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Abstract: Grounded in the theoretical and methodological frameworks of landscape character identi-
fication from the European Landscape Map (LANMAP) and landscape character assessment (LCA),
this study developed an AI-based tool for landscape character analysis to classify the Jianghan
Plain’s landscape more effectively. The proposed method leveraged a deep learning model, the
artificial intelligence-based landscape character (AI-LC) classifier, along with specific naming and
coding rules for the unique landscape character of the Jianghan Plain. Experimental results showed a
significant improvement in classification accuracy, reaching 89% and 86% compared to traditional
methods. The classifier identified 10 macro-level and 18 meso-level landscape character types within
the region, which were further categorized into four primary zones—a lake network river basin,
a hillfront terrace, surrounding mountains, and a lake network island hill—based on natural and
social features. These advancements contributed to the theoretical framework of landscape character
assessment, offering practical insights for landscape planning and conservation while highlighting
AI’s transformative potential in environmental research and management.

Keywords: landscape character assessment; European landscape map; deep learning; Jianghan Plain

1. Introduction

Historically, landscape character classification has relied predominantly on profes-
sionals’ expertise and subjective judgment. However, technological advancements have
facilitated the emergence of more quantitative and objective classification methods in this
field. Moreover, AI technology has introduced innovative concepts and methodologies
into landscape architecture research. Using remote sensing images of the Jianghan Plain,
this study applied the European landscape map (LANMAP) [1] method to classify land-
scapes on the basis of their natural characters. It further enhances this classification by
implementing deep learning algorithms for refined landscape recognition, thus exploring
new approaches and perspectives in landscape character classification research.

1.1. Background

In contemporary society, the decline and transformation of landscapes amidst the
rapid currents of globalization and urbanization have attracted sustained global attention.
Scholars have embarked on systematic investigations into the protection, planning, and
management of landscapes. In 2002, the Rural Authority of England and Scottish Natural
Heritage issued landscape character assessment (LCA) guidelines, which defined landscape
quality as a landscape element that differentiates the landscape within a certain range,
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rather than good or bad, and gives the site a unique feeling. Landscape character refers to
the distinct and recognizable pattern of elements that consistently occur in a particular type
of landscape. These elements include geology, landform, soils, vegetation, land use, field
patterns, and human settlement, all of which combine to create a unique character, making
each landscape distinct and providing its specific sense of place [2]. As an effective tool for
analyzing landscape character, controlling landscape changes, and evaluating landscape
value, LCA has been continuously studied and practiced worldwide. Most existing LCA
studies have focused on the identification stage [3].

The results of landscape character recognition usually include landscape character
in typology and landscape areas/units in chorology [4,5]. The identification methods of
existing types and regions can be divided into two categories, namely digital and manual
interpretation. Manual interpretations employ aerial images as the interpretation base and
use heuristic methods to identify trait types and regions [6]. Furthermore, an integrated
identification methodology combines both digital and manual approaches, offering a multi-
faceted perspective [7]. Digital methods include clustering methods, overlay methods [8],
and image segmentation [9]. Among them, clustering methods are the most commonly
used, such as k-means clustering [10] and affinity propagation clustering [11]. Regarding
the identification of landscape character, to express the change in scale from small to large,
scholars usually use various terms to describe relative relationships, such as local, regional,
national, micro/small/detail, meso/intermediate, and macro/large/general/broad, and
this study employs a research approach that integrates meso-level and macro-level re-
lationships [7]. For example, Li and Zhang [11] adopted a hierarchical identification in
three scales, namely the broad scale for provincial zones, intermediate scale for cities, and
detailed scale for towns.

In recent years, a growing consensus has emerged among scholars advocating for
the integration of more rigorous quantitative methods in the examination of landscape
character classification systems and indicators. For example, Wu et al. [12] employed
a comprehensive methodology that integrated high-resolution imagery, drone technol-
ogy, and extensive field surveys to investigate subtle distinctions in landscape character.
They adopted a top-down approach for decomposition and classification to develop the
landscape ecological classification (LEC) system within the MCSS (Mining Cities in the
Semi-arid Steppe). Carlier et al. [13] implemented a series of clustering iterations for the
objective multivariate classification of geomorphic landscape units and land cover datasets.
Larrachea et al. [14] delineated central Argentina into two anthropogenic units and six
natural landscape units, employing land use, the normalized difference vegetation index
(NDVI), and other datasets for classification. Li et al. [15] developed a framework for
the classification of complex agricultural landscapes with remote sensing data, utilizing
iterative deep learning (IDL) techniques. Fang et al. [16] applied the k-means algorithm
to overlay and categorize various landscape factors extracted from multispectral images,
elevation data, and field survey information. Giang et al. [17] leveraged diverse socionatu-
ral profile data from satellites such as ALOS, NOAA, and multitemporal Landsat satellite
imagery as inputs for a convolutional neural network (CvNet) model in coastal landscape
character classification. Manual interpretation methods, while offering a high degree
of reliability for researchers with substantial expertise, often demand a significant level
of professional background and experience, making them less accessible for broader or
non-specialist applications. In contrast, digital classification methods, such as k-means
clustering, introduce a more objective framework; however, they carry the drawback of
subjectivity in setting the number of clusters, which can impact classification accuracy and
applicability in complex landscapes.

