of Geomorphology UNICAMP collection, 2023).</p> "> Figure 7
<p>On the left: Geological-stratigraphic structure of the historic center of Potenza (modified from [<a href="#B71-land-13-00907" class="html-bibr">71</a>]). Below left is an old photo from 1857 (with evidence of the earthquake damage), which shows the asymmetric ridge on which Potenza stands and the entire non-urbanized southern side of which the original morphology can be observed. On the right: Geological schematic section and model along the main axis of the Potenza hilltop town (section A-A’, west–east direction), with evidence of the 3 main areas analyzed and the digital model of the top of the clay substrate.</p> "> Figure 8
<p>The slope angle map of Perugia city is on the right of the figure. The map clearly shows the areas with the highest slope angle values (in red), which are all located in the eastern sector of the city or on the eastern facing slope of the fluvial valleys. Additionally, the map indicates areas with a paleomorphological order (black numbered dots) that differs from the current one. All the areas are located close to the downtown area, where the highest and oldest settlement is limited from the ancient Etruscan Wall. On the left side of the image is Grimana square (point 6 in left figure); (<b>a</b>) the initial topographic layout pre-urbanization; (<b>b</b>) the actual topographic layout; (<b>c</b>) volumes of filled material (in red) and eroded areas (in blue).</p> "> Figure 9
<p>(<b>Upper box</b>)—Schematic geomorphological map of the Benevento urban territory. (<b>Lower box</b>)—Simplified maps of the urban expansion of Benevento town from Roman times to the present-day.</p> ">
Abstract
:1. Introduction
- surveying and mapping geomorphological processes and landforms in urban areas
- geomorphological analysis supporting geo-hazard assessment
- analyzing landscape historical evolution and paleomorphologies
- disseminating knowledge of urban geoheritage and educating about anthropogenic impacts on urban sustainability.
2. Materials and Methods
2.1. Description of the Study Areas
2.2. Methods and Materials for Urban Geomorphology Analysis and Applications
- Base maps: Recent Regional Technical Maps (C.T.R.), at detailed scales, from the 1990s to the present (several Italian case studies). See references therein [26].
- Historical maps:
- “Carta Topografica d’Italia” scale 1:10,000 to 1:25,000. Topographical maps product, produced by the Italian Military Geographical Institute (IGM) since the 19th century and updated approximately once every 20 years (i.e., IGM, 1873; IGM, 1894; IGM, 1936; IGM, 1949; see references therein [26]). Used for several Italian case studies.
- Local historical topographical materials at detailed scales: i.e., the “Piano Topografico di Roma e suburbio” (IGM, 1924, see references therein [26]), at scale 1:5000, used in the Rome case study; maps from the Archive of the Authority of the Port System of the Central Tyrrhenian Sea, used in the Pozzuoli case study; the “Memories of Maps” by [28] for Patras case study.
- Aerial photographs and satellite images: captured since the 1930s for the Italian territories and specific areas, at different scales of observations. Available in local and national archives and online databases.
- Thematic maps, i.e., geological maps, basin plans for the reduction of geo-hydrological risk, municipal urban plans, cavity and sinkhole maps, and archaeological maps
- Digital elevation models, current and historical ones, built from historical topographical data.
- a—surveying and mapping urban geomorphology
- b—geomorphology and urban hazards
- c—historical evolution and paleomorphologies
- d—disseminating education and knowledge of urban geoheritage.
3. Case Studies
3.1. Surveying and Mapping Urban Geomorphological Processes and Landforms
3.1.1. Rome
3.1.2. Genoa
3.2. Geomorphological Analysis Supporting Geo-Hazards Assessment
3.2.1. Pozzuoli
3.2.2. Patras
3.2.3. São João da Barra
3.2.4. Potenza
- The simultaneous presence of autocorrelation (and therefore damage, shown by white points) and high values in the thickness of the conglomerate cover (14–18 m); in this area the most important structural damage is recorded linked to the amplification of the horizontal seismic acceleration due to morphological (ridge effect) and stratigraphic causes.
- The high thickness of the conglomerate cover and poor presence of positive autocorrelation; this is probably due to the limited influence of the geomorphological factor (top of the relief wide compared to the base), which reduces the possibility of seismic amplification (Pagano square and Largo Pignatari).
- The presence of high localized damage and low values of the thickness of the covering (Porta Salza and Torre Guevara). Here the geomorphological factor (elongated and narrow ridge with steep slopes) seems to play an important role in the amplification of horizontal seismic acceleration, determining high levels of damage although concentrated.
3.3. Analysis of Landscape Historical Evolution and Paleomorphology
3.3.1. Perugia
3.3.2. Benevento
3.4. Dissemination of Urban Geoheritage and Education about Anthropogenic Impact on Urban Sustainability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bathrellos, G.D. An overview in urban geology and urban geomorphology. Bull. Geol. Soc. Greece 2007, 40, 1354–1364. [Google Scholar] [CrossRef]
- Szabó, J. Anthropogenic Geomorphology: Subject and System. In Anthropogenic Geomorphology; Szabó, J., Dávid, L., Lóczy, D., Eds.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Cooke, R.U. Urban geomorphology. Geogr. J. 1976, 142, 59–65. [Google Scholar] [CrossRef]
- Cooke, R.U.; Brunsden, D.; Doornkamp, J.C.; Jones, D.K.C. Urban Geomorphology in Drylands; Oxford University Press: Oxford, UK, 1982. [Google Scholar]
- Gibbs, J.P. Measures of Urbanization. Soc. Forces 1966, 45, 170–177. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. Revision of the World Urbanization Prospects. 2018. Available online: https://population.un.org/wup/publications/Files/WUP2018-Report.pdf (accessed on 10 February 2024).
