Planting a Linear Vegetation Element in Landscape Using a Forestry and Landscaping Method—Can We Tell Which Deliver Greater Success?
<p>Situation of the studied area (created in ArcGIS Desktop 10.5.1).</p> "> Figure 2
<p>Distribution of the planting types throughout the wildlife corridor [<a href="#B42-land-12-01766" class="html-bibr">42</a>]. A—forestry planting modules as per planting schemes (white); B—landscaping planting modules as per planting schemes (gray). For more details see <a href="#app1-land-12-01766" class="html-app">Supplementary Materials</a>.</p> "> Figure 3
<p>Forestry method—number of plants vs. overall mortality [%] (2016–2019).</p> "> Figure 4
<p>Landscaping method—number of plants vs. overall mortality [%] (2016–2019).</p> "> Figure 5
<p>Forestry method (shrubs)—number of plants vs. overall mortality [%] (2016–2019).</p> "> Figure 6
<p>Landscaping method (shrubs)—number of plants vs. overall mortality [%] (2016–2019).</p> "> Figure 7
<p>Vitality of the tree inventory—forestry mode of planting (Note: The word “Lineární” means a linear trend line).</p> "> Figure 8
<p>Vitality of the tree inventory—landscaping mode of planting (Note: The word “Lineární” means a linear trend line).</p> "> Figure 9
<p>Comparison of vitality through relative diameter and height increments 2016–2019 (Note: The word “Lineární” means a linear trend line).</p> "> Figure 10
<p>Average height and relative increment of shrubs. Note: The word “Lineární” means a linear trend line.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Site
2.2. Own Methodology Delivered
2.3. Limitations of the Study
3. Results
3.1. Comparison of the Number of Surviving Individuals/Mortality (Quantitative Evaluation)
3.1.1. Trees
3.1.2. Shrubs
3.2. Comparison of the Change in Plant Height and Trunk Diameter (Qualitative Assessment)
3.2.1. Forestry Mode of Planting—Trees
3.2.2. Landscaping Mode of Planting—Trees
3.2.3. Shrubs
4. Discussion
- Forestry plantings—Evaluation
- Acer campestre
- Carpinus betulus
- Fraxinus excelsior
- Populus alba
- Quercus robur
- Tilia cordata
- Ulmus glabra
- Overall evaluation of the forestry plantings
- Shrubs in the forestry plantings
- Landscaping plantings—Evaluation
- Shrubs in the landscaping plantings
5. Conclusions
- The proposed species composition must be appropriate for the site conditions;
- Quality planting material (appropriate height or size category, absence of growth defects and seedling damage) must be used;
- Proper handling of planting material before and during planting must occur;
- Well executed planting operations, including protection of seedlings (fencing or individual trunk protection), must occur;
- Good aftercare, including the correct timing of individual operations (especially watering, cutting seedlings, checking fencing or stem protection and the correct and functional anchoring of seedlings), must be provided.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Löw, J. Rukověť projektanta ÚSES. In Metodika Pro Zpracování Dokumentace; Nakladatelství Doplněk: Brno, Czech Republic, 1995; ISBN 80-85765-55-1. [Google Scholar]
- Mac Arthur, R.H.; Wilson, E.O. The Theory of Island Biogeography; Princeton University Press: Princeton, NJ, USA, 1967. [Google Scholar]
- Igor, M. Ekologická Stabilita, 2nd ed.; Ministerstvo Životního Prostředí České Republiky: Praha, Czech Republic, 1994; ISBN 80-7212-303-3.
