Dynamics in Land Cover and Landscape Patterns of Myanmar: A Three-Decade Perspective (1990–2020)
<p>Location of Myanmar.</p> "> Figure 2
<p>Land cover distribution of Myanmar: (<b>a</b>) 1990; (<b>b</b>) 2000; (<b>c</b>) 2010; (<b>d</b>) 2020.</p> "> Figure 3
<p>Spatial distribution changes in core land cover types in Myanmar, spanning from 1990 to 2020: (<b>a</b>) cultivated land, (<b>b</b>) forests, (<b>c</b>) wetlands, (<b>d</b>) water bodies, and (<b>e</b>) artificial surfaces.</p> "> Figure 4
<p>Distribution map of comprehensive land use dynamic degree in Myanmar’s states and provinces: (<b>a</b>) 1990–2000; (<b>b</b>) 2000–2010; (<b>c</b>) 2010–2020.</p> "> Figure 5
<p>Transition of land cover types across Myanmar from 1990 to 2020.</p> "> Figure 6
<p>Spatial distribution map of land cover type transitions in Myanmar: (<b>a</b>) 1990–2000; (<b>b</b>) 2000–2010; (<b>c</b>) 2010–2020.</p> "> Figure 7
<p>Spatial distribution map of key land cover type transitions in Myanmar: (<b>a</b>) cultivated land/forest to artificial surface; (<b>b</b>) forest to wetland/water bodies.</p> "> Figure 8
<p>Statistics on changes in landscape pattern metrics at the landscape level from 1990 to 2020.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Land Use and Land Cover Data
2.3. Methods
2.3.1. Temporal Dynamic Analysis Method
2.3.2. Spatial Dynamic Analysis Method
3. Results
3.1. Land Cover Changes
3.1.1. Spatial Dynamics
3.1.2. Temporal Dynamics
3.1.3. Transition Patterns
3.2. Landscape Pattern Changes
3.2.1. Class Level
3.2.2. Landscape Level
4. Discussion
4.1. Integrating Land Cover Changes and Landscape Pattern Dynamics
4.2. Governance and Policy-Driven Changes in Land Cover and Landscape Transformation
4.2.1. Regime Reforms
4.2.2. Forestry Policy
4.2.3. Alternative Development
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
2000 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bareland | Permanent Snow and Ice | ||
1990 | Cultivated Land | 152,687 | 9063 | 12442 | 1395 | 719 | 1913 | 1525 | 17 | 24 |
Forest | 8994 | 391,705 | 9957 | 2403 | 1100 | 455 | 276 | 49 | 10 | |
Grassland | 8318 | 16,457 | 12930 | 395 | 146 | 634 | 342 | 80 | 9 | |
Shrubland | 1653 | 7041 | 965 | 687 | 6 | 4 | 5 | 0 | 0 | |
Wetland | 1233 | 1318 | 46 | 66 | 4502 | 744 | 18 | 8 | 2 | |
Water Bodies | 1194 | 214 | 340 | 21 | 156 | 6279 | 11 | 25 | 124 | |
Artificial Surfaces | 1776 | 289 | 209 | 16 | 46 | 63 | 806 | 9 | 2 | |
Bareland | 200 | 3082 | 275 | 68 | 6 | 128 | 122 | 436 | 341 | |
Permanent Snow and Ice | 9 | 37 | 34 | 4 | 0 | 3 | 21 | 354 | 796 |
2010 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bareland | Permanent Snow and Ice | ||
2000 | Cultivated Land | 153,097 | 6168 | 8900 | 1827 | 1022 | 2253 | 2707 | 76 | 13 |
Forest | 23,219 | 387,486 | 10,552 | 5269 | 1098 | 758 | 514 | 190 | 120 | |
Grassland | 14,493 | 10,179 | 10,470 | 1181 | 31 | 336 | 319 | 164 | 26 | |
Shrubland | 1158 | 2087 | 749 | 768 | 37 | 230 | 4 | 14 | 11 | |
Wetland | 1134 | 1368 | 34 | 3 | 3591 | 537 | 15 | 0 | 0 | |
Water Bodies | 1841 | 240 | 155 | 2 | 702 | 7127 | 37 | 104 | 15 | |
Artificial Surfaces | 1601 | 255 | 158 | 15 | 8 | 41 | 980 | 54 | 15 | |
Bareland | 19 | 157 | 190 | 2 | 4 | 8 | 1 | 180 | 420 | |