Currently, deep learning in landscape-related fields is increasingly centered on ad-
vancements in remote sensing and land use/land cover classification. This focus is driven
by the growing body of research demonstrating how deep learning technologies enhance
the analysis and interpretation of complex remote sensing data. By using remote sensing
data, scholars have adeptly accomplished the extraction of building contours [18], the iden-
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tification of urban functional zones [19], and the classification of various crops, farmlands,
and greenhouses [20–23], as well as land cover classification [24]. Furthermore, within
the realm of streetscape studies, scholars have analyzed urban streetscape architectural
style [24], the green view rate [25], spatial perception [26–29], urban measurement [30], etc.
Through the classification and identification of streetscape targets, one can evaluate urban
street esthetic design and street walkability [31].

While previous research has extensively utilized clustering techniques and qualitative
analyses to assess landscape character, the application of deep learning in remote sensing
has been primarily concentrated on urban streetscapes, agricultural landscapes, and specific
land use categories like farmlands and greenhouses. Such applications are rarely directed
toward the classification of complex landscape characteristics, particularly within diverse
and intricate environments.

Given the limitations of existing approaches, this study selects a highly varied land-
scape setting as a research subject, aiming to employ advanced intelligent analysis tech-
niques. This approach not only addresses the challenge of classifying landscape charac-
teristics in complex areas but also contributes to expanding the methodological scope of
landscape research. The study underscores the need for innovative data-driven methodolo-
gies to improve the accuracy and applicability of landscape classification frameworks in
diverse environments.

1.2. Research Objective

The principal objective of this research is to formulate a landscape character recognition
model uniquely tailored for the Jianghan Plain that is capable of identifying various
landscape characters at multiple scales within this region. The anticipated outcomes of
this study are poised to become an indispensable tool for research and planning entities,
facilitating a nuanced classification of landscape that transcends disciplinary boundaries.
This paper delineated the selection of remote sensing data, elevation, land use, and soil
classification as pivotal input variables to categorize landscapes of the Jianghan Plain,
employing the LANMAP methodology. This study augmented the landscape character
classification and recognition processes by using deep learning models and infusing them
with sophisticated analytical capabilities. The study was further clarified by addressing the
following research questions about landscape character classification of the Jianghan Plain:

1. What variety of landscape characters can be classified in the Jianghan Plain on the
basis of natural and social characters via the LANMAP method and how should the
corresponding scale for this classification be determined?

2. Is using deep learning models with remote sensing data a viable and efficient method
for categorizing the landscape character of the Jianghan Plain?

3. What are the defining characters of macro–meso landscape character classification
within the Jianghan Plain and how do these characters inform our understanding of
the region’s geography?

2. Materials and Methods
2.1. Study Area and Data

Drawing upon the natural landscape character classification structure of LANMAP
in Europe [9], this study incorporated topography, climate environment, land use, and
soil type as fundamental elements of the landscape character of the Jianghan Plain. Fol-
lowing the classification computation involving the overlay of multiple data layers, a
comprehensive landscape character classification system was ultimately established for
the region.

The Jianghan Plain, located in the south–central region of Hubei Province, China, spans
approximately 46% of the province’s total land area. It extends from Yichang City in the
west to Huangmei City in the east and is bordered to the north by the Dabie, Tongbai, and
Dahong Mountains, while its southern boundary reaches the Wuling and Mufu Mountains.
The Yangtze River traverses the southern part of the plain from west to east, joined by its
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largest tributary in the region, the Han River, which flows from northwest to southeast.
This unique geographical setting, defined by a gradient that runs from west to east and
north to south, also adjoins the Dongting Lake Plain in the central southern area. The
research focus for this study is the area encompassed by the 50-meter contour lines along
the Yangtze and Han River basins within Hubei Province [32,33].

As a microcosm of environmental interactions, the Jianghan Plain exemplifies the
complex interplay between natural landscape and human activities, with a diverse to-
pography and rich ecological habitats that provide a critical framework for landscape
character classification [34]. Insights from this study, while rooted in the Jianghan Plain,
offer valuable implications for environmental management and conservation, potentially
informing landscape systems around the world. By examining the Jianghan Plain, this
research not only enhances the local understanding of its distinctive environmental features
but also contributes to broader sustainable landscape management practices, showcasing
how regional studies can support large-scale environmental strategies.

