Evaluation and Optimization of Landscape Spatial Patterns and Ecosystem Services in the Northern Agro-Pastoral Ecotone, China
<p>An overall framework based on research objectives and data scenarios.</p> "> Figure 2
<p>Location of the study area (<b>a</b>), the position of small watersheds (<b>b</b>), and its land use distribution (<b>c</b>).</p> "> Figure 3
<p>Spatial match diagram of ecosystem services in the study area. Ecosystem services include water yield (<b>a</b>), sediment retention (<b>b</b>), and carbon storage (<b>c</b>).</p> "> Figure 4
<p>Scatterplot of landscape spatial pattern indices and water yield (<b>a</b>), sediment retention (<b>b</b>), and carbon storage (<b>c</b>). LVIWY: legged variation in water yield, LVISR: legged variation in soil retention, LVICS: legged variation in carbon storage. The red Moran’s I indices mean the spatial correlation between variable spatial pattern indices and the ecosystem services was the highest among all the explanatory variables.</p> "> Figure 5
<p>LISA Aggregation Map of three landscape spatial indices and water yield (<b>a</b>), sediment retention (<b>b</b>), and carbon storage (<b>c</b>) from 2004 to 2020.</p> "> Figure 6
<p>The spatial distribution characteristics of the importance partition of three ecosystem services of water yield (<b>a</b>), sediment retention (<b>b</b>), and carbon storage (<b>c</b>).</p> "> Figure 7
<p>Ecological service importance partitioning and optimization of the study area. (<b>a</b>) Classification of the importance of integrated ecosystem service functions in the watershed in 2020; (<b>b</b>) Map of land use types in the area to be optimized in the watershed; (<b>c</b>) The result of optimal vegetation allocation in the watershed.</p> ">
Abstract
:1. Introduction
2. Study Area
2.1. Theoretical Framework
2.2. Study Area Selection
2.3. Data Collection
3. Methods
3.1. Detection of LUCC
3.2. Selection of Landscape Spatial Patterns
3.3. Quantification of Ecosystem Services
3.4. Coupling of Landscape Spatial Patterns and Ecosystem Services
3.5. Classification of the Importance of Ecosystem Services
4. Results
4.1. Changes in Landscape Spatial Patterns before and after Ecological Restoration Projects
4.2. Changes in Ecosystem Services before and after Ecological Restoration Projects
4.3. Response of Ecosystem Services to Landscape Spatial Patterns
4.4. Classification of the Importance of Ecosystem Services
5. Discussion
5.1. Landscape Spatial Patterns and Ecosystem Services Change before and after Ecological Restoration Projects
5.2. Relationship between Landscape Spatial Patterns and Ecosystem Services
5.3. Optimization Allocation
5.4. Limitations and Significance of This Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamidi, H.; Jahanshahifard, M. The Role of the Internet of Things in the Improvement and Expansion of Business. J. Organ. End User Comput. 2018, 30, 24–44. [Google Scholar] [CrossRef]
- Ahumada, O.; Villalobos, J.R. Application of Planning Models in the Agri-Food Supply Chain: A Review. Eur. J. Oper. Res. 2009, 196, 1–20. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. WETLAND RESOURCES: Status, Trends, Ecosystem Services, and Restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling Multiple Ecosystem Services, Biodiversity Conservation, Commodity Production, and Tradeoffs at Landscape Scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical Validation of the InVEST Water Yield Ecosystem Service Model at a National Scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, R.V.; Krummel, J.R.; Gardner, R.H.; Sugihara, G.; Jackson, B.; DeAngelis, D.L.; Milne, B.T.; Turner, M.G.; Zygmunt, B.; Christensen, S.W.; et al. Indices of Landscape Pattern. Landsc. Ecol 1988, 1, 153–162. [Google Scholar] [CrossRef]