Permanent Snow and Ice | 7 | 53 | 29 | 0 | 1 | 4 | 0 | 255 | 957 |
2020 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest | Grassland | Shrubland | Wetland | Water Bodies | Artificial Surfaces | Bareland | Permanent Snow and Ice | ||
2010 | Cultivated Land | 153,117 | 21,413 | 11843 | 1816 | 972 | 3143 | 3832 | 414 | 19 |
Forest | 10,634 | 381,648 | 9879 | 1676 | 895 | 1038 | 923 | 1109 | 191 | |
Grassland | 7466 | 8860 | 12,196 | 1935 | 50 | 254 | 155 | 168 | 153 | |
Shrubland | 1436 | 5384 | 1277 | 908 | 4 | 7 | 48 | 3 | 2 | |
Wetland | 931 | 1234 | 26 | 1 | 3399 | 881 | 11 | 8 | 3 | |
Water Bodies | 1528 | 372 | 22 | 0 | 842 | 8425 | 72 | 24 | 9 | |
Artificial Surfaces | 1959 | 453 | 106 | 2 | 7 | 76 | 1753 | 220 | 1 | |
Bareland | 236 | 87 | 71 | 0 | 1 | 127 | 3 | 218 | 296 | |
Permanent Snow and Ice | 65 | 63 | 54 | 0 | 9 | 70 | 0 | 95 | 1220 |
References
- Tang, J.; Li, Y.; Cui, S.; Xu, L.; Ding, S.; Nie, W. Linking land-use change, landscape patterns, and ecosystem services in a coastal watershed of southeastern China. Glob. Ecol. Conserv. 2020, 23, e01177. [Google Scholar] [CrossRef]
- Bao, D.; Li, J.; Liu, F.; Hu, J. Impact of land-use/land-cover change on ecosystem service values in Myanmar from 1995 to 2015. Acta Ecol. Sin. 2021, 41, 6960–6969. [Google Scholar]
- McGinn, A.J.; Wagner, P.D.; Htike, H.; Kyu, K.K.; Fohrer, N. Twenty years of change: Land and water resources in the Chindwin catchment, Myanmar between 1999 and 2019. Sci. Total Environ. 2021, 798, 148766. [Google Scholar] [CrossRef]
- Murray, N.J.; Keith, D.A.; Duncan, A.; Tizard, R.; Ferrer-Paris, J.R.; Worthington, T.A.; Armstrong, K.; Nyan, H.; Win Thuya, H.; Aung Htat, O.; et al. Myanmar’s terrestrial ecosystems: Status, threats and conservation opportunities. Biol. Conserv. 2020, 252, 108834. [Google Scholar] [CrossRef]
- CEPF. Ecosystem Profile: Indo-Burma Biodiversity Hotspot, 2020 Update; Critical Ecosystem Partnership Fund: Arlington, VA, USA, 2020. [Google Scholar]
- Li, F.; Cheng, S.; Yu, H.; Qin, Q.; Liu, X.; Xu, Z.; Qu, L.; Zhang, D.; Li, X.; Chu, D. National geopolitical vulnerability: A Myanmar case and implications for China’s geopolitical policy. Prog. Geogr. 2016, 35, 737–746. [Google Scholar] [CrossRef]
- Hughes, A.C. Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 2017, 8, e01624. [Google Scholar] [CrossRef]
- Wang, C.; Myint, S.W.; Fan, P.; Stuhlmacher, M.; Yang, J. The impact of urban expansion on the regional environment in Myanmar: A case study of two capital cities. Landsc. Ecol. 2018, 33, 765–782. [Google Scholar] [CrossRef]
- Veettil, B.K.; Pereira, S.F.R.; Quang, N.X. Rapidly diminishing mangrove forests in Myanmar (Burma): A review. Hydrobiologia 2018, 822, 19–35. [Google Scholar] [CrossRef]
- Estoque, R.C.; Myint, S.W.; Wang, C.; Ishtiaque, A.; Aung, T.T.; Emerton, L.; Ooba, M.; Hijioka, Y.; Mon, M.S.; Wang, Z. Assessing environmental impacts and change in Myanmar’s mangrove ecosystem service value due to deforestation (2000–2014). Glob. Chang. Biol. 2018, 24, 5391–5410. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Li, P.; Feng, Z. Spatial-temporal Pattern of Rubber Expansion in the Borderlands of Sino-Lao and Sino-Vietnam in the Geo-polilinomical Context. J. Geo-Inf. Sci. 2022, 24, 1512–1524. [Google Scholar] [CrossRef]