To integrate the findings with current territorial spatial planning, the study’s scope
was extended to include the modern administrative regions within the boundaries above,
encompassing nine provincial cities, 56 counties, and urban areas, collectively covering an
approximate area of 84,908 km2 (Figure 1).
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The central and southern regions of the Jianghan Plain predominantly fall within
the Jianghan fault prospecting zone of the Yangtze paragenetic platform. Here, vigorous
sediment accumulation has resulted in the formation of a plain hinterland below 50 m above
sea level. Owing to the unique amalgamation of land, water, heat, and soil, this area has
transformed into a fertile region that is rich in fish and rice and marked by thriving human
settlements [35]. The following section provides a summary of the region’s topography,
climate, soil type, land use, and other pertinent natural background conditions.

The Jianghan Plain hinterland is surrounded by mountain ranges on three sides and
intersects with the major tributaries of the Yangtze River and Han River. This region is abun-
dant in lakes, wetlands, rivers, and canals. Climatically, the Jianghan Plain is characterized
by a northern subtropical humid monsoon continental climate, with concurrent rainfall and
warmth in the same season and four distinct seasons. Over 70% of its annual precipitation
occurs in the spring and summer, with the river’s flood season frequently experiencing
heavy rains and rainstorms, posing significant risks of flooding and soil erosion. With
approximately 2000 h of sunshine annually, the region boasts abundant light and heat
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resources, creating favorable conditions for crop cultivation. In terms of soil composition,
the Jianghan Plain predominantly consists of river alluvium and lake sediments, with thick
sandy loam primarily situated along the two rivers. As one moves farther from the rivers,
the clay content of the soil increases, resulting in the formation of more viscous lacustrine
soil in low-lying lakes. This advantageous regional environment nurtures ideal land for
fish and rice. Regarding land use, the Jianghan Plain predominantly features cultivated
land interspersed with water bodies and the surrounding hills graced with woodlands.

2.2. Method

Within the machine learning module for landscape character classification and recog-
nition (Figure 2), via a series of iterative experiments, various sizes of landscape character
research units were established, and remote sensing data were segmented according to
these unit scales to create a unified dataset. The landscape character classifications derived
from the previous module were employed to annotate the dataset according to their geo-
graphical locations. Notably, the dataset was annotated with varying numbers of landscape
characters depending on the scale of analysis. However, initial analyses of the annotated
dataset revealed that the direct application of LANMAP-based landscape characters for
learning led to suboptimal results. This issue arises because specific landscape characters,
classified by natural–social features and meeting the area threshold criteria for landscape
recognition, exhibit similar visual characters. Consequently, a category optimization mod-
ule was utilized to amalgamate landscape characters with similar characteristics, aiming to
enhance the outcomes in subsequent learning phases.

Figure 2a provides an overview of the workflow, organized into two core components,
the landscape character classification module and the machine learning module.
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Landscape character classification module (Figure 2a, left): This module employed
administrative boundaries, the study area extent, Landsat geocoding, elevation, and land
use data to establish an accurate coordinate framework and assemble the landscape dataset.
Primary tasks involve mapping landscape character type distributions, filtering regions
meeting a minimum size threshold, sourcing remote sensing images, and segmenting
research units at 4 km × 4 km and 2 km × 2 km spatial scales.

Machine learning module (Figure 2a, right): With the dataset prepared, a ResNet34
deep residual network (architecture shown in Figure 2c) was trained to classify landscape
character types. Remote sensing images were divided into training and testing sets, with
model performance evaluated via confusion matrices and accuracy metrics. Initial analyses
showed that combining visually similar landscape characters in this module improved
classification accuracy.

2.2.1. Landscape Character Coding

Drawing upon the findings of the European LANMAP eco-physical method [1], this
study suggests that the perceptible characters of landscape are predominantly influenced by
climate, topography, and geology. Moreover, cultural and socioeconomic factors are crucial
in shaping land use patterns. Given that the Jianghan Plain is within a consistent climate
zone, this study utilized three datasets stored in three layers—elevation, geology, and land
use—as the foundational data for landscape character classification and identification.

Prior to data processing, a naming convention was established to delineate the type
of landscape character classification, which was achieved by overlaying data from three
layers, namely soil, elevation, and land use. In this study, geological data were classified
into the following five categories, informed by classifications in previous studies and the
current study’s requirements: (1) paddy and swamp soil; (2) tidal sand soil; (3) red soil;
(4) yellow, yellow-brown, and brown soil; and (5) lime and purple soil. The terrain data
were segmented into seven categories according to elevation as follows: 0–30 plain; 30–50,
low downland; 50–70, downland; 70–200, hill; 200–500, low mountain; 500–1000, middle
mountain; and more than 1000, mountain. The land use classification adhered to the nine
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categories presented in the original data, which were farmland, forest, shrub, grassland,
water, ice, bare land, city, and wetland.