- Taubenböck, H.; Droin, A.; Standfuß, I.; Dosch, F.; Sander, N.; Milbert, A.; Eichfuss, S.; Wurm, M. To be, or not to be ‘urban’? A multi-modal method for the differentiated measurement of the degree of urbanization. Comput. Environ. Urban Syst. 2022, 95, 101830. [Google Scholar] [CrossRef]
- Rebele, F. Urban ecology and special features of urban ecosystems. Glob. Ecol. Biogeogr. Lett. 1994, 4, 173–187. [Google Scholar] [CrossRef]
- Bai, X. Eight energy and material flow characteristics of urban ecosystems. Ambio 2016, 45, 819–830. [Google Scholar] [CrossRef]
- Hooke, R.L. On the history of humans as geomorphic agents. Geology 2000, 28, 843–846. [Google Scholar] [CrossRef]
- Zwoliński, Z.; Hildebrandt-Radke, I.; Mazurek, M.; Makohonienko, M. Anthropogeomorphological metamorphosis of an urban area in the postglacial landscape: A case study of Poznan’ city. In Urban Geomorphology, Landforms and Processes in Cities; Thornbush, M.J., Allen, C.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 55–77. [Google Scholar]
- Gisotti, G. La Fondazione Delle Città; Carocci Editore: Rome, Italy, 2016; ISBN 9788843080762. [Google Scholar]
- Hollis, G. The effect of urbanization on floods of different recurrence interval. Water Resourources Res. 1975, 11, 431–435. [Google Scholar] [CrossRef]
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Fox, S. Urbanization as a global historical process: Theory and evidence from sub-Saharan Africa. Popul. Dev. Rev. 2012, 38, 285–310. [Google Scholar] [CrossRef]
- Salem, A. The anthropogenic geomorphology of the new suburbs, East of Greater Cairo, Egypt. Bull. De La Société De Géographie D’egypte 2018, 91, 1–28. [Google Scholar] [CrossRef]
- Wu, Z.; Milliman, J.D.; Zhao, D.; Cao, Z.; Zhou, J.; Zhou, C. Geomorphologic changes in the lower Pearl River Delta, 1850–2015, largely due to human activity. Geomorphology 2018, 314, 42–54. [Google Scholar] [CrossRef]
- Daoudi, M.; Niang, A.J. Effects of geomorphological characteristics on urban expansion of Jeddah city-Western Saudi Arabia: A GIS and Remote Sensing Data-Based Study (1965–2020). J. Taibah Univ. Sci. 2021, 15, 1217–1231. [Google Scholar] [CrossRef]
- Zerboni, A.; Brandolini, F.; Mariani, G.S.; Perego, A.; Salvatori, S.; Usai, D. The Khartoum-Omdurman conurbation: A growing megacity at the confluence of the Blue and White Nile Rivers. J. Maps 2021, 17, 227–240. [Google Scholar] [CrossRef]
- OECD Organisation for Economic Co-Operation and Development. Urban Population by City Size (Indicator). 2023. Available online: https://www.oecd-ilibrary.org/urban-rural-and-regional-development/urban-population-by-city-size/indicator/english_b4332f92-en (accessed on 12 December 2023). [CrossRef]
- Eurostat. European Statistics on Cities. 2019. Available online: https://ec.europa.eu/eurostat/documents/4031688/7672011/KS-04-16-588-EN-N.pdf (accessed on 20 January 2024).
- Degurba Refined Degree of Urbanisation in Europe. 2018. Available online: https://www.eea.europa.eu/en/datahub/datahubitem-view/a5857b35-9d27-4d42-94b7-4d141ee5b550 (accessed on 20 January 2024).
- Urban Atlas Land Cover/Land Use. 2018. Available online: https://land.copernicus.eu/en/products/urban-atlas (accessed on 20 January 2024).
- Istat. Classificazioni Statistiche e Dimensione dei Comuni. 2024. Available online: https://www.istat.it/it/archivio/156224 (accessed on 20 January 2024).