- Liu, X.; Feng, Z.; Jiang, L. Review of land use and land cover change of Golden Economic Quadrangle Region in the border of China, Laos, Myanmar and Thailand. Prog. Geogr. 2013, 32, 191–202. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Hu, B.K.; Myint, S.W.; Feng, C.-C.; Chow, W.T.; Passy, P.F. Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Sci. Total Environ. 2018, 643, 738–750. [Google Scholar] [CrossRef] [PubMed]
- Oo, K.K.; Torii, K.; Cheng, K.; Nawata, E. An analysis of Land Use/Land-cover Changes in Nay Pyi Taw, Myanmar, Using Remote Sensing Images. Trop. Agric. Dev. 2019, 63, 93–104. [Google Scholar] [CrossRef]
- Aung, T.S.; Fischer, T.B.; Buchanan, J. Land use and land cover changes along the China-Myanmar Oil and Gas pipelines–Monitoring infrastructure development in remote conflict-prone regions. PLoS ONE 2020, 15, e0237806. [Google Scholar] [CrossRef]
- Zhou, J.; Li, S. Spatiotemporal Variations of Land Use/Cover in Important Node Area along the China-Myanmar Oil and Gas Pipeline during 2012–2015. Bull. Surv. Mapp. 2018, 3, 113–116. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Niu, X.; Yan, H.; Zhen, L. Myanmar’s Land Cover Change and Its Driving Factors during 2000–2020. Int. J. Environ. Res. Public Health 2023, 20, 2409. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Zuo, L.; Zhang, Z.; Zhao, X.; Wang, X.; Wen, Q.; Liu, F.; Xu, J.; Liu, B.; Yi, L.; et al. Methods research on describing the spatial pattern of land use types in China. Acta Geogr. Sin. 2020, 75, 143–159. [Google Scholar] [CrossRef]
- Herzog, F.; Lausch, A. Supplementing land-use statistics with landscape metrics: Some methodological considerations. Environ. Monit. Assess. 2001, 72, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Qi, W. Impacts of construction land expansion on landscape pattern evolution in China. Acta Geogr. Sin. 2019, 74, 2572–2591. [Google Scholar] [CrossRef]
- Wan, R.; Yang, G. Research on Land Use and Landscape Pattern Evolution in the Taihu Basin. Chin. J. Appl. Ecol. 2005, 16, 475–480. [Google Scholar] [CrossRef]
- Griffith, J.A. The role of landscape pattern analysis in understanding concepts of land cover change. J. Geogr. Sci. 2004, 14, 3–17. [Google Scholar] [CrossRef]
- Oo, L.K. Status of Myanmar’s Forest Genetic Resources—Their Conservation and Management Practices; Forest Research Institute, Forest Department of Myanmar: Yangon, Myanmar, 2009; pp. 89–101. [Google Scholar]
- Bhagwat, T.; Hess, A.; Horning, N.; Khaing, T.; Thein, Z.M.; Aung, K.M.; Aung, K.H.; Phyo, P.; Tun, Y.L.; Oo, A.H. Losing a jewel—Rapid declines in Myanmar’s intact forests from 2002–2014. PLoS ONE 2017, 12, e0176364. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment Country Report: Myanmar; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; pp. 1–66. [Google Scholar]
- Chen, Y.; Ji, X.; Lai, Q. Research on the temporal evolution track and influence of green development from 2010 to 2019. PLoS ONE 2022, 17, e0263482. [Google Scholar] [CrossRef]
- World Bank Group. Country Profile: Myanmar. Available online: https://data.worldbank.org/country/myanmar/overview (accessed on 29 November 2024).
