A Framework for High-Spatiotemporal-Resolution Soil Moisture Retrieval in China Using Multi-Source Remote Sensing Data
<p>The spatial distribution of the SONTE-China 17 sites within the study area.</p> "> Figure 2
<p>A framework for estimating SM based on multi-source RS data. *** represents the first priority, ** represents the second priority, and * represents the third priority.</p> "> Figure 3
<p>The training (<b>top</b>) and test (<b>bottom</b>) results of four models from IF at SONTE-China (17 sites). The red dotted line is the trend line. The gray dotted line represents the error line at 0.06 m<sup>3</sup>/m<sup>3</sup>.</p> "> Figure 4
<p>The training results of four models at SONTE-China (17 sites). The red dotted line is the trend line. The gray dotted line represents the error line at 0.06 m<sup>3</sup>/m<sup>3</sup>.</p> "> Figure 5
<p>The test results of four models at SONTE-China (17 sites). The red dotted line is the trend line. The gray dotted line represents the error line at 0.06 m<sup>3</sup>/m<sup>3</sup>.</p> "> Figure 6
<p>The time series of estimated and observed SM from three scenarios at NQ, JYT, and MQ sites. The blue solid line represents the observed SM at 0–5 cm. The green solid line represents the daily NDVI. The red, green, and purple squares represent the estimated SM for SC1, SC2, and SC3, respectively. The blue bars indicate daily precipitation. The red dashed vertical lines distinguish between the training and test sets.</p> "> Figure 7
<p>Revisit time between SC1, SC2, SC3, and IF for monitoring SM in China (2021). (<b>a</b>) SC1: Optical RS + auxiliary data only; (<b>b</b>) SC2: SAR + auxiliary data only; (<b>c</b>) SC3: optical RS + SAR + auxiliary data; (<b>d</b>) IF: combined SC3, SC2, and SC1 scenarios.</p> "> Figure 8
<p>Revisit time between SC1, SC2, SC3, and IF for monitoring SM in China (2022). (<b>a</b>) SC1: Optical RS + auxiliary data only; (<b>b</b>) SC2: SAR + auxiliary data only; (<b>c</b>) SC3: optical RS + SAR + auxiliary data; (<b>d</b>) IF: combined SC3, SC2, and SC1 scenarios.</p> "> Figure 9
<p>Training (<b>top</b>) and test (<b>bottom</b>) results of three categories using the RFR based on the SC3 dataset at SONTE-China (17 sites). The red dotted line is the trend line. The gray dotted line represents the error line at 0.06 m<sup>3</sup>/m<sup>3</sup>.</p> "> Figure 10
<p>Performance of different models under various NDVI categories in the training set (<b>left</b>) and test set (<b>right</b>). The colored dot lines represent R<sup>2</sup>, and the bar charts represent ubRMSE.</p> "> Figure 11
<p>Performance of different models under various SM categories in the training set (<b>left</b>) and test set (<b>right</b>). The bar charts represent ubRMSE, and the red dot line represents the average ubRMSE.</p> "> Figure 12
<p>Revisit time distribution for multi-source RS monitoring of SM under different scenarios (2021–2022).</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area and In Situ SM Measurements
2.2. Remote Sensing Data
2.2.1. Sentinel-1 Data
2.2.2. Landsat-7/8/9 and Sentinel-2 Data
2.3. Field and Ancillary Datasets
3. Methods
3.1. The Research Framework and Process of SM Estimation
- Data Collection and Preprocessing:
- Feature Development and Scenario Construction (SC):
- (1)
- When data sources meet SC3, the complete inversion framework in Figure 2 is used.
- (2)
- When data source 1 is unavailable, SC2 observation data are used, skipping input from data source 1, and following a nearly identical inversion framework to Figure 2.
- (3)
- When data source 2 is unavailable, SC1 observation data are used, skipping input from data source 2, and following a nearly identical inversion framework to Figure 2.