- Lazzari, M. Utilizzo delle fonti storiche per lo studio della pericolosità e del rischio geomorfologico. Mem. Descr. Della Carta Geol. D’italia 2014, XCVI, 251–260. [Google Scholar]
- Del Monte, M.; D’Orefice, M.; Luberti, G.M.; Marini, R.; Pica, A.; Vergari, F. Geomorphological classification of urban landscapes: The case study of Rome (Italy). J. Maps 2016, 12, 178–189. [Google Scholar] [CrossRef]
- Coratza, P.; Bollati, I.M.; Panizza, V.; Brandolini, P.; Castaldini, D.; Cucchi, F.; Deiana, G.; Del Monte, M.; Faccini, F.; Finocchiaro, F.; et al. Advances in Geoheritage Mapping: Application to Iconic Geomorphological Examples from the Italian Landscape. Sustainability 2021, 13, 11538. [Google Scholar] [CrossRef]
- Alexopoulou, E.; Stamatiou, S. Memories of Maps, Patras. 1831–1943; Patras, Greece, 2014; ISBN 978-960-87448-5-1. [Google Scholar]
- Griffiths, J.S.; Abraham, J.K. Factors affecting the use of applied geomorphology maps to communicate with different end-users. J. Maps 2008, 4, 201–210. [Google Scholar] [CrossRef]
- ISPRA. Carta Geomorfologica D’italia 1:50.000. Guida Alla Rappresentazione Cartografica. In Quaderni Serie III; Volume 10. 2007. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/i-quaderni-serie-iii-del-sgi/carta-geomorfologica-ditalia-1-50-000-guida-alla (accessed on 9 February 2024).
- Campobasso, C.; Carton, A.; Chelli, A.; D’Orefice, M.; Dramis, F.; Graciotti, R.; Guida, D.; Pambianchi, G.; Peduto, F.; Pellegrini, F. Aggiornamento ed Integrazioni delle Linee Guida della Carta Geomorfologica d’Italia alla Scala 1:50,000; ISPRA: Rome, Italy, 2018. Available online: https://www.isprambiente.gov.it/it/pubblicazioni/periodici-tecnici/i-quaderni-serie-iii-del-sgi/cartageomorfologica-ditalia-alla-scala-1-50.000-aggiornamento-ed-integrazioni-delle-linee-guida-della-carta-geomorfologicaditalia-alla-scala-1-50.000-fascicolo-i (accessed on 14 October 2021).
- Funiciello, R.; Giordano, G. La nuova carta geologica di Roma: Litostratigrafia e organizzazione stratigrafica. In La Geologia di Roma dal Centro Storico alla Periferia; Funiciello, R., Praturlon, A., Giordano, G., Eds.; Memorie Descrittive della Carta Geologica d’Italia; S.E.L.C.A., 2008; Volume 80, pp. 39–85. [Google Scholar]
- Karner, D.B.; Marra, F.; Renne, P.R. The history of the Monti Sabatini and Alban hills volcanoes: Groundwork for assessing volcanic-tectonic hazards for Rome. J. Volcanol. Geotherm. Res. 2001, 107, 185–215. [Google Scholar] [CrossRef]
- Vergari, F.; Luberti, G.M.; Pica, A.; Del Monte, M. Geomorphology of the historic centre of the Urbs (Rome, Italy). J. Maps 2021, 17, 6–17. [Google Scholar] [CrossRef]
- Etzelmuller, B. On the Quantification of surface changes using Grid-based digital elevation models (DEMs). Trans. GIS 2000, 4, 129–143. [Google Scholar] [CrossRef]
- Luberti, G.M.; Vergari, F.; Pica, A.; Del Monte, M. Estimation of the thickness of anthropogenic deposits in historical urban centres: An interdisciplinary methodology applied to Rome (Italy). Holocene 2019, 29, 158–172. [Google Scholar] [CrossRef]
- Brandolini, P.; Faccini, F.; Paliaga, G.; Piana, P. Man-Made landforms survey and mapping of an urban historical centre in a coastal Mediterranean environment. Geogr. Fis. E Din. Quat. 2018, 41, 97–102. [Google Scholar]
- Faccini, F.; Giardino, M.; Paliaga, G.; Perotti, L.; Brandolini, P. Urban geomorphology of Genoa Old City (Italy). J. Maps 2021, 17, 51–64. [Google Scholar] [CrossRef]
- Sacchini, A.; Imbrogio Ponaro, M.; Paliaga, G.; Piana, P.; Faccini, F.; Coratza, P. Geological Landscape and Stone Heritage of the Genoa Walls Urban Park and surrounding area (Italy). J. Maps 2018, 14, 528–541. [Google Scholar] [CrossRef]
- Terrone, M.; Piana, P.; Paliaga, G.; D’Orazi, M.; Faccini, F. Coupling Historical Maps and LiDAR Data to Identify Man-Made Landforms in Urban Areas. ISPRS Int. J. Geo-Inf. 2021, 10, 349. [Google Scholar] [CrossRef]
- Somma, R.; Iuliano, S.; Matano, F.; Molisso, F.; Passaro, S.; Sacchi, M.; Troise, C.; De Natale, G. High-resolution morpho-bathymetry of Pozzuoli Bay, southern Italy. J. Maps 2016, 12, 222–230. [Google Scholar] [CrossRef]
- Patacca, E.; Sartori, R.; Scandone, P. Tyrrhenian basin and Apenninic arcs: Kinematic relations since Late Tortonian times. Mem. Descr. Della Carta Geol. D’italia 1990, 45, 425–451. [Google Scholar]