- Oo, K.T.; Haishan, C.; Jonah, K. Climate Change Impact on the Trigger of Natural Disasters over South-Eastern Himalayas Foothill Region of Myanmar: Extreme Rainfall Analysis. Int. J. Geophys. 2023, 2023, 2186857. [Google Scholar] [CrossRef]
- Xing, H.; Zhu, L.; Zhang, Y.; Hou, D.; Li, C. MLC30: A New 30 m Land Cover Dataset for Myanmar from 1990 to 2020 Using Training Sample Migration Framework. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 240–266. [Google Scholar] [CrossRef]
- Chen, J.; Liao, A.; Chen, J.; Peng, S.; Chen, L.; Zhang, H. 30-Meter Global Land Cover Data Product-Globe Land 30. Geomat. World 2017, 24, 1–8. [Google Scholar]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Li, C.; Gong, P.; Wang, J.; Zhu, Z.; Biging, G.S.; Yuan, C.; Hu, T.; Zhang, H.; Wang, Q.; Li, X.; et al. The first all-season sample set for mapping global land cover with Landsat-8 data. Sci. Bull. 2017, 62, 508–515. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Huang, B.; Huang, J.; Pontius, R.G., Jr.; Tu, Z. Comparison of Intensity Analysis and the land use dynamic degrees to measure land changes outside versus inside the coastal zone of Longhai, China. Ecol. Indic. 2018, 89, 336–347. [Google Scholar] [CrossRef]
- Li, G. Spatio-temporal change of global land cover and China’s contribution. Acta Geogr. Sin. 2022, 77, 353–368. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Niu, X.; Yan, H.; Zhen, L. Land use/cover change and its driving mechanism in Thailand from 2000 to 2020. Land 2022, 11, 2253. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1995. [Google Scholar]
- Cabral, A.I.R.; Costa, F.L. Land cover changes and landscape pattern dynamics in Senegal and Guinea Bissau borderland. Appl. Geogr. 2017, 82, 115–128. [Google Scholar] [CrossRef]
- Cushman, S.A.; McGarigal, K.; Neel, M.C. Parsimony in landscape metrics: Strength, universality, and consistency. Ecol. Indic. 2008, 8, 691–703. [Google Scholar] [CrossRef]
- Diaz-Varela, E.R.; Marey-Pérez, M.F.; Rigueiro-Rodriguez, A.; Álvarez-Álvarez, P. Landscape metrics for characterization of forest landscapes in a sustainable management framework: Potential application and prevention of misuse. Ann. For. Sci. 2009, 66, 301. [Google Scholar] [CrossRef]
- McGarigal, K. FRAGSTATS Help; Scientific Research Publishing Inc.: Glendale, CA, USA, 2015; Volume 182. [Google Scholar]
- Zöckler, C.; Delany, S.; Barber, J. Sustainable Coastal Zone Management in Myanmar; ArcCona Ecological Consultants and Flora Fauna International: Cambridge, UK, 2013; Volume 66, pp. 37–51. [Google Scholar]
- Tun, P.T.; Nguyen, T.T.; Buerkert, A. Transformation of Agricultural Landscapes and Its Consequences for Natural Forests in Southern Myanmar within the Last 40 Years. Remote Sens. 2023, 15, 1537. [Google Scholar] [CrossRef]
- Aung, T.S. Satellite analysis of the environmental impacts of armed-conflict in Rakhine, Myanmar. Sci. Total Environ. 2021, 781, 146758. [Google Scholar] [CrossRef]
- Woods, K. Commercial Agriculture Expansion in Myanmar: Links to Deforestation, Conversion Timber, and Land Conflicts; Forest Trends: Washington, DC, USA, 2015; pp. 1–56. [Google Scholar]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef]
- De Alban, J.D.T.; Jamaludin, J.; Wong de Wen, D.; Than, M.M.; Webb, E.L. Improved estimates of mangrove cover and change reveal catastrophic deforestation in Myanmar. Environ. Res. Lett. 2020, 15, 034034. [Google Scholar] [CrossRef]