- Zlatník, A. Ekologie Krajiny a Geobiocenologie; Vysoká Škola Zemědělská: Brno, Czech Republic, 1975. [Google Scholar]
- Buček, A.; Lacina, J. Geobiocenologie II; MZLU: Brno, Czech Republic, 1999; ISBN 80-7157-417-1. [Google Scholar]
- Forman, R.T.T.; Godron, M. Landscape Ecology; John Wiley: New York, NY, USA, 1986; ISBN 0471870374. [Google Scholar]
- Jongman, H.G.; Külvik, M.; Kristiansen, I. European ecological networks and greenways. Landsc. Urban Plan. 2004, 68, 305–319. [Google Scholar] [CrossRef]
- Smith, D.S.; Hellmund, P.C. (Eds.) Ecology of Greenways: Design and Function of Linear Conservation Areas; University of Minnesota Press: Minneapolis, MN, USA, 1993; 308p, ISBN -10: 0816621578. [Google Scholar]
- Hilty, J.A.; Lidicker, W.Z.; Merenlender, A.M. Corridor Ecology: The Science and Practice of Linking Landscapes for Biodiversity Conservation; Island Press: Washington, DC, USA, 2006; ISBN 978-1-55963-096-2. [Google Scholar]
- Lepeška, P. Metodika Zapracování ÚSES do Územních Plánů Obcí. Návod na Užívání ÚTP Regionálních a Nadregionálních ÚSES ČR; Ministerstvo Pro Místní Rozvoj České Republiky a Ústav Územního Rozvoje: Brno, Czech Republic, 1998. [Google Scholar]
- Bínová, L.; Culek, M.; Glos, J.; Kocián, J.; Lacina, D.; Novotný, M.; Zimová, E. Sledování a Hodnocení Vývoje Založených Prvků Lokálních Územních Systémů Ekologické Stability na Modelových územích—Část l. Metodické Postupy Sledování Nově Založených Částí Lokálních ÚSES; Ústav Pro Životní Prostředí Brno: Brno, Czech Republic, 1992; Not published. [Google Scholar]
- Bínová, L.; Culek, M.; Glos, J.; Kocián, J.; Lacina, D.; Novotný, M.; Zimová, E. Sledování a Hodnocení Vývoje Založených Prvků Lokálních Územních Systémů Ekologické Stability na Modelových Územích—Část 2. Výsledky Sledování za Rok 1992; Ústav Pro Životní Prostředí Brno: Brno, Czech Republic, 1992; Not published. [Google Scholar]
- Culek, M. Vliv Stanoviště, Polohy a Vysazených Dřevin na Vývoj Realizovaných Biokoridorů; Lesnická Práce: Kostelec nad Černými lesy, Czech Republic, 2012; pp. 11–22. ISBN 978-80-7458-050-5. [Google Scholar]
- Zimová, E. Zakládání Místních ÚSES na Zemědělské Půdě: Praktická Příručka Pro Projektanty Územních Systémů Ekologické Stability a Pozemkových Úprav; Lesnická Práce: Kostelec nad Černými lesy, Czech Republic, 2002; ISBN 80-86386-31-7. [Google Scholar]
- Buček, A.; Maděra, P.; Úradníček, L. Ecological network creation in the Czech Republic. J. Landsc. Ecol. 2007, 1, 12–24. [Google Scholar]
- Nizinski, Z. Management and productivity of stand on former agricultural land as illustrated by Syczecinek Provincial State, Lesne zagospodarowanie gruntach porolnych na przykladzie OZLP w Syczecineku. Sylwan 1991, 134, 89–96. [Google Scholar]
- Friedrichsdorf, B. Practical experience with afforestation—Using the example of former agricultural lands in the forest district of Schleswig, Special issue. Afforestation Forst Und Holz 1999, 54, 387–391. [Google Scholar]
- Bartoš, J.; Kacálek, D. Růstová prosperita kultur lesních dřevin na zalesněné zemědělské půdě. In Zalesňování Zemědělských půd, Výzva Pro Lesnický Sector; Neuhöferová, P., Ed.; Lesnická Práce: Kostelec nad Černými Lesy, Czech Republic, 2006; pp. 209–214. [Google Scholar]
- Jylhä, P.; Hytönen, J. Effect of vegetation control on the survival and growth of Scots pine and Norway spruce planted on former agricultural land. Can. J. For. Res. 2006, 36, 2400–2411. [Google Scholar] [CrossRef]
- Leugner, J. Kvalitní sadební material—základ úspěšného založení lesní kultury na zemědělském pozemku. In Zalesňování Zemědělských Půd, Výzva Pro Lesnický Sector; Neuhöferová, P., Ed.; Lesnická Práce: Kostelec nad Černými Lesy, Czech Republic, 2006; pp. 215–220. [Google Scholar]
- Vacek, S.; Simon, J. Zakládání a Stabilizace Lesních Porostů na Bývalých Zemědělských a Degradovaných Půdách; Lesnická Práce: Kostelec nad Černými lesy, Czech Republic, 2009; ISBN 978-80-87154-27-4. [Google Scholar]