These categorical data served as the inputs for segmenting landscape characters,
which were superimposed via the Intersect function in ArcGIS v10.8, thereby segmenting
the target area into patches of varying sizes. Using the established naming rule, which
integrates patch attribute characters, all patches were systematically recorded in the format
of x-x-x (elevation–soil category–land use category) (Figure 3). Theoretically, when the
naming rule is applied on the basis of elevation, soil quality, and land use, one could
identify up to 315 (5 × 7 × 9) distinct landscape characters. However, in reality, only
110 of these combinations exist in the Jianghan Plain. Given that this research focused
on macro-/meso-scale landscape character analysis, it was necessary to simplify the land
types and select a limited number of landscape characters by establishing a threshold. An
analysis of the curves correlating to a landscape character with patch areas indicated that
at a threshold of 1000 km2, the diversity of landscape characters tended to stabilize. In
contrast, at a threshold of 100 square kilometers, there was a rapid decrease in diversity
(Figure 3). Consequently, the study established 1000 km2 and 100 km2 as area thresholds for
macro- and meso-landscape characters on the Jianghan Plain. This approach enabled the
exclusion of patches exceeding these thresholds and the amalgamation of smaller patches
into larger ones on the basis of the most extended neighboring intersecting lines (utilizing
the elimination function in ArcGIS), resulting in the identification of 15 macro and 41 meso-
landscape characters (Table 1, x-x-x means (elevation–soil category–land use category),
Figure 4. For example, 1-1-1 means (0–30 plain–paddy soil, swamp soil–farmland)).
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Table 1. Landscape character with area larger than the threshold.

Threshold Quantity of Types Landscape Character Coding

1000 km2 15 1-1-1, 1-1-5, 1-1-8, 1-3-1, 1-3-5, 2-1-1, 2-3-1, 2-4-1, 3-1-1, 3-4-1, 4-3-2, 4-4-1, 4-4-2, 4-5-1, 5-4-2

100 km2 41
1-1-1, 1-1-5, 1-1-8, 1-2-1, 1-3-1, 1-3-5, 1-3-8, 1-4-1, 2-1-1, 2-1-5, 2-1-8, 2-2-1, 2-3-1, 2-3-2, 2-3-8,
2-4-1, 2-5-1, 3-1-1, 3-2-1, 3-3-1, 3-3-2, 3-4-1, 3-4-5, 3-4-8, 3-5-1, 4-1-1, 4-2-1, 4-3-1, 4-3-2, 4-4-1,

4-4-2, 4-4-5, 4-4-8, 4-5-1, 4-5-2, 5-3-2, 5-4-1, 5-4-2, 5-5-2, 6-3-2, 6-4-2
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2.2.2. Machine Learning Module

This study employed remote sensing imagery as the primary data source and applied
transfer learning with the ResNet34 model [36], leveraging its pre-trained features to en-
hance landscape character classification. The input imagery consisted of Landsat 8 OLI
multispectral satellite images with a spatial resolution of 30 meters, captured on 26 Au-
gust 2020 under clear conditions with less than 10% cloud cover. These bands provided
three color (RGB) channels and four infrared channels, resulting in a comprehensive seven-
channel dataset. The remote sensing imagery was then superimposed with the landscape
character classification map, enabling landscape character type annotations on the images
based on locational correspondence. This approach derived the essential landscape character
classification data, as illustrated in Figure 5.

Following extensive experiments, this study established 4 km × 4 km and 2 km × 2 km
as the dimensions for the macro- and meso-landscape research units, respectively. A small
area encompassing all landscape characters was selected from the center of the complete
remote sensing image. The small area with a shape of (7531, 7691) pixels was subdivided
into 4 km × 4 km and 2 km × 2 km patches. The dataset was expanded by shifting this
segment by 1 km and 0.5 km each time, resulting in 9732 and 77,598 input images for macro-
and meso-scale research, respectively (Table 2). Subsequently, the correlation between
the remote sensing image and landscape character, as established in the previous step,
was used to annotate each landscape research unit, thereby finalizing the data annotation
process (Figure 6). When multiple landscape characters were present within a single study
unit, the type with the largest area proportion was designated as the label. In the third
step, each square was augmented and transformed into an input format comprising seven
channels with a resolution of 112 × 112 pixels. During the experiment, images of various
scales were divided into two groups, with 80% of the data allocated for training and 20%
allocated for testing.
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Table 2. Description of the Jianghan Plain landscape character dataset.

Threshold
Number of
Landscape
Characters

Unit Area Number of
Slices

Number of
Samples in the

Training Set

Number of
Samples in the

Test Set

Macro 1000 km2 15 4 km × 4 km 9732 7785 1947
Meso 100 km2 41 2 km × 2 km 77,598 62,078 15,520
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Convolutional neural networks (CNNs) are powerful feed-forward neural networks
with multilayer convolutional structures that capture local image patterns effectively by
addressing translation, rotation, and scaling issues, thus enhancing robustness [37]. As
network depth increases, models gain more abstract feature representations, but deep layers
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can introduce gradient problems. Residual networks (ResNets) mitigate this problem by
learning “residual” functions through shortcut connections, allowing information to bypass
certain layers and prevent gradient vanishing [36]. In this study, ResNet-34 processed
multispectral remote sensing images, combining RGB and four infrared channels into
seven-channel composite images. The model’s input was normalized to 112 × 112 ×
7 dimensions to accommodate these data.