- Lim, C.L.; Prescott, G.W.; De Alban, J.D.T.; Ziegler, A.D.; Webb, E.L. Untangling the proximate causes and underlying drivers of deforestation and forest degradation in Myanmar. Conserv. Biol. 2017, 31, 1362–1372. [Google Scholar] [CrossRef] [PubMed]
- The Burma Environmental Working Group (BEWG). Burma’s Environment: People, Problems, Policies; The Burma Environmental Working Group (BEWG): Chiang Mai, Thailand, 2010. [Google Scholar]
- Fan, P.; Chen, J.; Fung, C.; Naing, Z.; Ouyang, Z.; Nyunt, K.M.; Myint, Z.N.; Qi, J.; Messina, J.P.; Myint, S.W.; et al. Urbanization, economic development, and environmental changes in transitional economies in the global south: A case of Yangon. Ecol. Process. 2022, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z. Research on the Evolution and Driving Factors of the Population Spatial Pattern in Myanmar; Yunnan University of Finance and Economics: Kunming, China, 2021. [Google Scholar]
- Songer, M.; Aung, M.; Senior, B.; DeFries, R.; Leimgruber, P. Spatial and temporal deforestation dynamics in protected and unprotected dry forests: A case study from Myanmar (Burma). Biodivers. Conserv. 2009, 18, 1001–1018. [Google Scholar] [CrossRef]
- Webb, E.L.; Jachowski, N.R.; Phelps, J.; Friess, D.A.; Than, M.M.; Ziegler, A.D. Deforestation in the Ayeyarwady Delta and the conservation implications of an internationally-engaged Myanmar. Glob. Environ. Change 2014, 24, 321–333. [Google Scholar] [CrossRef]
- RECOFTC, ASEAN Working Group on Social Forestry. Social Forestry and Climate Change in the ASEAN Region: Situational Analysis 2020; RECOFTC, ASEAN Working Group on Social Forestry: Bangkok, Thailand, 2020; ISBN 978-616-8089-28-6. [Google Scholar]
- Woods, K. Ceasefire capitalism: Military–private partnerships, resource concessions and military–state building in the Burma–China borderlands. J. Peasant. Stud. 2011, 38, 747–770. [Google Scholar] [CrossRef]
- Urech, Z.L.; Zaehringer, J.G. Understanding deforestation and forest fragmentation from a livelihood perspective. Madag. Conserv. Dev. 2015, 10, 67–76. [Google Scholar] [CrossRef]
- Rao, M.; Htun, S.; Platt, S.G.; Tizard, R.; Poole, C.; Myint, T.; Watson, J.E. Biodiversity conservation in a changing climate: A review of threats and implications for conservation planning in Myanmar. Ambio 2013, 42, 789–804. [Google Scholar] [CrossRef]
- Tun, W. National Biodiversity Strategy and Action Plan: Myanmar; The Republic of the Union of Myanmar, Ministry of Environmental Conservation and Forestry: Naypyidaw, Myanmar, 2011. [Google Scholar]
- Zhang, L.; Wu, Y.; Li, J.; Li, C. Analysis of land use and landscape pattern change in Myanmar section of the Golden Quadrangle Region in the border of China, Myanmar, Thailand and Laos. World Reg. Stud. 2018, 27, 21–33. [Google Scholar] [CrossRef]
- Liu, J.; Wu, R.; He, D. Transboundary eco-security regulation for geopolitical cooperation in land border areas. Prog. Geogr. 2015, 34, 606–616. [Google Scholar]
- He, D.; Liu, J.; Hu, J.; Feng, Y.; Gan, S. Cross-border Ecological Security and Regulation System in the Longitudinal Ridge Valley Region. Chin. Sci. Bull. 2007, 52, 1–9. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, W.; Li, D.; Jiang, C. Comparison and Analysis of Forestry Management System in Myanmar Bangladesh and Sri Lanka. J. For. Grassl. Policy 2022, 2, 90–96. [Google Scholar]
- Htwe, T.N.; Kywe, M.; Buerkert, A.; Brinkmann, K. Transformation processes in farming systems and surrounding areas of Inle Lake, Myanmar, during the last 40 years. J. Land Use Sci. 2015, 10, 205–223. [Google Scholar] [CrossRef]