- (4)
- If both data source 1 and data source 2 are unavailable, SM retrieval is not performed.
- Model Description:
- Model Evaluation and Performance Analysis:
3.2. Model Description
3.3. Validation Metrics
4. Results
4.1. Correlation Analysis of Prediction Indicators and Observed SM
4.2. Evaluation and Comparison of Different Models
4.3. Evaluation and Comparison of Different Scenarios
4.4. Comparison of Temporal Variations Between Estimated and Observed SM
4.5. Spatial Comparison of Revisit Time Between SC1, SC2, SC3, and IF
5. Discussion
5.1. Analysis of SM Estimation Accuracy for Different Data Source Combinations Using the Same Sample Set
5.2. Comparison of SM Estimation Accuracy for Different NDVI
5.3. Comparison of SM Estimation Accuracy for Different SM Categories
5.4. Revisit Time Analysis of SM Monitoring Under Different Scenarios
5.5. Limitations and Future Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, B.; Jia, B.; Zhao, Y.; Wang, X.; Wei, M.; Dietzel, R. Estimate soil moisture of maize by combining support vector machine and chaotic whale optimization algorithm. Agric. Water Manag. 2022, 267, 107618. [Google Scholar] [CrossRef]
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Chawla, I.; Mishra, A.K. A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. J. Hydrol. 2020, 586, 124905. [Google Scholar] [CrossRef]
- Babaeian, E.; Paheding, S.; Siddique, N.; Devabhaktuni, V.K.; Tuller, M. Estimation of root zone soil moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine learning. Remote Sens. Environ. 2021, 260, 112434. [Google Scholar] [CrossRef]
- Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J.; et al. The International Soil Moisture Network: Serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 2021, 25, 5749–5804. [Google Scholar] [CrossRef]
- Fan, L.; Xing, Z.; Lannoy, G.D.; Frappart, F.; Peng, J.; Zeng, J.; Li, X.; Yang, K.; Zhao, T.; Shi, J.; et al. Evaluation of satellite and reanalysis estimates of surface and root-zone soil moisture in croplands of Jiangsu Province, China. Remote Sens. Environ. 2022, 282, 113283. [Google Scholar] [CrossRef]
- Wang, L.; Fang, S.; Pei, Z.; Wu, D.; Zhu, Y.; Zhuo, W. Developing machine learning models with multisource inputs for improved land surface soil moisture in China. Comput. Electron. Agric. 2022, 192, 106623. [Google Scholar] [CrossRef]
- Zhang, P.; Zheng, D.; van der Velde, R.; Zeng, J.; Wang, X.; Wang, Z.; Zeng, Y.; Wen, J.; Li, X.; Su, Z. Assessment of long-term multisource surface and subsurface soil moisture products and estimate methods on the Tibetan Plateau. J. Hydrol. 2024, 640, 131713. [Google Scholar] [CrossRef]