- Fan, F.; Xiao, C.; Feng, Z.; Chen, Y. Land-Planning Management Based on Multiple Ecosystem Services and Simulation in Tropical Forests. J. Environ. Manag. 2022, 323, 116216. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Cao, W.; Liu, Y.; Lu, B. The Impacts of Landscape Patterns Spatio-Temporal Changes on Land Surface Temperature from a Multi-Scale Perspective: A Case Study of the Yangtze River Delta. Sci. Total Environ. 2022, 821, 153381. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Wang, J.; Bai, M. Assessing Spatial–Temporal Heterogeneity of China’s Landscape Fragmentation in 1980–2020. Ecol. Indic. 2022, 136, 108654. [Google Scholar] [CrossRef]
- Djagoun, C.A.M.S.; Zanvo, S.; Padonou, E.A.; Sogbohossou, E.; Sinsin, B. Perceptions of Ecosystem Services: A Comparison between Sacred and Non-Sacred Forests in Central Benin (West Africa). For. Ecol. Manag. 2022, 503, 119791. [Google Scholar] [CrossRef]
- Nichiforel, L.; Duduman, G.; Scriban, R.E.; Popa, B.; Barnoaiea, I.; Drăgoi, M. Forest Ecosystem Services in Romania: Orchestrating Regulatory and Voluntary Planning Documents. Ecosyst. Serv. 2021, 49, 101276. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, H.; Huang, B.; Ji, Y.; Peng, S.; Zhou, T. Are Productivity and Biodiversity Adequate Predictors for Rapid Assessment of Forest Ecosystem Services Values? Ecosyst. Serv. 2022, 57, 101466. [Google Scholar] [CrossRef]
- Lin, S.; Li, Y.; Chen, M.; Li, Y.; Wang, L.; He, K. Effects of Local Neighbourhood Structure on Radial Growth of Picea Crassifolia Kom. and Betula Platyphylla Suk. Plantations in the Loess Alpine Region, China. For. Ecol. Manag. 2021, 491, 119195. [Google Scholar] [CrossRef]
- Guo, Q.; Cheng, C.; Jiang, H.; Liu, B.; Wang, Y. Comparative Rates of Wind and Water Erosion on Typical Farmland at the Northern End of the Loess Plateau, China. Geoderma 2019, 352, 104–115. [Google Scholar] [CrossRef]
- Stavi, I.; Priori, S.; Thevs, N. Editorial: Impacts of Climate Change and Land-Use on Soil Functions and Ecosystem Services in Drylands. Front. Environ. Sci. 2022, 10, 851751. [Google Scholar] [CrossRef]
- Peng, S.-S.; Piao, S.; Zeng, Z.; Ciais, P.; Zhou, L.; Li, L.Z.X.; Myneni, R.B.; Yin, Y.; Zeng, H. Afforestation in China Cools Local Land Surface Temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, W.; Cao, J.; Liu, X.; Shen, H.; Zhao, X. Changes in Soil Organic Carbon, Nitrogen, Phosphorus, and Bulk Density after Afforestation of the “Beijing–Tianjin Sandstorm Source Control” Program in China. CATENA 2014, 118, 186–194. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, W.; Fan, J. Soil Organic Carbon Dynamics in Xilingol Grassland of Northern China Induced by the Beijing-Tianjin Sand Source Control Program. Front. Earth Sci. 2017, 11, 407–415. [Google Scholar] [CrossRef]
- Chang, X.; Sun, L.; Yu, X.; Liu, Z.; Jia, G.; Wang, Y.; Zhu, X. Windbreak Efficiency in Controlling Wind Erosion and Particulate Matter Concentrations from Farmlands. Agric. Ecosyst. Environ. 2021, 308, 107269. [Google Scholar] [CrossRef]