Considering the complexity and volume of data involved in landscape character
classification, the ResNet-34 model was chosen as the backbone for this task. Modifications
to the original ResNet-34 network were implemented to accommodate input images of
varying sizes. Given that the original ResNet-34 network was designed for input image
resolutions of 224 × 224 × 3, which differs from our data resolution, the convolution kernel
size of the network’s first convolutional layer was altered from 7 × 7 × 3 to 7 × 7 × 7, and
the stride parameter was set to 2. Consequently, this adjustment resulted in an input size
for this layer of 112 × 112 × 7 and an output size of 112 × 112 × 64, aligning with the
output size of the original network’s first convolutional layer. During the training phase,
the final fully connected layer parameters were configured on the basis of the number of
categories identified in the landscape character classification task. For landscape character
classification tasks at the macro-, meso-, and micro-scales, the number of neurons in the
last fully connected layer was set to 15, 44, and 80, respectively. The network parameters
used for landscape character classification tasks are delineated in Table 3.

Table 3. Parameter settings of the ResNet34 network.

Layer Name Output Size Input Size Macro-Scopic Meso-Scopic Micro-Scopic

Conv1 112 × 112 × 64 112 × 112 × 7 7 × 7, 64, stride 2
Conv2_1 ~
Conv2_3 56 × 56 × 64 56 × 56 × 64 3 × 3, 64

3 × 3, 64

Conv3_1 28 × 28 × 128 56 × 56 × 64 3 × 3128, stride 2
3 × 3128

Conv3_2 ~
Conv3_4 28 × 28 × 128 28 × 28 × 128 3 × 3128

3 × 3128

Conv4_1 14 × 14 × 256 28 × 28 × 128 3 × 3, 256, stride 2
3 × 3256

Conv4_2 ~
Conv4_6 14 × 14 × 256 14 × 14 × 256 3 × 3256

3 × 3256

Conv5_1 7 × 7 × 512 14 × 14 × 256 3 × 3512, stride 2
3 × 3512

Conv5_1 ~
Conv5_3 7 × 7 × 512 7 × 7 × 512 3 × 3512

3 × 3512

Classifier
1 × 1 × 512 7 × 7 × 512 Average pool

1 × 1 × 15/44/80 1 × 1 × 512 FC-15 FC-44 FC-80

For each landscape character classification task undertaken, a consistent set of hyperpa-
rameters was employed during training. The stochastic gradient descent (SGD) optimizer
was employed with a mini batch size set to 4. The learning rate was 0.01 and the models
underwent training for up to 300 epochs. During the data pre-processing phase, various
data augmentation techniques, including random horizontal flipping, vertical flipping, and
rotation, were applied.

After model training was completed, a comprehensive evaluation was conducted
to ascertain the model’s predictive accuracy and generalizability. This assessment was
conducted in two stages, the classification accuracy was the primary index for assessing
model performance, and the confusion matrix was further analyzed to fuse visually similar
classes [38]. Accuracy reflects the proportion of samples correctly classified by the model,
which is calculated as the sum of true positives (TPs) and true negatives (TNs) divided
by the total number of samples. The confusion matrix offers a more detailed view of the
model’s performance across different categories, including true positives, false positives
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(FPs), true negatives, and false negatives (FNs). The confusion matrix revealed that certain
misclassified landscape character types, despite having distinct features such as soil types
and elevation, are indeed very similar to each other in visual channels.

To address this challenge, a category optimization module was introduced. This
module uses a confusion matrix optimization approach, where each element in the matrix
is analyzed to determine which category pairs should be merged. For each pair of categories
i and j in the confusion matrix, their combined score S was calculated as

S(i, j) = M[i, j] + M[j, i] (1)

In this context, M denotes the confusion matrix, where M[i, j] represents the number
of instances where class i was erroneously classified as class j, and M[j, i] indicates the
instances of class j being misclassified as class i. Subsequently, the pair of categories with
the highest score, S, was selected for merging, with the argmax function determining the
optimal category pair (i, j) that maximizes S.

(i∗, j∗) = arg max(i, j)S(i, j) (2)

After merging, the selected category pairs were consolidated and eliminated from
the category list. The confusion matrix was revised, integrating the rows and columns
corresponding to the merged categories. This merging procedure was executed iteratively,
adhering to a predefined maximum number of merges and retrograde iterations. Following
each iteration, a new classification report was produced to evaluate any changes in per-
formance. Upon acquiring the revised classification, the data were resubmitted for model
training to enhance the overall performance.

3. Results
3.1. Research Scale Analysis

With respect to landscape character classification, we identified 15 and 41 distinct
landscape character types at the macro- and meso-scales, respectively (Figure 3). Following
the optimization of landscape character, the number was reduced to 10 and 18 for the
macro- and meso-scales, respectively.