- Jamei, M.; Karbasi, M.; Malik, A.; Jamei, M.; Kisi, O.; Yaseen, Z.M. Long-term multi-step ahead forecasting of root zone soil moisture in different climates: Novel ensemble-based complementary data-intelligent paradigms. Agric. Water Manag. 2022, 269, 107679. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.M.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Imaoka, K.; Kachi, M.; Fujii, H.; Murakami, H.; Hori, M.; Ono, A.; Igarashi, T.; Nakagawa, K.; Oki, T.; Honda, Y.; et al. Global Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change. Proc. IEEE 2010, 98, 717–734. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S.; Figa-Saldaña, J.; de Rosnay, P.; Jann, A.; Schneider, S.; et al. The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. Meteorol. Z. 2013, 22, 5–33. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Chaubell, M.J.; Colliander, A.; Yueh, S.; Jagdhuber, T.; Chen, F.; Crow, W.; O’Neill, P.E.; et al. The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sens. Environ. 2019, 233, 111380. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, J.; Zhang, X.; Peng, J.; Li, X.; Fu, P.; Cosh, M.H.; Letu, H.; Wang, S.; Chen, N.; et al. Surface soil moisture from combined active and passive microwave observations: Integrating ASCAT and SMAP observations based on machine learning approaches. Remote Sens. Environ. 2024, 308, 114197. [Google Scholar] [CrossRef]
- Thomas, J.; Gupta, M.; Srivastava, P.K.; Pandey, D.K.; Bindlish, R. Development of High-Resolution Soil Hydraulic Parameters with Use of Earth Observations for Enhancing Root Zone Soil Moisture Product. Remote Sens. 2023, 15, 706. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Nguyen, C.T.; Zhang, J.; Liang, S.; Bui, X.T.; Hoang, N.B. A low-cost approach for soil moisture prediction using multi-sensor data and machine learning algorithm. Sci. Total Environ. 2022, 833, 155066. [Google Scholar] [CrossRef]
- Balenzano, A.; Mattia, F.; Satalino, G.; Lovergine, F.P.; Palmisano, D.; Peng, J.; Marzahn, P.; Wegmüller, U.; Cartus, O.; Dabrowska-Zielinska, K.; et al. Sentinel-1 soil moisture at 1 km resolution: A validation study. Remote Sens. Environ. 2021, 263, 112554. [Google Scholar] [CrossRef]
- Pathe, C.; Wagner, W.; Sabel, D.; Doubkova, M.; Basara, J.B. Using ENVISAT ASAR Global Mode Data for Surface Soil Moisture Retrieval Over Oklahoma, USA. IEEE Trans. Geosci. Remote Sens. 2009, 47, 468–480. [Google Scholar] [CrossRef]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR: A Pathfinder mission for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3307–3316. [Google Scholar] [CrossRef]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Yang, L.; Shi, L.; Sun, W.D.; Yang, J.; Li, P.X.; Li, D.R.; Liu, S.W.; Zhao, L.L. Radiometric and Polarimetric Quality Validation of Gaofen-3 over a Five-Year Operation Period. Remote Sens. 2023, 15, 1605. [Google Scholar] [CrossRef]
- Banda, F.; Giudici, D.; Le Toan, T.; d’Alessandro, M.M.; Papathanassiou, K.; Quegan, S.; Riembauer, G.; Scipal, K.; Soja, M.; Tebaldini, S.; et al. The BIOMASS Level 2 Prototype Processor: Design and Experimental Results of Above-Ground Biomass Estimation. Remote Sens. 2020, 12, 985. [Google Scholar] [CrossRef]
- Albinet, C.; Whitehurst, A.S.; Jewell, L.A.; Bugbee, K.; Laur, H.; Murphy, K.J.; Frommknecht, B.; Scipal, K.; Costa, G.; Jai, B.; et al. A Joint ESA-NASA Multi-mission Algorithm and Analysis Platform (MAAP) for Biomass, NISAR, and GEDI. Surv. Geophys. 2019, 40, 1017–1027. [Google Scholar] [CrossRef]