- He, D.; Oliver, Y.; Rab, A.; Fisher, P.; Armstrong, R.; Kitching, M.; Wang, E. Plant Available Water Capacity (PAWC) of Soils Predicted from Crop Yields Better Reflects within-Field Soil Physicochemical Variations. Geoderma 2022, 422, 115958. [Google Scholar] [CrossRef]
- Guo, M.; Chen, Z.; Wang, W.; Wang, T.; Wang, W.; Cui, Z. Revegetation Induced Change in Soil Erodibility as Influenced by Slope Situation on the Loess Plateau. Sci. Total Environ. 2021, 772, 145540. [Google Scholar] [CrossRef] [PubMed]
- Pechanec, V.; Purkyt, J.; Benc, A.; Nwaogu, C.; Štěrbová, L.; Cudlín, P. Modelling of the Carbon Sequestration and Its Prediction under Climate Change. Ecol. Inform. 2018, 47, 50–54. [Google Scholar] [CrossRef]
- Ji-yuan, L.; Watanabe, M.; Tian-xiang, Y.; Hua, O.; Xiang-zheng, D. Integrated Ecosystem Assessment for Western Development of China. J. Geogr. Sci 2002, 12, 127–134. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, G.; Zhang, Y.; Bai, Y.; Tian, P.; Mu, X.; Tian, X. Linkages between Soil Erosion and Long-Term Changes of Landscape Pattern in a Small Watershed on the Chinese Loess Plateau. CATENA 2023, 220, 106659. [Google Scholar] [CrossRef]
- Kim, S.; Jung, Y. Application of the InVEST Model to Quantify the Water Yield of North Korean Forests. Forests 2020, 11, 804. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the Impact of the Poplar Ecological Retreat Project on Water Conservation in the Dongting Lake Wetland Region Using the InVEST Model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef] [PubMed]
- Chacko, S.; Kurian, J.; Ravichandran, C.; Vairavel, S.M.; Kumar, K. An Assessment of Water Yield Ecosystem Services in Periyar Tiger Reserve, Southern Western Ghats of India. Geol. Ecol. Landsc. 2021, 5, 32–39. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, R.; Zeng, Z. Identifying and Mapping the Responses of Ecosystem Services to Land Use Change in Rapidly Urbanizing Regions: A Case Study in Foshan City, China. Remote Sens. 2021, 13, 4374. [Google Scholar] [CrossRef]
- Bouguerra, S.; Jebari, S. Identification and Prioritization of Sub-Watersheds for Land and Water Management Using InVEST SDR Model: Rmelriver Basin, Tunisia. Arab. J. Geosci. 2017, 10, 348. [Google Scholar] [CrossRef]
- Dunkerley, D. Rainfall Intensity in Short Events: Evaluating the “I30 Is Equal to Twice the Rainfall Depth” Approach Advised for Use with the Universal Soil Loss Equation by Wischmeier & Smith (1978). CATENA 2021, 207, 105659. [Google Scholar] [CrossRef]
- Renard, K.G.; Yoder, D.C.; Lightle, D.T.; Dabney, S.M. Universal Soil Loss Equation and Revised Universal Soil Loss Equation. In Handbook of Erosion Modelling; Morgan, R.P.C., Nearing, M.A., Eds.; Wiley: Hoboken, NJ, USA, 2010; pp. 135–167. ISBN 978-1-4051-9010-7. [Google Scholar]
- Aneseyee, A.B.; Soromessa, T.; Elias, E.; Noszczyk, T.; Hernik, J.; Benti, N.E. Expressing Carbon Storage in Economic Terms: The Case of the Upper Omo Gibe Basin in Ethiopia. Sci. Total Environ. 2022, 808, 152166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jin, X.; Li, M.; Liu, R.; Jing, Y. Evaluating Civil Aviation Airport Competitiveness in the Yangtze River Economic Belt of China: A Lens of Spatial-Temporal Evolution. Front. Environ. Sci. 2022, 10, 994860. [Google Scholar] [CrossRef]