- Zhang, Y.; Prescott, G.W.; Tay, R.E.; Dickens, B.L.; Webb, E.L.; Htun, S.; Tizard, R.J.; Rao, M.; Carrasco, L.R. Dramatic cropland expansion in Myanmar following political reforms threatens biodiversity. Sci. Rep. 2018, 8, 16558. [Google Scholar] [CrossRef] [PubMed]
- Leimgruber, P.; Kelly, D.S.; Steininger, M.K.; Brunner, J.; Müller, T.; Songer, M. Forest cover change patterns in Myanmar (Burma) 1990–2000. Environ. Conserv. 2005, 32, 356–364. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment Country Report: Myanmar; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; pp. 1–66. [Google Scholar]
- Hunsberger, C.; Corbera, E.; Borras, S.M., Jr.; Franco, J.C.; Woods, K.; Work, C.; de la Rosa, R.; Eang, V.; Herre, R.; Kham, S.S. Climate change mitigation, land grabbing and conflict: Towards a landscape-based and collaborative action research agenda. Can. J. Dev. Stud./Rev. Can. D’études Du Développement 2017, 38, 305–324. [Google Scholar] [CrossRef]
- Meehan, P.; Dan, S.L. Drugs and extractivism: Opium cultivation and drug use in the Myanmar-China borderlands. J. Peasant Stud. 2024, 51, 922–959. [Google Scholar] [CrossRef]
- UNDOC. Southeast Asia Opium Survey 2013: Lao PDR, Myanmar; United Nations Office on Drugs and Crime: Bangkok, Thailand, 2013. [Google Scholar]
- UNODC. Myanmar Opium Survey 2020: Cultivation, Production, and Implications; United Nations Office on Drugs and Crime: Bangkok, Thailand, 2021. [Google Scholar]
- Kramer, T.; Woods, K.; Armenta, A.; Blickman, T.; Franco, J. Financing Dispossession: China’s Opium Substitution Programme in Northern Burma; Transnational Institute Drugs & Democracy Programme: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Li, C.; Zhu, X.; Zou, C. Annual Report on Myanmar’s National Situation (2011–2012); Social Sciences Academic Press: Beijing, China, 2013. [Google Scholar]
- Zhang, Y. Understanding the State from the Border An Anthropological Study of Rubber Plantations in Hani/Akha Villages on the Borderland of China, Laos, and Myanmar; Social Sciences Academic Press: Beijing, China, 2018. [Google Scholar]
- Feng, Z.; Liu, X.; Jiang, L.; Li, P. Spatial-temporal analysis of rubber plantation and its relationship with topographical factors in the border region of China, Laos and Myanmar. Acta Geogr. Sin. 2013, 68, 1432–1446. [Google Scholar] [CrossRef]
- David Eckstein, V.K.; Schafer, L. Global Climate Risk Index 2021: Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2019 and 2000–2019; Germanwatch: Berlin, Germany, 2021. [Google Scholar]
- International Organization for Migration. Myanmar Crisis Response Plan 2024; International Organization for Migration: Geneva, Switzerland, 2024. [Google Scholar]
- Xiaoyong, C.; Liu, B.; Tun, A.K. Application of Remote Sensing to Land Cover Change Induced by Nargis Hurricane in Myanmar. J. Southwest Jiaotong Univ. 2011, 24, 701–705. [Google Scholar] [CrossRef]
- International Organization for Migration. DTM Preliminary Report—Cyclone Komen: Kyauk Taw, Minbya and Mrauk-U; International Organization for Migration: Geneva, Switzerland, 2015. [Google Scholar]