- Deptula, M.; Nienartowicz, A.; Iwicka, M. Biomass of Scots pine-silver birch tree stand 25 years after afforestation of former agricultural land. Ecol. Quest. 2017, 25, 51–66. [Google Scholar] [CrossRef]
- Dimitrovský, K.; Vesecký, J. Lesnická Rekultivace Antropogenních Půdních Substrátů; Státní Zemědělské Nakladatelství: Praha, Czech Republic, 1989. [Google Scholar]
- Štýs, S. Rekultivace Území Devastovaných Těžbou Nerostů; SNTL: Praha, Czech Republic, 1990; ISBN 80-85087-10-3. [Google Scholar]
- Jahn, Z. Výsadba biocenter a interakčních prvků. In Pozemkové Úpravy—Časopis Pro Tvorbu a Ochranu Krajiny: Teorie a Praxe; Ministerstvo Zemědělství ČR—Ústřední Pozemkový Úřad: Praha, Czech Republic, 2016; Volume 24, pp. 2–6. ISSN 1214-5815. [Google Scholar]
- SESK. Uplynulé Ročníky. Územní Systém Ekologické Stability [Online]; Společnost Pro Ekologickou Stabilitu Krajiny: Brno, Czech Republic. Available online: https://www.uses.cz/seminar-uses-zelena-pater-krajiny/uplynule-rocniky/ (accessed on 6 June 2023).
- Weber, M.; Dostálek, J. Výzkum zakládání dřevinných porostů na zemědělské půdě. In Krajinotvorné Programy; Němec, J., Ed.; VÚKOZ Průhonice: Průhonice, Czech Republic, 2003; pp. 88–98. [Google Scholar]
- Dostálek, J.; Weber, C.I.M.; Koželuhová, R.K.; Petruš, C.I.J.; Možný, M. Výsadby Dřevin v Zemědělské Krajině: Případová Studie v Nivě Řeky Valová; Acta Pruhoniciana; VÚKOZ Průhonice: Průhonice, Czechia Republic, 2005; Volume 80, ISBN 80-85116-39-1. [Google Scholar]
- Dostálek, J.; Weber, M.; Matula, S.; Frantík, T. Forest stand restoration in the agricultural landscape: The effect of different methods of planting establishment. Ecol. Eng. 2007, 29, 77–86. [Google Scholar] [CrossRef]
- Dostálek, J.; Weber, M.; Matula, S.; Frantík, T. Planting different sized tree transplants on arable soil. Cent. Eur. J. Biol. 2009, 4, 574–584. [Google Scholar] [CrossRef]
- Dostálek, J.; Weber, M.; Frantík, T. Establishing windbreaks: How rapidly do the smaller tree transplants reach the height of the larger ones? J. For. Sci. 2014, 60, 12–17. [Google Scholar] [CrossRef]
- Jelínek, B.; Úradníček, L. The survival and growth rates of woody vegetation in the man-made Vracov biocorridor during the period 1993–2007. J. Landsc. Ecol. 2010, 3, 5–15. [Google Scholar] [CrossRef]
- Jelínek, B.; Úradníček, L. Malé nebo velké sazenice? In ÚSES-Zelená Páteř Krajiny; Petrová, A., Ed.; JOLA: Kostelec na Hané, Czech Republic, 2010; pp. 56–62. [Google Scholar]
- Jelínek, B.; Úradníček, L. Vývoj a růst keřů na bývalé zemědělské půdě. In ÚSES—Zelená Páteř Krajiny; JOLA: Kostelec na Hané, Czech Republic, 2011; pp. 21–30. ISBN 978-80-86636-33-7. [Google Scholar]
- Jelínek, B.; Úradníček, L. Zkušenosti a poučení z dosavadní realizace ÚSES. In ÚSES—Zelená Páteř Krajiny a Ekologické Sítě v Krajině; Petrová, A., Machar, I., Eds.; Univerzita Palackého v Olomouci: Olomouc, Czech Republic, 2012; pp. 42–52. ISBN 978-80-244-3214-4. [Google Scholar]
- Jelínek, B.; Úradníček, L. Stav vybraných biokoridorů 20 let od založení. In ÚSES—Zelená Páteř Krajiny 2013; Petrová, A., Ed.; JOLA: Kostelec na Hané, Czech Republic, 2013; pp. 55–63. ISBN 978-80-86636-39-9. [Google Scholar]
- Jelínek, B.; Úradníček, L. The Survival and Growth Rates of Woody Vegetation in the Man-Made Radějov Biocorridor During the Period of 1993–2012. Eur. Countrys. 2014, 6, 88–117. [Google Scholar] [CrossRef]
- Úradníček, L.; Jelínek, B. Vývoj a růst dřevin na příkladu biokoridoru Vracov. In ÚSES-Zelená Páteř Krajiny; Petrová, A., Ed.; JOLA: Kostelec na Hané, Czech Republic, 2010; pp. 89–95. [Google Scholar]
- Úradníček, L. Evaluation of the Woody Component Development of the Model Biocorridor. Ekológia 2004, 23, 351–361. [Google Scholar]
- Česká Geologická Služba. Půdní Mapa (Soil Map) 1:50 000 [Online]; Česká geologická služba: Praha, Czech Republic. Available online: https://mapy.geology.cz/pudy/ (accessed on 25 August 2023).