- Corral-Pazos-de-Provens, E.; Rapp-Arrarás, Í.; Domingo-Santos, J.M. Estimating Textural Fractions of the USDA Using Those of the International System: A Quantile Approach. Geoderma 2022, 416, 115783. [Google Scholar] [CrossRef]
- Lin, S.; Li, Y.; Li, Y.; Chen, Q.; Wang, Q.; He, K. Influence of Tree Size, Local Forest Structure, Topography, and Soil Resource Availability on Plantation Growth in Qinghai Province, China. Ecol. Indic. 2021, 120, 106957. [Google Scholar] [CrossRef]
- Masto, R.E.; Chhonkar, P.K.; Singh, D.; Patra, A.K. Alternative Soil Quality Indices for Evaluating the Effect of Intensive Cropping, Fertilisation and Manuring for 31 Years in the Semi-Arid Soils of India. Environ. Monit. Assess. 2007, 136, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, G.; Li, N.; Zhang, B.; Yang, H. Variation in Soil Erodibility under Five Typical Land Uses in a Small Watershed on the Loess Plateau, China. CATENA 2019, 174, 24–35. [Google Scholar] [CrossRef]
- Merilä, P.; Malmivaara-Lämsä, M.; Spetz, P.; Stark, S.; Vierikko, K.; Derome, J.; Fritze, H. Soil Organic Matter Quality as a Link between Microbial Community Structure and Vegetation Composition along a Successional Gradient in a Boreal Forest. Appl. Soil Ecol. 2010, 46, 259–267. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, B.; Wang, S.; Xie, G. Dynamic Changes in Water Conservation in the Beijing–Tianjin Sandstorm Source Control Project Area: A Case Study of Xilin Gol League in China. J. Clean. Prod. 2021, 293, 126054. [Google Scholar] [CrossRef]
- Wei, C.; Dong, X.; Yu, D.; Liu, J.; Reta, G.; Zhao, W.; Kuriqi, A.; Su, B. An Alternative to the Grain for Green Program for Soil and Water Conservation in the Upper Huaihe River Basin, China. J. Hydrol. Reg. Stud. 2022, 43, 101180. [Google Scholar] [CrossRef]
- Liu, N.; Kai-Yun; Guan; Feng, Y. Spatial Distribution Pattern of Calligonum L. in Tarim Basin. Vegetos-Int. J. Plant Res. 2014, 27, 58. [Google Scholar] [CrossRef]
- Wang, J.; Ouyang, J.; Zhang, M. Spatial Distribution Characteristics of Soil and Vegetation in a Reclaimed Area in an Opencast Coalmine. CATENA 2020, 195, 104773. [Google Scholar] [CrossRef]
- Lim, T.; Baik, Y.-K.; Kim, D.D. Heating Performance Analysis of an Air-to-Water Heat Pump Using Underground Air for Greenhouse Farming. Energies 2020, 13, 3863. [Google Scholar] [CrossRef]
- Veettil, B.K.; Xuan, Q.N. Correction to: Landsat-8 and Sentinel-2 Data for Mapping Plastic-Covered Greenhouse Farming Areas: A Study from Dalat City (Lam Dong Province), Vietnam. Environ. Sci. Pollut. Res. 2022, 29, 73934. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The Impact of Climate Change and Anthropogenic Activities on Alpine Grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Liu, J.; Diamond, J. China’s Environment in a Globalizing World. Nature 2005, 435, 1179–1186. [Google Scholar] [CrossRef]
- Georganos, S.; Abdi, A.M.; Tenenbaum, D.E.; Kalogirou, S. Examining the NDVI-Rainfall Relationship in the Semi-Arid Sahel Using Geographically Weighted Regression. J. Arid Environ. 2017, 146, 64–74. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India Lead in Greening of the World through Land-Use Management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Zhang, D.; Geng, X.; Chen, W.; Fang, L.; Yao, R.; Wang, X.; Zhou, X. Inconsistency of Global Vegetation Dynamics Driven by Climate Change: Evidences from Spatial Regression. Remote Sens. 2021, 13, 3442. [Google Scholar] [CrossRef]