- Davidson, M.; Kilbanek, J.; Lannini, L.; Furtiell, R.; Di Casino, G.; Gebert, N.; Petrolati, D.; Geiidtner, D.; Osborne, S. ROSE-L—The Copernicus L-Band Synthetic Aperture Radar Imaging Mission. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Pasadena, CA, USA, 16–21 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 4568–4571. [Google Scholar]
- Tao, S.; Zhang, X.; Feng, R.; Qi, W.; Wang, Y.; Shrestha, B. Retrieving soil moisture from grape growing areas using multi-feature and stacking-based ensemble learning modeling. Comput. Electron. Agric. 2023, 204, 107537. [Google Scholar] [CrossRef]
- Nie, Y.; Tan, Y.; Deng, Y.Q.; Yu, J. Suitability Evaluation of Typical Drought Index in Soil Moisture Retrieval and Monitoring Based on Optical Images. Remote Sens. 2020, 12, 2587. [Google Scholar] [CrossRef]
- Zhu, S.; Cui, N.; Guo, L.; Jin, H.; Jin, X.; Jiang, S.; Wu, Z.; Lv, M.; Chen, F.; Liu, Q.; et al. Enhancing precision of root-zone soil moisture content prediction in a kiwifruit orchard using UAV multi-spectral image features and ensemble learning. Comput. Electron. Agric. 2024, 221, 108943. [Google Scholar] [CrossRef]
- Cheng, M.; Jiao, X.; Liu, Y.; Shao, M.; Yu, X.; Bai, Y.; Wang, Z.; Wang, S.; Tuohuti, N.; Liu, S.; et al. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agric. Water Manag. 2022, 264, 107530. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, W.; Zhang, H.; Niu, X.; Shao, G. Evaluating soil moisture content under maize coverage using UAV multimodal data by machine learning algorithms. J. Hydrol. 2023, 617, 129086. [Google Scholar] [CrossRef]
- Cheng, M.; Li, B.; Jiao, X.; Huang, X.; Fan, H.; Lin, R.; Liu, K. Using multimodal remote sensing data to estimate regional-scale soil moisture content: A case study of Beijing, China. Agric. Water Manag. 2022, 260, 107298. [Google Scholar] [CrossRef]
- Cho, E.; Choi, M.; Wagner, W. An assessment of remotely sensed surface and root zone soil moisture through active and passive sensors in northeast Asia. Remote Sens. Environ. 2015, 160, 166–179. [Google Scholar] [CrossRef]
- Jagdhuber, T.; Baur, M.; Akbar, R.; Das, N.N.; Link, M.; He, L.; Entekhabi, D. Estimation of active-passive microwave covariation using SMAP and Sentinel-1 data. Remote Sens. Environ. 2019, 225, 458–468. [Google Scholar] [CrossRef]
- Guo, J.; Bai, Q.; Guo, W.; Bu, Z.; Zhang, W. Soil moisture content estimation in winter wheat planting area for multi-source sensing data using CNNR. Comput. Electron. Agric. 2022, 193, 106670. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Ali, A.; El-Shirbeny, M.; Abutaleb, K.; Shaddad, S.M. Mapping soil moisture and their correlation with crop pattern using remotely sensed data in arid region. Egypt. J. Remote Sens. Space Sci. 2020, 23, 347–353. [Google Scholar] [CrossRef]
- Holtgrave, A.K.; Förster, M.; Greifeneder, F.; Notarnicola, C.; Kleinschmit, B. Estimation of Soil Moisture in Vegetation-Covered Floodplains with Sentinel-1 SAR Data Using Support Vector Regression. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 85–101. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, N.; Niu, Z.; Raghavan, V.; Song, X. Soil moisture retrieval in farmland using C-band SAR and optical data. Spat. Inf. Res. 2017, 25, 431–438. [Google Scholar] [CrossRef]