- VÚMOP. PŮDA V MAPÁCH [Online]; Výzkumný Ústav Meliorací a Ochrany Půdy: Praha, Czech Republic, 2023; Available online: https://mapy.vumop.cz/ (accessed on 25 August 2023).
- Lacina, D. Projekt Založení Lokálního Biokoridoru LBK 2 v k. ú. Šardice. Projektová Dokumentace k Realizaci. Czech Projektová dokumentace k realizaci, 2013; Unpublished work. [Google Scholar]
- Vacek, Z.; Vacek, S.; Podrazsky, V.; Král, J.; Bulusek, D.; Putalová, T.; Balas, M.; Kalousková, I.; Schwarz, O. Structural diversity and production of alder stands on former agricultural land at high altitudes. Dendrobiology 2016, 75, 31–44. [Google Scholar] [CrossRef]
- Tužinský, M.; Kupka, I.; Podrázský, V.; Prknová, H. Influence of the mineral rock alginite on survival rate and re-growth of selected tree species on agricultural land. J. For. Sci. 2015, 61, 399–405. [Google Scholar] [CrossRef]
- Chmelař, J. Dendrologie s ekologií lesních dřevin. In 2. Část., Hospodářsky Významné Listnáče, 2nd ed.; Vysoká Škola Zemědělská: Brno, Czech Republic, 1990. [Google Scholar]
- Fischer, H. Damage to oak (Quercus robur) and beech (Fagus sylvatica) grown on former agricultural land, and new sprouts by root collar regeneration. Forst Und Holz 1999, 54, 463–466. [Google Scholar]
FORESTRY MODE OF PLANTING | ||||||||||
Quantity [Pieces] | Mortality [%] | |||||||||
Species | Planned | Planted | 2016 | 2017 | 2018 | 2019 | 2016 | 2017 | 2018 | 2019 |
Acer campestre | 51 | 44 | 43 | 40 | 40 | 39 | 2.27 | 9.09 | 9.09 | 11.36 |
Carpinus betulus | 30 | 29 | 27 | 25 | 23 | 18 | 6.90 | 13.79 | 20.69 | 37.93 |
Fraxinus excelsior | 42 | 39 | 38 | 38 | 37 | 37 | 2.56 | 2.56 | 5.13 | 5.13 |
Populus alba | 30 | 26 | 14 | 14 | 10 | 7 | 46.15 | 46.15 | 61.54 | 73.08 |
Quercus robur | 123 | 130 | 101 | 95 | 83 | 69 | 22.31 | 26.92 | 36.15 | 46.92 |
Tilia cordata | 81 | 80 | 75 | 72 | 70 | 66 | 6.25 | 10.00 | 12.50 | 17.50 |
Ulmus glabra | 27 | 36 | 34 | 34 | 33 | 33 | 5.56 | 5.56 | 8.33 | 8.33 |
TOTAL/average | 384 | 384 | 332 | 318 | 296 | 269 | 13.54 | 17.19 | 22.92 | 29.95 |
LANDSCAPING MODE OF PLANTING | ||||||||||
Quantity [pieces] | Mortality [%] | |||||||||
Species | Planned | Planted | 2016 | 2017 | 2018 | 2019 | 2016 | 2017 | 2018 | 2019 |
Acer campestre | 12 | 12 | 12 | 12 | 12 | 12 | 0.00 | 0.00 | 0.00 | 0.00 |
Carpinus betulus | 12 | 12 | 12 | 12 | 12 | 12 | 0.00 | 0.00 | 0.00 | 0.00 |