At the macro-scale, the landscape predominantly consisted of farmlands on plains,
watershed cities, highlands, low hills, and hills, as well as woodlands in hilly lowland zones.
At this scale, the hinterland of the plains was characterized by an abundance of farmland,
water, and urban landscapes, with an increasing proportion of woodlands correlated with
an increase in elevation, thus altering the landscape character. Moreover, in the southeastern
region of the Jianghan Plain, the intermingling of the two rivers at their confluence and the
numerous water areas resembling tree branches with hilly terrain culminated in unique
landscape formations. At the meso-scale, the reduced scale led to a refined delineation of
landscape character, encompassing varied farmland and urban areas at different altitudes,
woodlands in the highland and mesas, and water bodies in the terrain transition zones. This
observation underscores the importance of defining the scale of the study area in landscape
character research.

The optimization results revealed distinguishable landscape character, such as low-
elevation farmland in the central Jianghan Plain (1-1-1), the paddy soil and yellow soil
farmland transitioning from the northern Tongbai Mountains and the southern foothills of
the Dabie Mountains to the plains (2-1-1, 3-1-1, etc.), and the red soil farmland transitioning
from the southeastern Mugao Mountain to the plain area (2-3-1, 1-3-1). After optimization,
these types still belong to different categories. However, a higher similarity between paddy
soil and yellow soil farmland was observed when transitioning northward from the central
plain into the low downland, downland, and hill areas (2-1-1, 3-1-1, 2-4-1, 3-4-1, 4-4-1).
During optimization, these types were merged.
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3.2. Performance Evaluation

The experimental data presented in Table 4 indicate that the accuracies achieved
by learning the landscape character directly from the landscape character classification
calculation module were 82% and 78%, respectively. Some examples of classification results
are shown in Figure 7. Following the application of the category optimization module,
this rate could be increased to 89% and 86%, respectively. Furthermore, the experimental
results corroborate the stability and accuracy of the model in the intelligent recognition of
landscape character classification.

Table 4. Experimental results of the landscape character classification model.

Unit Area
Number of Types

Before
Optimization

Average Accuracy
Before

Optimization

Number of Types
After

Optimization

Average Accuracy
After

Optimization

Macro 4 km × 4 km 15 0.82 10 0.89
Meso 2 km × 2 km 41 0.78 18 0.86
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4. Discussion
4.1. Assessment of the Effectiveness of the AI-LC Classifier

This study culminated in the development of a multiscale landscape character clas-
sification system encompassing two distinct levels, namely macro-scale and meso-scale
levels. Historically, landscape character classifications have been predominantly deter-
mined by professional experts without quantitative indicators, relying solely on landscape
indices, which are insufficient for fully representing the social attributes of landscapes.
The current landscape character classification, which is based on elevation, land use, and
soil, offers a more comprehensive understanding of the determinants of plain landscapes.
By utilizing the AI landscape character classification and recognition model, this research
achieved intelligent landscape character classification and recognition, incorporating both
natural and social attributes. This research methodology is notably expandable, and the
well-trained ResNet34 model holds significant value for national and global landscape
character research. Unlike traditional landscape character classification methods that rely
on expert experience, this approach requires scientists to (1) calculate landscape character
classification via LANMAP at various research scales, (2) segment remote sensing images
according to these scales and annotate them with classifications from Step (1) to compile
the dataset, (3) input this dataset into the learning model, and (4) execute the model and
optimize for subsequent relearning.
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In this study, the 15 data types underwent further classification, resulting in the macro-
scopic landscape of the Jianghan Plain being segmented into four primary categories, a
lake network river basin, lake network island hills, pre-mountain platforms, and a hillfront
terrace (Table 5). Each category within the macroscopic landscape of the Jianghan Plain
features distinct meso-level landscape character codes and grouping principles based on
factors such as topography, elevation, and soil type. For instance, the lake network river
basin category is primarily located in the central areas of the Jianghan Plain, characterized by
low elevation and an intricate network of waterways. The lake network island hills category,
on the other hand, is situated in the southern region of the plain, defined by a mosaic of
lake networks and island-like hills. Additionally, the pre-mountain platforms and hillfront
terrace categories are located on the periphery of the Jianghan Plain, each marked by distinct
features; the pre-mountain platforms are associated with higher mountain elevations, while
the hillfront terrace areas are identified by elevated terrain transitioning to the foothills.

Table 5. Macroscopic landscape division of the Jianghan Plain.