- Peng, J.; Albergel, C.; Balenzano, A.; Brocca, L.; Cartus, O.; Cosh, M.H.; Crow, W.T.; Dabrowska-Zielinska, K.; Dadson, S.; Davidson, M.W.J.; et al. A roadmap for high-resolution satellite soil moisture applications—Confronting product characteristics with user requirements. Remote Sens. Environ. 2021, 252, 112162. [Google Scholar] [CrossRef]
- Wang, C.M.; Gu, X.F.; Zhou, X.; Yang, J.; Yu, T.; Tao, Z.; Gao, H.L.; Zhan, Y.L.; Wei, X.Q.; Li, J.; et al. Chinese Soil Moisture Observation Network and Time Series Data Set for High Resolution Satellite Applications. Sci. Data 2023, 10, 424. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Z.; Wang, C.M.; Ma, M.; Li, L.; Feng, Z.Z.; Ding, T.Y.; Li, X.F.; Jiang, T.; Li, X.J.; Zheng, X.M. Accuracy calibration and evaluation of capacitance-based soil moisture sensors for a variety of soil properties. Agric. Water Manag. 2022, 273, 107913. [Google Scholar] [CrossRef]
- Blaes, X.; Defourny, P.; Wegmüller, U.; Della Vecchia, A.; Guerriero, L.; Ferrazzoli, P. C-band polarimetric indexes for maize monitoring based on a validated radiative transfer model. IEEE Trans. Geosci. Remote Sens. 2006, 44, 791–800. [Google Scholar] [CrossRef]
- Trudel, M.; Charbonneau, F.; Leconte, R. Using RADARSAT-2 polarimetric and ENVISAT-ASAR dual-polarization data for estimating soil moisture over agricultural fields. Can. J. Remote Sens. 2012, 38, 514–527. [Google Scholar]
- Pan, G.; Wang, C.; Zhang, W.; Wang, H.; Tian, G. Analysis of Seasonal Change of Land Cover Characteristics with SSM/I Data in China. J. Remote Sens. 2003, 7, 498–503. [Google Scholar]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Yao, Y.J.; Qin, Q.M.; Zhao, S.H.; Yuan, W.L. Retrieval of soil moisture based on MODIS shortwave infrared spectral feature. J. Infrared Millim. Waves 2011, 30, 9. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.Q.; Guestrin, C.; Assoc Comp, M. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Liang, S. Development of the GLASS 250-m leaf area index product (version 6) from MODIS data using the bidirectional LSTM deep learning model. Remote Sens. Environ. 2022, 273, 112985. [Google Scholar] [CrossRef]
- Qian, J.; Yang, J.; Sun, W.; Zhao, L.; Shi, L.; Dang, C. Evaluation and improvement of temporal robustness and transfer performance of surface soil moisture estimated by machine learning regression algorithms. Comput. Electron. Agric. 2024, 217, 108518. [Google Scholar] [CrossRef]
- Li, Q.L.; Shi, G.S.; Shangguan, W.; Nourani, V.; Li, J.D.; Li, L.; Huang, F.N.; Zhang, Y.; Wang, C.Y.; Wang, D.G.; et al. A 1 km daily soil moisture dataset over China using in situ measurement and machine learning. Earth Syst. Sci. Data 2022, 14, 5267–5286. [Google Scholar] [CrossRef]
- Han, Q.Q.; Zeng, Y.J.; Zhang, L.J.; Wang, C.; Prikaziuk, E.; Niu, Z.G.; Su, B.B. Global long term daily 1 km surface soil moisture dataset with physics informed machine learning. Sci. Data 2023, 10, 101. [Google Scholar] [CrossRef]