- Gao, F.; He, B.; Xue, S.; Li, Y. Impact of Landscape Pattern Change on Runoff Processes in Catchment Area of the Ulungur River Basin. Water Supply 2020, 20, 1046–1058. [Google Scholar] [CrossRef]
- Inkoom, J.N.; Frank, S.; Greve, K.; Walz, U.; Fürst, C. Suitability of Different Landscape Metrics for the Assessments of Patchy Landscapes in West Africa. Ecol. Indic. 2018, 85, 117–127. [Google Scholar] [CrossRef]
- Lv, H.; Wang, W.; He, X.; Wei, C.; Xiao, L.; Zhang, B.; Zhou, W. Association of Urban Forest Landscape Characteristics with Biomass and Soil Carbon Stocks in Harbin City, Northeastern China. PeerJ 2018, 6, e5825. [Google Scholar] [CrossRef] [PubMed]
- Louail, A.; Messner, F.; Djellouli, Y.; Gharzouli, R. Remote Sensing and Phytoecological Methods for Mapping and Assessing Potential Ecosystem Services of the Ouled Hannèche Forest in the Hodna Mountains, Algeria. Forests 2022, 13, 1159. [Google Scholar] [CrossRef]
- Lyu, R.; Zhao, W.; Tian, X.; Zhang, J. Non-Linearity Impacts of Landscape Pattern on Ecosystem Services and Their Trade-Offs: A Case Study in the City Belt along the Yellow River in Ningxia, China. Ecol. Indic. 2022, 136, 108608. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Multi-Criteria Framework for Identifying the Trade-Offs and Synergies Relationship of Ecosystem Services Based on Ecosystem Services Bundles. Ecol. Indic. 2022, 144, 109453. [Google Scholar] [CrossRef]
- Guinet, M.; Nicolardot, B.; Voisin, A.-S. Provision of Contrasted Nitrogen-Related Ecosystem Services among Grain Legumes. Agron. Sustain. Dev. 2020, 40, 33. [Google Scholar] [CrossRef]
- Peng, J.; Hu, X.; Wang, X.; Meersmans, J.; Liu, Y.; Qiu, S. Simulating the Impact of Grain-for-Green Programme on Ecosystem Services Trade-Offs in Northwestern Yunnan, China. Ecosyst. Serv. 2019, 39, 100998. [Google Scholar] [CrossRef]
- Wang, J.; Peng, J.; Zhao, M.; Liu, Y.; Chen, Y. Significant Trade-off for the Impact of Grain-for-Green Programme on Ecosystem Services in North-Western Yunnan, China. Sci. Total Environ. 2017, 574, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Jiang, Y.; Su, Z.; Liu, Y.; Lyu, J. Assessing the Impacts of Grain-for-Green Programme on Ecosystem Services in Jinghe River Basin, China. Ecol. Indic. 2022, 137, 108757. [Google Scholar] [CrossRef]
- Cáceres, D.M.; Tapella, E.; Quétier, F.; Díaz, S. The Social Value of Biodiversity and Ecosystem Services from the Perspectives of Different Social Actors. Ecol. Soc. 2015, 20, art62. [Google Scholar] [CrossRef]
- Rao, Y.; Zhou, M.; Ou, G.; Dai, D.; Zhang, L.; Zhang, Z.; Nie, X.; Yang, C. Integrating Ecosystem Services Value for Sustainable Land-Use Management in Semi-Arid Region. J. Clean. Prod. 2018, 186, 662–672. [Google Scholar] [CrossRef]
- Wang, W.; Jiao, L.; Jia, Q.; Liu, J.; Mao, W.; Xu, Z.; Li, W. Land Use Optimization Modelling with Ecological Priority Perspective for Large-Scale Spatial Planning. Sustain. Cities Soc. 2021, 65, 102575. [Google Scholar] [CrossRef]
- Zeng, L.; Li, J.; Zhou, Z.; Yu, Y. Optimizing Land Use Patterns for the Grain for Green Project Based on the Efficiency of Ecosystem Services under Different Objectives. Ecol. Indic. 2020, 114, 106347. [Google Scholar] [CrossRef]