- Isaia, R.; Vitale, S.; Marturano, A.; Aiello, G.; Barra, D.; Ciarcia, S.; Iannuzzi, E.; Tramparulo, F.D. High-resolution geological investigations to reconstruct the long-term ground movements in the last 15 kyr at Campi Flegrei caldera (southern Italy). J. Volcanol. Geotherm. Res. 2019, 385, 143–158. [Google Scholar] [CrossRef]
- Lima, A.; Bodnar, R.J.; De Vivo, B.; Spera, F.J.; Belkin, H.E. Interpretation of recent unrest events (bradyseism) at Campi Flegrei, Napoli (Italy): Comparison of models based on cyclical hydrothermal events versus shallow magmatic intrusive events. Geofluids 2021, 2021, 2000255. [Google Scholar] [CrossRef]
- Del Gaudio, C.; Aquino, I.; Ricciardi, G.P.; Ricco, C.; Scandoni, R. Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 2010, 195, 48–56. [Google Scholar] [CrossRef]
- Guidoboni, E.; Ciuccarelli, C. The Campi Flegrei caldera: Historical revision and new data on seismic crises, bradyseism, the Monte Nuovo eruption and ensuing earthquakes (twelfth century 1538 AD). Bull. Volcanol. 2010, 73, 655–677. [Google Scholar] [CrossRef]
- Sharp, W.E.; Nardi, G. A study of the heavy metal pollution in the bottom sediments at Porto di Bagnoli (Naples), Italy. J. Geochem. Explor. 1987, 29, 49–73. [Google Scholar] [CrossRef]
- Trifuoggi, M.; Donadio, C.; Ferrara, L.; Stanislao, C.; Toscanesi, M.; Arienzo, M. Levels of pollution of rare earth elements in the surface sediments from the Gulf of Pozzuoli (Campania, Italy). Mar. Pollut. Bull. 2018, 136, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Trifuoggi, M.; Donadio, C.; Mangoni, O.; Ferrara, L.; Bolinesi, F.; Nastro, R.A.; Stanislao, C.; Toscanesi, M.; Di Natale, G.; Arienzo, M. Distribution and enrichment of trace metals in surface marine sediments in the Gulf of Pozzuoli and off the coast of the brownfield metallurgical site of Ilva of Bagnoli (Campania, Italy). Mar. Pollut. Bull. 2017, 124, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Vitale, S.; Natali, J. Combined volcano-tectonic processes for the drowning of the Roman western coastal settlements at Campi Flegrei (southern Italy). Earth Planet Space 2023, 75, 15. [Google Scholar] [CrossRef]
- Stanislao, C. Geomorphological and Geoarchaeological Indicators of Vertical Ground Motions to Reconstruct Landscape Morphoevolution of Campania. Ph.D. Thesis, XXX Cycle, Department of Earth Sciences, Environment and Resources, University of Naples Federico II, Naples, Italy, 2018; 268p. [Google Scholar]
- Mattei, G.; Amato, L.; Caporizzo, C.; Cinque, A.; Pappone, G.; Sorrentino, A.; Troisi, S.; Aucelli, P.P.C. Reconstructing anthropic coastal landscape of Campi Flegrei volcanic area (Southern Italy) during the Roman period from multi-technique surveys. J. Maps 2023, 19, 2187320. [Google Scholar] [CrossRef]
- Sacchi, M.; Pepe, F.; Corradino, M.; Insinga, D.; Molisso, F.; Lubritto, C. The Neapolitan Yellow Tuff caldera offshore the Campi Flegrei: Stratal architecture and kinematic reconstruction during the last 15 ky. Mar. Geol. 2014, 354, 15–33. [Google Scholar] [CrossRef]
- ELSTAT—Hellenic Statistical Authority. Available online: https://www.statistics.gr (accessed on 20 January 2024).
- Stamatopoulos, L.; Alevizos, G. Morphological evolution of the urban landscape of the city of Patras and possible natural hazards. In Proceedings of the Abstract Book of the SGI-SIMP Congress, Geosciences for the Environment, Natural Hazard and Cultural Heritage, Catania, Italy, 12–14 September 2018; Società Geologica Italiana: Roma, Italy, 2018; p. 753. [Google Scholar]
- Ferentinos, G.; Brooks, M.; Doutsos, T. Quaternary tectonics in the Gulf of Patras, western Greece. J. Struct. Geol. 1985, 7, 713–717. [Google Scholar] [CrossRef]
- Kontopoulos, N.; Doutsos, T. Sedimentology and tectonics of the Antirion area (western Greece). Boll. Della Soc. Geol. Ital. 1985, 104, 479–489. [Google Scholar]
- Koukouvelas, I.; Doutsos, T. Implications of structural segmentation during earthquakes: The 1995 Egion earthquake, Gulf of Corinth, Greece. J. Struct. Geol. 1996, 18, 1381–1388. [Google Scholar] [CrossRef]
- Doutsos, T.; Kokkalas, S. Stress and deformation patterns in the Aegean region. J. Struct. Geol. 2001, 23, 455–472. [Google Scholar] [CrossRef]
- Stefatos, A.; Papatheodorou, G.; Ferentinos, G.; Leeder, M.; Collier, R. Seismic reflection imaging of active offshore faults in the Gulf of Corinth: Their seismotectonic significance. Basin Res. 2002, 14, 487–502. [Google Scholar] [CrossRef]
- SJB—São João da Barra (2023). Prefeitura. 2014. Available online: http://www.sjb.rj.gov.br/historico (accessed on 14 July 2023).