- Shangguan, Y.L.; Min, X.X.; Wang, N.; Tong, C.; Shi, Z. A long-term, high-accuracy and seamless 1km soil moisture dataset over the Qinghai-Tibet Plateau during 2001–2020 based on a two-step downscaling method. GISci. Remote Sens. 2024, 61, 2290337. [Google Scholar] [CrossRef]
- Zheng, C.L.; Jia, L.; Zhao, T.J. A 21-year dataset (2000–2020) of gap-free global daily surface soil moisture at 1-km grid resolution. Sci. Data 2023, 10, 139. [Google Scholar] [CrossRef]
- Fang, B.; Lakshmi, V.; Cosh, M.; Liu, P.W.; Bindlish, R.; Jackson, T.J. A global 1-km downscaled SMAP soil moisture product based on thermal inertia theory. Vadose Zone J. 2022, 21, e20182. [Google Scholar] [CrossRef]
- Song, P.L.; Zhang, Y.Q.; Guo, J.P.; Shi, J.C.; Zhao, T.J.; Tong, B. A 1 km daily surface soil moisture dataset of enhanced coverage under all-weather conditions over China in 2003–2019. Earth Syst. Sci. Data 2022, 14, 2613–2637. [Google Scholar] [CrossRef]
- Abowarda, A.S.; Bai, L.; Zhang, C.; Long, D.; Li, X.; Huang, Q.; Sun, Z. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sens. Environ. 2021, 255, 112301. [Google Scholar] [CrossRef]
Name of Sites | ID | Longitude | Latitude | Number of Nodes | Land Cover | Soil Texture | Elevation (m) |
---|---|---|---|---|---|---|---|
Hulunber | HLBE | 119.9894 | 49.3320 | 10 | Grassland | Silt loam | 634 |
Jingyuetan | JYT | 125.6222 | 44.7914 | 10 | Corn | Silt loam | 187 |
Xilinhaote | XLHT | 116.3303 | 44.1367 | 10 | Grassland | Sandy loam | 1100 |
Jiangshanjiao | JSJ | 128.9523 | 43.8554 | 10 | Grassland | Silt loam | 423 |
Xitianshan | XTS | 81.1725 | 43.7435 | 10 | Apple tree | Silt loam | 733 |
Guyuan | GY | 115.6809 | 41.7631 | 10 | Grassland | Sandy loam | 1384 |
Minqin | MQ | 102.9182 | 38.6296 | 10 | Shrubland | Sand | 1374 |
Haibei | HB | 101.3131 | 37.6108 | 10 | Grassland | Silt | 3193 |
Yucheng | YC | 116.5700 | 36.8285 | 10 | Corn-Wheat | Silt loam | 23 |
Qingdao2 | QD2 | 120.1727 | 35.9446 | 5 | Grassland | Silt loam | 4 |
Hefei | HF | 117.1698 | 31.9036 | 10 | Grassland | Silt | 30 |
Naqu | NQ | 92.0118 | 31.6432 | 10 | Grassland | Loam | 4593 |
Nanjing | NJ | 119.2128 | 31.5020 | 10 | Tea plant | Silt loam | 18 |
Dongtinghu | DTH | 113.1684 | 29.3152 | 10 | Camellia oleifera | Silt loam | 56 |
Qiyang | QY | 111.8711 | 26.7600 | 10 | Tea plant | Silt loam | 150 |
Qianyanzhou | QYZ | 115.0719 | 26.7451 | 10 | Shrubland | Silt | 72 |
Guangzhou | GZ | 113.6342 | 23.2447 | 10 | Lawn grass | Silt loam | 22 |
Sites | Time Span | Number of SAR Images | Number of Optical Images | Training Set Size | Test Set Size |
---|---|---|---|---|---|
DTH | 2020-08-29–2022-07-03 | 102 | 54 | 117 | 28 |
GY | 2018-07-21–2022-06-26 | 132 | 121 | 172 | 72 |
GZ | 2018-12-14–2021-11-12 | 79 | 100 | 110 | 60 |
HB | 2019-07-25–2022-07-03 | 106 | 183 | 177 | 93 |
HF | 2019-04-24–2022-07-03 | 96 | 223 | 213 | 87 |
HLBE | 2019-08-29–2022-07-03 | 50 | 148 | 113 | 65 |
JSJ | 2019-08-01–2022-07-03 | 104 | 99 | 119 | 75 |