Macro-Landscape
Character Coding

Meso-Landscape
Character Coding Grouping Principles Location Types

1-1-5
1-1-1
1-1-8

1-1-1 1-1-5 1-1-8
Low-Altitude

Farmland with Alluvial
and Paddy Soils

Heartland of the Jianghan
Plain, characterized by flat
terrain and a crisscrossing

network of waterways

Lake and River
Basins

4-5-1
4-4-2
5-4-2

4-4-2 5-4-2 6-4-2
3-4-5 4-4-5 2-5-1 3-5-1
4-5-1 4-5-2 5-5-2 3-4-8

4-4-8 4-1-1 4-2-1

High-Altitude Outer
Ring Mountain Forests

Outer ring mountains of Jing,
Dahong, Tongbai, and Dabie

ranges surrounding the
Jianghan Plain

Surrounding
Hill Ranges

1-3-1
2-3-1
1-3-5
4-3-2

1-3-1 2-3-1 3-3-1 4-3-1
2-3-2 3-3-2 4-3-2 5-3-2
6-3-2 1-3-5 1-3-8 2-3-8

Intermingled Mid- and
Low-Altitude Red Soil

Farmland

Lake network island hills,
south of the confluence of two

rivers on the Jianghan Plain

Lake Network
Island Hills

2-1-1
3-1-1
2-4-1
3-4-1
4-4-1

1-2-1 2-1-1 2-2-1 3-1-1
3-2-1 1-4-1 2-4-1 3-4-1
4-4-1 5-4-1 2-1-5 2-1-8

Mid- to High-Altitude
Yellow-Brown Soil

Farmland

Hillfront terrace, convergence
area of Jing, Dahong, Tongbai,
and Dabie Mountains with the

Jianghan Plain

Hillfront
Terrace

These four unique landscape categories encapsulate the distinct natural characteristics
inherent to various regions of the Jianghan Plain. Specifically, the lake network and river
basin area, characterized by the least undulation and lowest elevation within the Jianghan
Plain, boasts a broad flat terrain, an intricate network of waterways, the most significant
proportion of arable land, and a minor proportion of forested areas (1-1-1, 1-1-5, 1-1-8). The
landscape in this region is significantly influenced by the collective impact of lakes, water
systems, and ditches, leading to the emergence of varied farmland patterns such as dykes,
grids, and curved networks [39].

The hillfront terrace area is a transitional zone from the hinterland plains to the low
hills, characterized by a more pronounced undulation and elevation than the lake network
and river basin areas. This area boasts a high proportion of arable land, predominantly
terrace fields (2-1-1, 3-1-1, etc.). Additionally, forested land, indicative of the hill landscape,
has expanded, with pre-hill lakes situated at the interface of the hill and plain.

The lake network island hill area exhibits elevation and undulation levels between the
lake network river basin and the hillfront terrace, with its forest and farmland intertwining
with each other (1-3-1, 2-3-1, 4-3-2) and its water area being the most extensive among
the four categories (1-3-5). The region features island-like hills interspersed with tree
fork-shaped lakes, where the Yangtze and Han rivers converge, thereby crafting the unique
landscape characteristics of this area [40].
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Surrounding the mountains, the hills are the highest in elevation with steep terrain
slopes, leading to a limited area of arable land and a predominant presence of forested
land in this region (4-4-2, 5-4-2). The region is further characterized by river valleys, valley
plains, and scattered reservoirs, serving as hallmark features of this landscape (3-4-5, 4-4-5).

4.2. In-Depth Analysis of Landscape Classification Results

Unlike previous studies that mainly focused on identifying specific objects in remote
sensing image data [18,19], this paper achieves a direct recognition and classification
of landscape character types to which remote sensing images belong. Using the AI-LC
classifier, this study not only facilitates the classification and recognition of landscape
character types but also, through the process of category optimization, provides novel
insights into the interrelationships among landscape character type characteristics. From
a macro-perspective, the system initially categorized the Jianghan Plain into 15 major
categories. Leveraging AI recognition capabilities, the 15 initially identified categories
were further optimized to 10, increasing the accuracy rate to 89%. The optimization results
revealed distinguishable landscape characters, such as low-elevation farmland on the
central Jianghan Plain (1-1-1), paddy soil and yellow soil farmland transitioning from the
northern Tongbai Mountains and the southern foothills of the Dabie Mountains to the
plains (2-1-1, 3-1-1, etc.), and red soil farmland transitioning from southeastern Mugao
Mountain to the plain area (2-3-1 and 1-3-1). However, a greater similarity between paddy
soil and yellow soil farmland was observed when transitioning northwards from the central
plain into the low downland, downland, and hill areas (2-1-1, 3-1-1, 2-4-1, 3-4-1, and 4-4-1).
Consequently, the landscape characters of the northern low-elevation farmland exhibit
notable changes compared with those of the central low-elevation farmland primarily due
to the varying terrain relief. Moreover, southern low-elevation farmland, characterized
by numerous distinct water bodies, has undergone significant alterations in its landscape
character (Figure 8a).