- ANA—Agência Nacional de Águas (HidroWeb. Sistema de Informações Hidrológicas). 2023. Available online: http://www.snirh.gov.br/hidroweb/ (accessed on 14 July 2023).
- CPRM—Serviço Geológico do Brasil. Geologia do Estado do Rio de Janeiro; Programa Levantamentos Geológicos Básicos do Brasil; Ministério de Minas e Energia: Brasília, Brazil, 2001; 80p. [Google Scholar]
- Martin, L.; Suguio, K.; Flexor, J.M.; Dominguez, J.; Azevedo, A.E.G. Evoluçao da planicie costeira do rio Paraiba do Sul (RJ) durante o quaternario: Influencia das flutuaçoes do nivel do mar. In Anais Do Trigesimo Terceiro Congresso Brasileiro de Geologia; Congresso Brasileiro de Geologia, 33: Rio de Janeiro, Brazil, 1984; pp. 84–97. [Google Scholar]
- da Rocha, T.B.; De Vasconcelos, S.C.; Pereira, T.G.; Fernandez, G.B. Datação por Luminescência Opticamente Estimulada (LOE) nas cristas de praia do delta do rio Paraíba do Sul: Considerações sobre a evolução geomorfológica entre o Pleistoceno superior e o Holoceno. Rev. Bras. Geomorfol. 2019, 20. [Google Scholar] [CrossRef]
- Lämmle, L.; Perez Filho, A.; Donadio, C.; Moreira, V.B.; Santos, C.J.; Souza, A.O. Baixos terraços marinhos associados às transgressões e regressões marinhas holocênicas na Planície Costeira do rio Paraíba do Sul, Rio de Janeiro, Brasil. Rev. Bras. Geomorfol. 2022, 23, 1285–1303. [Google Scholar] [CrossRef]
- Souza, A.O.; Lämmle, L.; Perez Filho, A.; Donadio, C. Recent geomorphological changes in the Paraiba do Sul delta, South America East Coast. Prog. Phys. Geogr. 2022, 46, 566–588. [Google Scholar] [CrossRef]
- Souza, A.O.; Lämmle, L.; Perez Filho, A.; Donadio, C. Reply to the comments on Souza et al. (2022)—Recent geomorphological changes in the Paraiba do Sul delta, South America East Coast. Prog. Phys. Geogr. 2023, 1, 1–10. [Google Scholar] [CrossRef]
- Lämmle, L.; Perez Filho, A.; Donadio, C.; Arienzo, L.; Ferrara, L.; Santos, C.J.; Souza, A.O. Anthropogenic Pressure on Hydrographic Basin and Coastal Erosion in the Delta of Paraíba do Sul River, Southeast Brazil. J. Mar. Sci. Eng. 2022, 10, 1585. [Google Scholar] [CrossRef]
- Costa, L.L.; Bulhões, E.M.R.; Caetano, J.P.A.; Arueira, V.F.; Almeida, D.T.; Vieira, T.B.; Cardoso, L.J.T.; Zalmon, I.R. Do costal erosion and urban development threat loggerhead sea turtle nesting? Implications for sandy beach management. Front. Mar. Sci. 2023, 10, 1242903. [Google Scholar] [CrossRef]
- Longhitano, S.G. Sedimentary facies and sequence stratigraphy of coarse-grained Gilbert-type deltas within the Pliocene thrust-top Potenza Basin (Southern Apennines, Italy). Sediment. Geol. 2008, 210, 87–110. [Google Scholar] [CrossRef]
- Danese, M.; Lazzari, M.; Murgante, B. Integrated geological, geomorphological and geostatistical analysis to study macroseismic effects of 1980 Irpinian earthquake in urban areas (southern Italy). In Lecture Notes in Computer Science; Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M.L., Eds.; ICCSA 2009; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5592, pp. 50–65. [Google Scholar]
- Danese, M.; Lazzari, M.; Murgante, B. Geostatistics in Historical Macroseismic Data Analysis. In Transaction on Computational Science VI; Gavrilova, M.L., Tan, C.J.K., Eds.; LNCS 5730; Springer: Berlin/Heidelberg, Germany, 2009; pp. 324–341. [Google Scholar]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Melelli, L. Perugia upside-down: A multimedia exhibition in Umbria (Central Italy) for improving geoheritage and geotourism in urban areas. Resources 2019, 8, 148. [Google Scholar] [CrossRef]
- Melelli, L.; Silvani, F.; Ercoli, M.; Pauselli, C.; Tosi, G.; Radicioni, F. Urban Geology for the Enhancement of the Hypogean Geosites: The Perugia Underground (Central Italy). Geoheritage 2021, 13, 18. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Bencardino, F. Benevento, Funzioni Urbane e Trasformazioni Territoriali; Edizioni Scientifiche Italiane S.p.A.: Napoli, Italy, 1991; p. 211. [Google Scholar]
- Valente, A.; Iscaro, C.; Magliulo, P.; Russo, F. The flood event in Benevento on 14th–15th October 2015: A short report. Rend. Line Della Soc. Geol. Ital. 2016, 38, 105–108. [Google Scholar] [CrossRef]
- Guerriero, L.; Focareta, M.; Fusco, G.; Rabuano, R.; Guadagno, F.M.; Revellino, P. Flood hazard of major river segments, Benevento Province, Southern Italy. J. Maps 2018, 14, 597–606. [Google Scholar] [CrossRef]