JYT | 2020-08-07–2022-05-26 | 35 | 101 | 95 | 34 |
MQ | 2019-06-19–2022-06-26 | 181 | 222 | 232 | 115 |
NJ | 2019-12-28–2022-07-03 | 114 | 157 | 152 | 107 |
NQ | 2019-08-18–2022-06-26 | 145 | 75 | 123 | 78 |
QD2 | 2019-03-26–2022-07-03 | 281 | 212 | 295 | 148 |
QYZ | 2019-11-08–2022-07-03 | 74 | 104 | 104 | 64 |
QY | 2019-11-16–2022-06-27 | 66 | 67 | 80 | 46 |
XLHT | 2019-05-18–2022-07-03 | 177 | 199 | 229 | 112 |
XTS | 2019-08-22–2022-06-27 | 191 | 148 | 198 | 109 |
YC | 2019-03-21–2022-07-03 | 147 | 212 | 234 | 100 |
ALL sites | 2018-07-21–2022-07-03 | 2080 | 2425 | 2763 | 1393 |
Type (Source) | Input Data | Type (Source) | Input Data |
---|---|---|---|
Data source 1: Multispectral observations (Sentinel-2A/2B; Landsat-7/8/9) | Blue; Green; Red; NIR; SWIR1; SWIR2 | Data source 3: Auxiliary data | Sand fraction [%] |
NDWI | Silt fraction [%] | ||
SAVI | DAST [°C] | ||
EVI | Elevation [m] | ||
SIMI | Slope [°] | ||
NDVI | Aspect [°] | ||
Data source 2: SAR observations (Sentinel-1A/1B) | NDVI_Daily | TWI | |
[dB] | Precipitation [mm/d] | ||
[dB] | Evapotranspiration [mm/d] | ||
Incidence angle [°] | Longitude [°] | ||
PR: / [linear scale] | Latitude [°] | ||
PD: − [linear scale] | DOY | ||
RVI: 4 /( + ) [linear scale] | Land cover | ||
NDPI: ( − )/( + ) [linear scale] | |||
DOO |
Input Data | Correlation Coefficient (r) | Input Data | Correlation Coefficient (r) |
---|---|---|---|
Blue | −0.23 | NDPI | 0.10 |
Green | −0.31 | DOO | −0.13 |
Red | −0.36 | NDVI_Daily | 0.26 |
NIR | −0.09 | Sand fraction | −0.48 **** |
SWIR1 | −0.28 | Silt fraction | 0.47 *** |
SWIR2 | −0.39 * | DAST | −0.03 |
NDWI | 0.12 | Precipitation | 0.13 |
SAVI | 0.22 | Evapotranspiration | −0.42 ** |
EVI | 0.22 | Elevation | −0.08 |
SIMI | −0.34 | Slope | 0.01 |
NDVI | 0.25 | Aspect | −0.17 |
0.47 *** | TWI | −0.28 | |
0.34 | Longitude | 0.22 | |
Incidence angle | −0.10 | Latitude | −0.35 |
PR | −0.09 | DOY | −0.06 |
PD | 0.34 | Land cover | −0.15 |
RVI | −0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Zheng, X.; Li, X.; Wang, C.; Song, J.; Li, L.; Guo, T.; Zheng, J. A Framework for High-Spatiotemporal-Resolution Soil Moisture Retrieval in China Using Multi-Source Remote Sensing Data. Land 2024, 13, 2189. https://doi.org/10.3390/land13122189
Feng Z, Zheng X, Li X, Wang C, Song J, Li L, Guo T, Zheng J. A Framework for High-Spatiotemporal-Resolution Soil Moisture Retrieval in China Using Multi-Source Remote Sensing Data. Land. 2024; 13(12):2189. https://doi.org/10.3390/land13122189
Chicago/Turabian StyleFeng, Zhuangzhuang, Xingming Zheng, Xiaofeng Li, Chunmei Wang, Jinfeng Song, Lei Li, Tianhao Guo, and Jia Zheng. 2024. "A Framework for High-Spatiotemporal-Resolution Soil Moisture Retrieval in China Using Multi-Source Remote Sensing Data" Land 13, no. 12: 2189. https://doi.org/10.3390/land13122189
APA StyleFeng, Z., Zheng, X., Li, X., Wang, C., Song, J., Li, L., Guo, T., & Zheng, J. (2024). A Framework for High-Spatiotemporal-Resolution Soil Moisture Retrieval in China Using Multi-Source Remote Sensing Data. Land, 13(12), 2189. https://doi.org/10.3390/land13122189