From the mesoscopic perspective, following the reduction in the threshold area, the
number of landscape character types expanded from an initial 10 to 18 after category
optimization (Table 4). The lowering of the landscape character type area threshold and the
decrease in the size of the identification unit clearly led to the emergence of additional new
landscape characters. For example, landscape characters 3-4-5 and 4-4-5 (height yellow
loamy waters and hill yellow loamy waters, respectively) emerged, which are indicative of
the landscape attributes of mountainous reservoirs in the Jianghan Plain (Figure 8b). This
observation is consistent with the landscape character in which lakes are prone to form in
areas experiencing significant topographic slope changes, especially where multiple rivers
from the outer ring of the mountains converge onto the Jianghan Plain [41]. Moreover,
the emergence of landscape characters such as 1-3-8, 2-1-8, 2-3-8, 3-4-8, and 4-4-8 (Table 5)
reflects the inclusion of more urban towns as the study scale narrowed, indicating that this
meso-scale study extended into the domain of habitat analysis (Figure 8c). These variations
in habitat identification underscore the diversity in habitat characters across different
locations in the Jianghan Plain, presenting a direction for future research endeavors

However, a reduction in research scale does not invariably lead to an increased land-
scape character type; in some instances, it may also decrease. As the scale decreases to a
certain extent, different landscape characters may exhibit more remarkable similarities to
one another. For example, in the case of the two water-type landscapes, i.e., 1-3-5 and 1-1-5,
the distinction in their features at the 4 km × 4 km scale was more pronounced than that at
the 2 km × 2 km scale, owing to the inclusion of more surrounding environmental factors.
A parallel scenario was observed in the 5-4-2 and 4-4-2 woodland landscapes, where the
decrease in patch size led to a loss of distinct features, thereby increasing the similarity
between these landscapes (Figure 9).

At the mesoscopic research scale, the present resolution of remote sensing images
may be low, raising questions about whether enhancing this resolution could improve
the accuracy of recognition outcomes and support subsequent higher-precision research
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endeavors. This consideration forms a pivotal direction for future research. As the research
scale varies, the proliferation of landscape characters and the reduction in their coexistence
suggest that different scales may be required for various landscape characters. This notion
introduces a challenge that necessitates future research.
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4.3. Future Directions for Landscape Character Analysis

The AI landscape character classification system, the AI-LC classifier, results in an
approximately 10% misclassification rate. The process of classification learning and cat-
egory optimization allows for understanding the reasons behind the similarities among
landscape characters, thereby revealing the impact of both natural and social elements on
the landscape character.

At the macro-scale, there is high similarity between Grade 1 and 2 farmland landscapes.
The characteristic features of plain farmland represent the core landscape of the Jianghan
Plain hinterland. However, the landscape of transition areas differs from that of plain
farmland landscapes, with stepped farmland created by changes in terrain and the complex
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environment of farmland intermingled with water bodies, resulting in a distinct landscape
character. With respect to the forest landscape, woodlands in the north and southeast exhibit
distinct characters at the macro-scale, which are influenced by their respective surrounding
environments. This differentiation diminishes as the research unit area is reduced.

Consequently, choosing appropriate research scales for different regions becomes
crucial for future research. With respect to water bodies, the analysis of water areas is
particularly important in the Jianghan Plain. This encompasses the study of river landscapes.
River landscapes, characterized by their longitudinal continuity, do not align with the
standard unit-based approach to water research employed in this study. This aspect warrants
further consideration in subsequent research.

As the research scope becomes more refined, the need for enhanced accuracy in
primary data grows, especially when a patch contains many landscape characters. This re-
search is confined to macro- and meso-scales. Scales with specific thresholds are established.
The determination of these thresholds aids in defining the scope of content pertinent to each
research scale. However, when these thresholds are set, certain combined types emerge
because the location is a composite of multiple landscape characters, thus constituting
distinctive landscape characters. Characteristic landscapes are more likely to emerge in
typical areas and at the intersections of large plateaus.

There is a need to enhance the interpretation of images that have yet to be correctly
recognized further, for example, in complex landscapes composed of farmland, water areas,
and forest land. While the identification results may indicate that this landscape cannot be
accurately identified, its intricate features nonetheless contribute to its status as a region
with distinct landscape characters. This kind of landscape may become more prevalent
with an increase in the study scale and less so as the scale decreases.

5. Conclusions

Existing research on landscape character assessment mostly focused on small-scale
targets such as urban streetscapes and agricultural landscapes; few applications were
directed toward the classification of complex landscape characteristics within diverse and
intricate environments, like the Jianghan Plain. This research created a set of landscape
character categories and an associated remote sensing image dataset based on LANMAP
for the Jianghan Plain, then proposed a landscape character recognition model named the
AI-LC classifier to identify various landscape characters at multiple scales with deep neural
networks. The AI-LC classifier delineated 10 macro- and 18 meso-landscape characters with
a precision of 89% and 86%, respectively, demonstrating its effectiveness for the automatic
analyses of landscape characters for large and complex regions. Inspired by the results of
macro-level analyses, the Jianghan Plain was segmented into four major zones, namely the
lake network river basin, the hillfront terrace, the surrounding mountains, and the lake
network island hill, offering further insights for landscape planning and conservation.

In future research, we can further refine the integration of the AI-LC classifier with
various landscape environmental indicators, enhance its ability to classify and interpret
high-precision remote sensing data, and thus achieve the classification and research of
landscape character types at a more detailed microscopic scale. To further develop the
potential of artificial intelligence in environmental science, this classifier is a beneficial
tool for landscape character planning and management in China and advancing global
landscape management strategies.
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