- Li, C.; Cai, Y.; Tan, Q.; Wang, X.; Li, C.; Liu, Q.; Chen, D. An Integrated Simulation-Optimization Modeling System for Water Resources Management under Coupled Impacts of Climate and Land Use Variabilities with Priority in Ecological Protection. Adv. Water Resour. 2021, 154, 103986. [Google Scholar] [CrossRef]
- Elliff, C.I.; Kikuchi, R.K.P. Ecosystem Services Provided by Coral Reefs in a Southwestern Atlantic Archipelago. Ocean Coast. Manag. 2017, 136, 49–55. [Google Scholar] [CrossRef]
- Vrzel, J.; Vuković-Gačić, B.; Kolarević, S.; Gačić, Z.; Kračun-Kolarević, M.; Kostić, J.; Aborgiba, M.; Farnleitner, A.; Reischer, G.; Linke, R.; et al. Determination of the Sources of Nitrate and the Microbiological Sources of Pollution in the Sava River Basin. Sci. Total Environ. 2016, 573, 1460–1471. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, X.; Han, H. Analyzing Land-Use Change Scenarios for Ecosystem Services and Their Trade-Offs in the Ecological Conservation Area in Beijing, China. Int. J. Environ. Res. Public Health 2020, 17, 8632. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Crittenden, J.C.; Li, F.; Lu, Z.; Dou, X. Urban Expansion Simulation and the Spatio-Temporal Changes of Ecosystem Services, a Case Study in Atlanta Metropolitan Area, USA. Sci. Total Environ. 2018, 622–623, 974–987. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, R.; Sun, M.; Zhang, L.; Li, X.; Meng, L.; Wang, Y.; Liu, Q. Regional Sustainable Development Strategy Based on the Coordination between Ecology and Economy: A Case Study of Sichuan Province, China. Ecol. Indic. 2022, 134, 108445. [Google Scholar] [CrossRef]
- Wenger, R.B.; Harris, H.J.; Sivanpillai, R.; DeVault, D.S. A Graph-Theoretic Analysis of Relationships among Ecosystem Stressors. J. Environ. Manag. 1999, 57, 109–122. [Google Scholar] [CrossRef]
- Xin, Y.; Liu, X. Coupling Driving Factors of Eco-Environmental Protection and High-Quality Development in the Yellow River Basin. Front. Environ. Sci. 2022, 10, 951218. [Google Scholar] [CrossRef]
LUCC | Code | Kc | root_depth | usle_c | usle_p | C_abvoe | C_below | C_soil | C_dead |
---|---|---|---|---|---|---|---|---|---|
Farmland | 1 | 0.6 | 2000 | 0.23 | 1 | 6.60 | 0.66 | 92.90 | 0.00 |
Broadleaf woodland | 2 | 1 | 7000 | 0.02 | 0.15 | 30.23 | 9.07 | 151.40 | 3.00 |
Coniferous woodland | 3 | 1 | 7000 | 0.02 | 0.15 | 29.66 | 9.79 | 110.80 | 1.68 |
Shrubland | 4 | 0.65 | 2000 | 0.02 | 1 | 1.71 | 1.99 | 94.00 | 2.47 |
Grassland | 5 | 0.65 | 1700 | 0.043 | 1 | 1.03 | 2.61 | 62.90 | 0.24 |
Water area | 6 | 1 | 1 | 0 | 0 | 2.29 | 0.00 | 17.16 | 0.00 |
Build-up land | 7 | 0.3 | 1 | 0 | 0 | 7.61 | 4.51 | 42.17 | 0.00 |
Unused land | 8 | 0.3 | 1 | 1 | 1 | 9.10 | 14.20 | 22.63 | 0.00 |
Importance Partition | I | II | III | IV |
---|---|---|---|---|
Water yield (mm) | <15 | 15–20 | 20–25 | >25 |
sediment retention (t/hm2) | <90 | 90–180 | 180–450 | >450 |
Carbon storage (t/hm2) | <54 | 54–67 | 67–100 | >100 |
Classification criteria | 0–0.35 | 0.35–0.37 | 0.37–0.40 | 0.40–0.73 |
Land Use Types | 2004 | 2009 | 2015 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Area (km2) | Rates (%) | Area (km2) | Rates (%) | Area (km2) | Rates (%) | Area (km2) | Rates (%) | |
Broadleaf woodland | 69.62 | 9.90 | 72.83 | 10.36 | 77.27 | 10.99 | 77.71 | 11.06 |
Coniferous woodland | 9.70 | 1.38 | 10.18 | 1.45 | 10.70 | 1.52 | 10.98 | 1.56 |
Farmland | 41.81 | 5.95 | 42.43 | 6.04 | 43.28 | 6.16 | 44.88 | 6.39 |
Grassland | 564.63 | 80.33 | 564.26 | 80.28 | 561.96 | 79.95 | 560.78 | 79.78 |