- Magliulo, P.; Valente, A. GIS-Based Geomorphological Map of the Calore River floodplain near Benevento (Southern Italy) overflooded by the 15th October 2015 event. Water 2020, 12, 148. [Google Scholar] [CrossRef]
- Reynard, E.; Pica, A.; Coratza, P. Urban geomorphological heritage. An overview. In Quaestiones Geographicae; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2017; Volume 36, pp. 7–20. [Google Scholar]
- Pica, A.; Luberti, G.M.; Vergari, F.; Fredi, P.; Del Monte, M. Contribution for an urban geomorphoheritage assessment method: Proposal from three geomorphosites in Rome (Italy). Quaest. Geogr. 2017, 36, 21–36. [Google Scholar] [CrossRef]
- Pica, A.; Reynard, E.; Grangier, L.; Kaiser, C.; Ghiraldi, L.; Perotti, L.; Del Monte, M. GeoGuides, Urban Geotourism Offer Powered by Mobile Application Technology. Geoheritage 2018, 10, 311. [Google Scholar] [CrossRef]
- Del Monte, M. Geomorphology of Rome; Sapienza Università Editrice: Rome, Italy, 2020; ISBN 9788893771498. [Google Scholar]
- Agnesi, V. La Geomorfologia di Palermo; Sapienza Università Editrice: Rome, Italy, 2021; ISBN 9788893771689. [Google Scholar]
- Calcaterra, D. La Geomorfologia di Napoli; Sapienza Università Editrice: Rome, Italy, 2023; ISBN 9788893772884. [Google Scholar]
- Barbosa, T.S.; Furrier, M. Methodological considerations and proposed integrated legend for anthropogenic geomorphological mapping. Rev. Bras. Geomorfol. 2023, 24. [Google Scholar] [CrossRef]
- Barbosa, T.S.; Furrier, M. Anthropogenic Geomorphological Mapping of the Central Sector of the João Pessoa Metropolitan Region (PB), Brazil. Rev. Bras. De Geomorfol. 2023, 24. [Google Scholar] [CrossRef]
- Chirico, P.G.; Bergstresser, S.E.; De Witt, J.; Alessi, M.A. Geomorphological mapping and anthropogenic landform change in an urbanizing watershed using structure-from-motion photogrammetry and geospatial modeling techniques. J. Maps 2021, 17, 241–252. [Google Scholar] [CrossRef]
- Jancewicz, K.; Traczyk, A.; Migoń, P. Landform modifications within an intramontane urban landscape due to industrial activity, Wałbrzych, SW Poland. J. Maps 2021, 17, 194–201. [Google Scholar] [CrossRef]
- Łajczak, A.; Zarychta, R.; Wałek, G. Changes in the topography of Krakow city centre, Poland, during the last millennium. J. Maps 2021, 17, 186–193. [Google Scholar] [CrossRef]
- Łajczak, A.; Zarychta, R. Kraków—Anthropogenic Changes in the Relief of a Large City. In Landscapes and Landforms of Poland; Migoń, P., Jancewicz, K., Eds.; World Geomorphological Landscapes; Springer: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Molewski, P. Anthropogenic degradation of dunes within a city: A disappearing feature of the cultural landscape of Toruń (Poland). J. Maps 2021, 17, 162–169. [Google Scholar] [CrossRef]
- Wierzbicki, G.; Ostrowski, P.; Bartold, P.; Bujakowski, F.; Falkowski, T.; Osinski, P. Urban geomorphology of the Vistula River valley in Warsaw. J. Maps 2021, 17, 170–185. [Google Scholar] [CrossRef]
- Zwoliński, Z.; Jasiewicz, J.; Mazurek, M.; Hildebrandt-Radke, I.; Makohonienko, M. Geohazards and Geomorphological Setting in Poznań Urban Area, Poland. J. Maps 2021, 17, 202–214. [Google Scholar] [CrossRef]
- Fuse, T.; Shimizu, E.; Morichi, S. A study on geometric correction of historical maps. Int. Arch. Photogramm. Remote Sens. 1998, 32, 543–548. [Google Scholar]
- Niederöst, J. Landscape as a historical object: 3D reconstruction and evaluation of a relief model from the 18th century. In ETH Zurich Research Collection; Swiss Federal Institute of Technology, Institute of Geodesy and Photogrammetry: Zurich, Switzerland, 2002. [Google Scholar] [CrossRef]
- Shimizu, E.; Fuse, T. Rubber-sheeting of historical maps in GIS and its application to landscape visualization of old-time cities: Focusing on Tokyo of the past. Proc. 8th Int. Conf. Comput. Urban Plan. Urban Manag. 2003, 11, 3–8. [Google Scholar]
- Fuse, T.; Shimizu, E. Visualizing the landscape of old-time Tokyo (Edo City). In Processing and Visualization Using High-Resolution Images; Gruen, A., Murai, S., Fuse, T., Remondino, F., Eds.; ISPRS XXXVI-5/W1; ISPRS: Pitsanulok, Thailand, 2004; Available online: http://www.isprs.org/proceedings/XXXVI/5-W1/papers/21.pdf (accessed on 29 January 2024).