- World Health Organization. Climate and Health Country Profile 2015: Myanmar; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Hasan, M.M.; Islam, R.; Rahman, M.S.; Ibrahim, M.; Shamsuzzoha, M.; Khanam, R.; Zaman, A.K.M.M. Analysis of Land Use and Land Cover Changing Patterns of Bangladesh Using Remote Sensing Technology. Am. J. Environ. Sci. 2021, 17, 64–74. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Z.; Li, J.; Dashtseren, A.; Li, Y.; Altanbagana, M. Comparative analysis of driving forces of land use/cover change in the upper, middle and lower reaches of the Selenga River Basin. Land Use Policy 2022, 117, 106118. [Google Scholar] [CrossRef]
Metric | Formula | Description | Application Level |
---|---|---|---|
NP | NP ≥ 1 | Class Level | |
PLAND | 0 < PLAND ≤ 100 | Class Level | |
LPI | 0 < LPI ≤ 100 | Class Level Landscape Level | |
PD | PD > 0 | Class Level | |
ED | ED ≥ 0 | Class Level | |
LSI | LSI ≥ 1 | Class Level | |
CONTAG | 0 < CONTAG ≤ 100 | Landscape Level | |
SHAPE_MN | SHAPE_MN ≥ 1 | Class Level Landscape Level | |
FRAC_AM | 1 ≤ FRAC_AM ≤ 2 | Class Level Landscape Level | |
SHDI | SHDI ≥ 0 | Landscape Level | |
SHEI | 0 ≤ SHEI ≤ 1 | Landscape Level |
Year | 1990–2000 | 2000–2010 | 2010–2020 | ||||
---|---|---|---|---|---|---|---|
Land Cover Type | Area Change (km2) | LUDD (%) | Area Change (km2) | LUDD (%) | Area Change (km2) | LUDD (%) | |
Cultivated Land | 3984.9 | −0.21 | 22,052.4 | 1.17 | 20,489.8 | −0.97 | |
Forest | 15,392.9 | 0.34 | 23,007.6 | −0.50 | 12,303.3 | 0.28 | |
Grassland | 2139.1 | −0.51 | 6242.7 | −1.57 | 4495.7 | 1.34 | |
Shrubland | 5744.6 | −5.12 | 4330.5 | 7.90 | 2996.6 | −3.05 | |
Wetland | 1333.8 | −1.61 | 193.6 | −0.28 | 301.2 | −0.44 | |
Water Bodies | 1972.6 | 2.21 | 1152.0 | 1.06 | 2903.6 | 2.41 | |
Artificial Surfaces | 91.2 | −0.26 | 1550.1 | 4.62 | 2383.7 | 4.86 | |
Bareland | 4125.8 | −7.88 | 52.9 | 0.48 | 1347.7 | 11.61 | |
Permanent Snow and Ice | 53.9 | 0.38 | 306.0 | 2.07 | 353.7 | 1.98 | |
Entire Study Area | 0.48 | 0.82 | 0.66 |
Year | 1990 | 2000 | 2010 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|
Land Cover Type | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | Area (km2) | Percentage (%) | |
Cultivated Land | 192,300.05 | 26.68 | 188,315.17 | 26.13 | 210,367.59 | 29.19 | 189,877.75 | 26.35 | |
Forest | 447,917.17 | 62.15 | 463,310.04 | 64.29 | 440,302.40 | 61.09 | 452,605.74 | 62.80 | |
Grassland | 41,934.68 | 5.82 | 39,795.57 | 5.52 | 33,552.91 | 4.66 | 38,048.60 | 5.28 | |
Shrubland | 11,224.54 | 0.00 | 5479.96 | 0.76 | 9810.46 | 1.36 | 6813.83 | 0.95 | |
Wetland | 8299.26 | 1.15 | 6965.44 | 0.97 | 6771.84 | 0.94 | 6470.66 | 0.90 | |
Water Bodies | 8912.96 | 1.24 | 10,885.54 | 1.51 | 12,037.56 | 1.67 | 14,941.17 | 2.07 | |
Artificial Surfaces | 3449.20 | 0.48 | 3357.96 | 0.47 | 4908.02 | 0.68 | 7291.72 | 1.01 | |
Bareland | 5233.65 | 0.73 | 1107.89 | 0.15 | 1160.78 | 0.16 | 2508.43 | 0.35 | |
Permanent Snow and Ice | 1427.28 | 0.20 | 1481.22 | 0.21 | 1787.23 | 0.25 | 2140.89 | 0.30 | |
Total | 720,698.79 | 100.00 | 720,698.79 | 100.00 | 720,698.79 | 100.00 | 720,698.79 | 100.00 |
Type | Year | NP | LPI/% | PD (Units·hm−2) | ED (m·hm−2) | PLAND % | LSI | SHAPE_MN | FRAC_AM |
---|---|---|---|---|---|---|---|---|---|
Cultivated Land | 1990 | 58,042 | 8.8806 | 8.6716 | 5.5306 | 26.8400 | 221.5062 | 1.4338 | 1.2634 |
2000 | 54,018 | 8.5100 | 8.0718 | 5.4396 | 26.2844 | 220.1409 | 1.4274 | 1.2659 | |
2010 | 86,742 | 9.3109 | 12.9647 | 7.6334 | 29.3456 | 291.4652 | 1.3969 | 1.2880 | |
2020 | 77,014 | 7.8482 | 11.9536 | 8.8962 | 26.4796 | 356.4336 | 1.6780 | 1.2954 | |
Forest | 1990 | 40,595 | 46.5452 | 6.0741 | 6.7566 | 61.9474 | 178.3909 | 1.4226 | 1.342 |
2000 | 38,396 | 52.3745 | 5.7452 | 6.4927 | 64.0756 | 168.7698 | 1.406 | 1.3405 | |