Unused land | 1.50 | 0.21 | 1.28 | 0.18 | 1.12 | 0.16 | 1.06 | 0.15 |
Built-up land | 0.85 | 0.12 | 1.00 | 0.14 | 1.48 | 0.21 | 1.81 | 0.26 |
Shrubland | 14.54 | 2.07 | 10.67 | 1.52 | 6.79 | 0.97 | 5.32 | 0.76 |
Water area | 0.20 | 0.03 | 0.22 | 0.03 | 0.28 | 0.04 | 0.35 | 0.05 |
Total | 702.88 | 100.00 | 702.88 | 100.00 | 702.88 | 100.00 | 702.88 | 100.00 |
Year | NP | PD | AREA_MN | LSI | PAFRAC | CONTAG | IJI | AI | MPI | SHDI | SHEI |
---|---|---|---|---|---|---|---|---|---|---|---|
2004 | 20,173 | 28.6985 | 3.4845 | 63.7353 | 1.4597 | 71.0555 | 47.8456 | 85.955 | 79.1403 | 0.7362 | 0.3540 |
2009 | 17,264 | 24.5587 | 4.0719 | 59.5093 | 1.4507 | 71.7860 | 46.8407 | 86.9151 | 79.5001 | 0.7291 | 0.3506 |
2015 | 14,801 | 21.0562 | 4.7492 | 55.5501 | 1.4364 | 72.3563 | 45.7776 | 87.8131 | 78.7938 | 0.7281 | 0.3502 |
2020 | 12,945 | 18.4152 | 5.4303 | 53.0962 | 1.4306 | 72.6999 | 44.4535 | 88.3721 | 79.1507 | 0.7299 | 0.3510 |
Year | Water Yield /104 m3 | Sediment Retention /106 t | Carbon Storage /106 t |
---|---|---|---|
2004 | 637.44 | 10.54 | 5.841 |
2009 | 1779.49 | 18.13 | 5.880 |
2015 | 820.17 | 13.28 | 5.927 |
2020 | 1586.22 | 16.85 | 5.935 |
ESs | Classification Criteria | 2004 | 2009 | 2015 | 2020 | ||||
---|---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion | Area (km2) | Proportion | Area (km2) | Proportion | Area (km2) | Proportion | ||
water yield | I | 161.05 | 22.92% | 179.08 | 25.48% | 171.88 | 24.46% | 179.73 | 25.57% |
II | 194.29 | 27.65% | 188.45 | 26.81% | 174.05 | 24.76% | 183.89 | 26.17% | |
III | 170.44 | 24.25% | 174.48 | 24.83% | 191.11 | 27.19% | 173.93 | 24.75% | |
IV | 177.01 | 25.19% | 160.79 | 22.88% | 165.76 | 23.59% | 165.24 | 23.51% | |
Sediment retention | I | 392.05 | 55.78% | 283.23 | 40.30% | 342.76 | 48.77% | 297.09 | 42.27% |
II | 149.12 | 21.22% | 141.93 | 20.20% | 151.53 | 21.56% | 144.33 | 20.54% | |
III | 118.24 | 16.82% | 178.78 | 25.44% | 146.53 | 20.85% | 172.2 | 24.50% | |
IV | 43.39 | 6.17% | 98.85 | 14.07% | 61.98 | 8.82% | 89.18 | 12.69% | |
carbon storage | I | 2.55 | 0.36% | 2.47 | 0.35% | 2.84 | 0.40% | 3.22 | 0.46% |
II | 564.67 | 80.35% | 564.21 | 80.28% | 562.09 | 79.98% | 560.99 | 79.82% | |
III | 41.98 | 5.97% | 42.45 | 6.04% | 43.46 | 6.18% | 44.91 | 6.39% | |
IV | 93.6 | 13.32% | 93.66 | 13.33% | 94.4 | 13.43% | 93.68 | 13.33% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Peng, X.; Jia, G.; Yu, X.; Rao, H. Evaluation and Optimization of Landscape Spatial Patterns and Ecosystem Services in the Northern Agro-Pastoral Ecotone, China. Land 2024, 13, 1549. https://doi.org/10.3390/land13101549
Wu Y, Peng X, Jia G, Yu X, Rao H. Evaluation and Optimization of Landscape Spatial Patterns and Ecosystem Services in the Northern Agro-Pastoral Ecotone, China. Land. 2024; 13(10):1549. https://doi.org/10.3390/land13101549
Chicago/Turabian StyleWu, Yuxin, Xiuwen Peng, Guodong Jia, Xinxiao Yu, and Honghong Rao. 2024. "Evaluation and Optimization of Landscape Spatial Patterns and Ecosystem Services in the Northern Agro-Pastoral Ecotone, China" Land 13, no. 10: 1549. https://doi.org/10.3390/land13101549
APA StyleWu, Y., Peng, X., Jia, G., Yu, X., & Rao, H. (2024). Evaluation and Optimization of Landscape Spatial Patterns and Ecosystem Services in the Northern Agro-Pastoral Ecotone, China. Land, 13(10), 1549. https://doi.org/10.3390/land13101549