- Rodrigues, C. Morfologia original e morfologia antropogênica na definição de unidades espaciais de planejamento urbano: Exemplo na metrópole paulista. Rev. Dep. Geogr. 2005, 17, 101–111. [Google Scholar] [CrossRef]
- Hohensinner, S.; Lager, B.; Sonnlechner, C.; Haidvogl, G.; Gierlinger, S.; Schmid, M.; Krausmann, F.; Winiwarter, V. Changes in water and land: The reconstructed Viennese riverscape from 1500 to the present. Water Hist. 2013, 5, 145–172. [Google Scholar] [CrossRef] [PubMed]
- Jordan, H.; Hamilton, K.; Lawley, R.; Price, S.J. Anthropogenic contribution to the geological and geomorphological record: A case study from Great Yarmouth, Norfolk, UK. Geomorphology 2016, 253, 534–546. [Google Scholar] [CrossRef]
- Knight, J. Transforming the Physical Geography of a City: An Example of Johannesburg, South Africa. In Urban Geomorphology; Mary, J., Thornbush, C.D., Allen, Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 129–147. ISBN 9780128119518. [Google Scholar] [CrossRef]
- Petrus, J.M.; Ruiz, M.; Estrany, J. Interactions between Geomorphology and Urban Evolution Since Neolithic Times in a Mediterranean City. In Urban Geomorphology; Mary, J., Thornbush, C.D., Allen, Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 9–35. ISBN 9780128119518. [Google Scholar] [CrossRef]
- Berčič, T. Virtual Restoration and Preservation of Anthropogenic Nineteenth-Century Landscapes Based on Historical Land-Use Data. In Cultural Urban Heritage; Obad Šćitaroci, M., Bojanić Obad Šćitaroci, B., Mrđa, A., Eds.; The Urban Book Series; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Brandolini, P.; Faccini, F.; Paliaga, G.; Piana, P. Urban geomorphology in coastal environment: Man-made morpholog-ical changes in a seaside tourist resort (Rapallo, eastern Liguria, Italy). In Quaestiones Geographicae; Bogucki Wy-dawnictwo Naukowe: Poznań, Poland, 2017; Volume 36, pp. 97–110. [Google Scholar]
- Comănescu, L.; Nedelea, A.; Stănoiu, G. Geomorphosites and geotourism in Bucharest city center (Romania). In Quaestiones Geographicae; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2017; Volume 36, pp. 51–61. [Google Scholar]
- Dall’Aglio, P.L.; De Donatis, M.; Franceschelli, C.; Guerra, C.; Nesci, O.; Piacentini, D.; Savelli, D. Geomorphological and anthropic control of the development of some Adriatic historical towns (Italy) since the Roman age. In Quaestiones Geographicae; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2017; Volume 36, pp. 111–123. [Google Scholar]
- Górska-Zabielska, M.; Zabielski, R. Potential values of urban geotourism development in a small Polish town (Pruszków, Central Mazovia, Poland). In Quaestiones Geographicae; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2017; Volume 36, pp. 75–86. [Google Scholar]
- Kubalikova, L.; Kirchner, K.; Bajer, A. Secondary geodiversity and its potential for urban geotourism: A case studyfrom Brno city, Czech Republic. In Quaestiones Geographicae; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2017; Volume 36, pp. 63–73. [Google Scholar]
- Kubalíková, L.; Drápela, E.; Kirchner, K.; Bajer, A.; Balkova, M.; Kuda, F. Urban geotourism development and geoconservation: Is it possible to find a balance? Environ. Sci. Policy 2021, 121, 1–10, ISSN 1462-9011. [Google Scholar] [CrossRef]
- Nistor, C.; Mihai, B.; Toma, L.; Carlan, I. Photogrammetric modelling for urban medieval site mapping. A casestudy from Curtea de Argeş, Romania. In Quaestiones Geographicae; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2017; Volume 36, pp. 87–96. [Google Scholar]
- Tičar, J.; Komac, B.; Zorn, M.; Ferk, M.; Hrvatin, M.; Ciglic, R. From urban geodiversity to geoheritage: The caseof Ljubljana (Slovenia). In Quaestiones Geographicae; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2017; Volume 36, pp. 37–50. [Google Scholar]
- Zwoliński, Z.; Hildebrandt-Radke, I.; Mazurek, M.; Makohonienko, M. Existing and proposed urban geosites values resulting from geodiversity of Poznań City. In Quaestiones Geographicae; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2017; Volume 36, pp. 125–149. [Google Scholar]