2010 | 42,691 | 45.9881 | 6.3828 | 6.8103 | 60.9087 | 181.4162 | 1.4163 | 1.338 | |
2020 | 39,207 | 50.5942 | 6.3195 | 8.8081 | 62.6287 | 230.6817 | 1.754 | 1.3626 | |
Grassland | 1990 | 131,199 | 0.4163 | 19.6113 | 5.3038 | 5.8685 | 448.9625 | 1.4049 | 1.1685 |
2000 | 127,992 | 0.3314 | 19.1255 | 5.2346 | 5.5532 | 455.2823 | 1.3998 | 1.1483 | |
2010 | 82,292 | 0.1604 | 12.2839 | 3.8298 | 4.6631 | 363.4586 | 1.4058 | 1.1638 | |
2020 | 98,467 | 0.1244 | 15.2718 | 6.1310 | 5.2958 | 545.6819 | 1.7549 | 1.1906 | |
Shrubland | 1990 | 31,855 | 0.0659 | 4.7547 | 1.3369 | 1.5470 | 220.1145 | 1.3991 | 1.1413 |
2000 | 34,621 | 0.0037 | 5.1738 | 1.0709 | 0.7549 | 252.9306 | 1.4041 | 1.0955 | |
2010 | 36,982 | 0.0571 | 5.5307 | 1.4743 | 1.3535 | 259.3883 | 1.4171 | 1.1391 | |
2020 | 25,515 | 0.0138 | 4.0048 | 1.4145 | 0.9462 | 297.5475 | 1.8131 | 1.1699 | |
Wetland | 1990 | 14,025 | 0.0767 | 2.0974 | 0.7066 | 1.1848 | 143.5153 | 1.5237 | 1.1652 |
2000 | 12,400 | 0.0412 | 1.8560 | 0.6538 | 0.9975 | 143.7521 | 1.5318 | 1.1550 | |
2010 | 14,156 | 0.0505 | 2.1162 | 0.6995 | 0.9695 | 155.0778 | 1.5040 | 1.1501 | |
2020 | 9181 | 0.0387 | 1.4384 | 0.7496 | 0.9223 | 167.6260 | 1.9566 | 1.1841 | |
Water Bodies | 1990 | 9842 | 0.4100 | 1.4738 | 0.7379 | 1.2485 | 151.8918 | 1.6989 | 1.2221 |
2000 | 12,776 | 0.4870 | 1.9088 | 0.9938 | 1.5262 | 181.5694 | 1.7230 | 1.2252 | |
2010 | 14,405 | 0.4550 | 2.1539 | 1.1002 | 1.6861 | 189.4379 | 1.6827 | 1.2201 | |
2020 | 16,836 | 0.6320 | 2.5755 | 1.6674 | 2.0931 | 252.4358 | 1.9386 | 1.2511 | |
Artificial surfaces | 1990 | 23,812 | 0.0121 | 3.5573 | 0.6698 | 0.4803 | 198.4059 | 1.3448 | 1.0942 |
2000 | 21,287 | 0.0233 | 3.1797 | 0.5938 | 0.4666 | 178.7473 | 1.3290 | 1.0952 | |
2010 | 27,353 | 0.0248 | 4.0826 | 0.8372 | 0.6832 | 207.8623 | 1.3371 | 1.1117 | |
2020 | 32,440 | 0.0473 | 4.9770 | 1.3707 | 1.0148 | 279.7020 | 1.6115 | 1.1453 | |
Bareland | 1990 | 5547 | 0.1068 | 0.8281 | 0.3391 | 0.6955 | 85.2595 | 1.4409 | 1.1811 |
2000 | 2090 | 0.0066 | 0.3113 | 0.1221 | 0.1463 | 66.5412 | 1.5129 | 1.1526 | |
2010 | 2948 | 0.0323 | 0.4389 | 0.1298 | 0.1549 | 69.8631 | 1.4483 | 1.1534 | |
2020 | 6233 | 0.0235 | 0.9653 | 0.3520 | 0.3371 | 125.7311 | 1.6702 | 1.1766 | |
Permanent Snow and Ice | 1990 | 665 | 0.0392 | 0.0997 | 0.0807 | 0.1880 | 39.9890 | 1.5359 | 1.2350 |
2000 | 586 | 0.1082 | 0.0866 | 0.0663 | 0.1952 | 33.3293 | 1.4953 | 1.2311 | |
2010 | 644 | 0.1660 | 0.0964 | 0.0737 | 0.2353 | 32.8780 | 1.4612 | 1.2669 | |
2020 | 890 | 0.1583 | 0.1515 | 0.1382 | 0.2825 | 55.2690 | 1.8307 | 1.2846 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Li, C.; Hou, D.; Xing, H.; Zhu, A.-X. Dynamics in Land Cover and Landscape Patterns of Myanmar: A Three-Decade Perspective (1990–2020). Land 2024, 13, 2212. https://doi.org/10.3390/land13122212
Li R, Li C, Hou D, Xing H, Zhu A-X. Dynamics in Land Cover and Landscape Patterns of Myanmar: A Three-Decade Perspective (1990–2020). Land. 2024; 13(12):2212. https://doi.org/10.3390/land13122212
Chicago/Turabian StyleLi, Ruonan, Cansong Li, Dongyang Hou, Huaqiao Xing, and A-Xing Zhu. 2024. "Dynamics in Land Cover and Landscape Patterns of Myanmar: A Three-Decade Perspective (1990–2020)" Land 13, no. 12: 2212. https://doi.org/10.3390/land13122212
APA StyleLi, R., Li, C., Hou, D., Xing, H., & Zhu, A. -X. (2024). Dynamics in Land Cover and Landscape Patterns of Myanmar: A Three-Decade Perspective (1990–2020). Land, 13(12), 2212. https://doi.org/10.3390/land13122212