- Pelfini, M.; Brandolini, F.; D’Archi, S.; Pellegrini, L.; Bollati, I. Papia civitas gloriosa: Urban geomorphology for a thematic itinerary on geocultural heritage in Pavia (Central Po Plain, N Italy). J. Maps 2021, 17, 42–50. [Google Scholar] [CrossRef]
- Vegas, J.; Díez-Herrero, A. An Assessment Method for Urban Geoheritage as a Model for Environmental Awareness and Geotourism (Segovia, Spain). Geoheritage 2021, 13, 27. [Google Scholar] [CrossRef]
Country/Topic | a | b | c | d |
---|---|---|---|---|
Italy | 14 | 1 | 2 | 4 |
Greece | 2 | 0 | 0 | 0 |
Poland | 6 | 0 | 0 | 2 |
Czech Republic | 0 | 0 | 1 | 1 |
Slovenia | 0 | 0 | 1 | 1 |
Romania | 0 | 0 | 0 | 2 |
Switzerland | 0 | 0 | 1 | 1 |
Spain | 0 | 0 | 0 | 1 |
Austria | 0 | 0 | 0 | 1 |
UK | 0 | 0 | 0 | 1 |
Madagascar | 0 | 1 | 0 | 0 |
Sudan | 0 | 1 | 1 | 0 |
South Africa | 0 | 0 | 1 | 0 |
Brazil | 3 | 3 | 3 | 0 |
Iraq | 1 | 0 | 0 | 0 |
Sri Lanka | 1 | 0 | 0 | 0 |
Kuwait | 0 | 0 | 1 | 0 |
China | 1 | 0 | 1 | 0 |
Iran | 0 | 1 | 0 | 0 |
USA | 1 | 1 | 1 | 0 |
Japan | 0 | 0 | 3 | 0 |
Mexico | 0 | 0 | 1 | 0 |
City | Typology (Size and Urbanization) | Geographical Context | Main Morphogenetic Processes | Study Topic | Methods |
---|---|---|---|---|---|
Genoa | Metropolis (583 k) *; 1 ** | Coastal | anthropogenic, fluvial, marine, hillslope | Mapping; Geoheritage | Geomorphological mapping |
Perugia | Small urban area (166 k); 1 | Hilltop | fluvial, gravitative, anthropogenic | Landscape historical evolution and paleomorphologies; Geoheritage | Assessment of anthropogenic erosion and accumulation volumes—DEM of Differences (DoD) |
Rome | Large Metropolis (2.87 M); 1 | Fluvial | anthropogenic, fluvial, gravitative, structural | Mapping; Geoheritage | Geomorphological mapping |
Pozzuoli | Small urban area (76 k); 2 | Coastal | anthropogenic, volcano tectonics, marine | Geomorphological analysis supporting hazards assessment | Bathymetric and underwater surveys, sediment samples analysis, boreholes interpretation |
Benevento | Small urban area (57 k); 2 | Fluvial, hilltop | anthropogenic, fluvial erosion, hillslope degradation | Landscape historical evolution and paleomorphologies | Urban expansion multitemporal and multidisciplinary analysis |
Potenza | Small urban area (67 k); 1 | Hilltop | Fluvial erosion, gravitative slope processes | Geomorphological analysis supporting hazards assessment | Geological modeling, macroseismic analysis, geostatistics |
Patras | Small urban area (171 k); 1 | Coastal | Anthropogenic, fluvial, gravitative, structural | Geomorphological analysis supporting hazards assessment | Geomorphological survey, analysis of long-term and short-term coastline displacement |
Sao Joa da Barra | Small urban area (33 k); 2 | Coastal | Fluvial, marine, anthropogenic | Geomorphological analysis supporting hazards assessment | Coastal erosion multi-scale analysis, systemic approach |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pica, A.; Lämmle, L.; Burnelli, M.; Del Monte, M.; Donadio, C.; Faccini, F.; Lazzari, M.; Mandarino, A.; Melelli, L.; Perez Filho, A.; et al. Urban Geomorphology Methods and Applications as a Guideline for Understanding the City Environment. Land 2024, 13, 907. https://doi.org/10.3390/land13070907
Pica A, Lämmle L, Burnelli M, Del Monte M, Donadio C, Faccini F, Lazzari M, Mandarino A, Melelli L, Perez Filho A, et al. Urban Geomorphology Methods and Applications as a Guideline for Understanding the City Environment. Land. 2024; 13(7):907. https://doi.org/10.3390/land13070907
Chicago/Turabian StylePica, Alessia, Luca Lämmle, Martina Burnelli, Maurizio Del Monte, Carlo Donadio, Francesco Faccini, Maurizio Lazzari, Andrea Mandarino, Laura Melelli, Archimedes Perez Filho, and et al. 2024. "Urban Geomorphology Methods and Applications as a Guideline for Understanding the City Environment" Land 13, no. 7: 907. https://doi.org/10.3390/land13070907
APA StylePica, A., Lämmle, L., Burnelli, M., Del Monte, M., Donadio, C., Faccini, F., Lazzari, M., Mandarino, A., Melelli, L., Perez Filho, A., Russo, F., Stamatopoulos, L., Stanislao, C., & Brandolini, P. (2024). Urban Geomorphology Methods and Applications as a Guideline for Understanding the City Environment. Land, 13(7), 907. https://doi.org/10.3390/land13070907