Fraxinus excelsior | 24 | 24 | 24 | 24 | 24 | 23 | 0.00 | 0.00 | 0.00 | 4.17 |
Populus alba | 8 | 8 | 7 | 7 | 7 | 7 | 12.50 | 12.50 | 12.50 | 12.50 |
Quercus robur | 44 | 44 | 40 | 40 | 40 | 40 | 9.09 | 9.09 | 9.09 | 9.09 |
Tilia cordata | 16 | 16 | 16 | 16 | 16 | 16 | 0.00 | 0.00 | 0.00 | 0.00 |
Ulmus glabra | 4 | 4 | 4 | 4 | 4 | 4 | 0.00 | 0.00 | 0.00 | 0.00 |
TOTAL/average | 120 | 120 | 115 | 115 | 115 | 114 | 4.17 | 4.17 | 4.17 | 5.00 |
FORESTRY MODE OF PLANTING | ||||||||||
Quantity [Pieces] | Mortality [%] | |||||||||
Species | Planned | Planted | 2016 | 2017 | 2018 | 2019 | 2016 | 2017 | 2018 | 2019 |
Corylus avellana | 36 | 35 | 7 | 7 | 5 | 2 | 80.00 | 80.00 | 85.71 | 94.29 |
Cornus sanguinea | 84 | 84 | 64 | 61 | 58 | 57 | 23.81 | 27.38 | 30.95 | 32.14 |
Euonymus europaeus | 54 | 54 | 54 | 54 | 54 | 53 | 0.00 | 0.00 | 0.00 | 1.85 |
Ligustrum vulgare | 87 | 88 | 86 | 86 | 86 | 84 | 2.27 | 2.27 | 2.27 | 4.55 |
Lonicera xylosteum | 39 | 39 | 37 | 37 | 37 | 35 | 5.13 | 5.13 | 5.13 | 10.26 |
Rhamnus cathartica | 18 | 18 | 14 | 13 | 13 | 13 | 22.22 | 27.78 | 27.78 | 27.78 |
TOTAL/Average | 318 | 318 | 262 | 258 | 253 | 244 | 17.61 | 18.87 | 20.44 | 23.27 |
LANDSCAPING MODE OF PLANTING | ||||||||||
Quantity [pieces] | Mortality [%] | |||||||||
Species | Planned | Planted | 2016 | 2017 | 2018 | 2019 | 2016 | 2017 | 2018 | 2019 |
Corylus avellana | 24 | 22 | 4 | 3 | 3 | 0 | 81.82 | 86.36 | 86.36 | 100.00 |
Cornus sanguinea | 48 | 48 | 42 | 29 | 36 | 35 | 12.50 | 39.58 | 25.00 | 27.08 |
Euonymus europaeus | 48 | 48 | 48 | 36 | 48 | 47 | 0.00 | 25.00 | 0.00 | 2.08 |
Ligustrum vulgare | 60 | 61 | 61 | 45 | 59 | 59 | 0.00 | 26.23 | 3.28 | 3.28 |
Lonicera xylosteum | 28 | 28 | 25 | 20 | 25 | 24 | 10.71 | 28.57 | 10.71 | 14.29 |
Rhamnus cathartica | 28 | 29 | 20 | 13 | 18 | 18 | 31.03 | 55.17 | 37.93 | 37.93 |
TOTAL/Average | 236 | 236 | 200 | 146 | 189 | 183 | 15.25 | 38.14 | 19.92 | 22.46 |
Average Diameter [mm] | Average Height [cm] | |||||||
---|---|---|---|---|---|---|---|---|
Species/Year | 2016 | 2017 | 2018 | 2019 | 2016 | 2017 | 2018 | 2019 |
Acer campestre | 9.35 | 10.43 | 13.18 | 23.19 | 72.67 | 83.75 | 96.26 | 142.59 |
Carpinus betulus | 6.42 | 6.28 | 6.67 | 8.35 | 40.99 | 39.43 | 40.52 | 56.30 |
Fraxinus excelsior | 6.62 | 7.27 | 7.65 | 9.07 | 36.53 | 37.84 | 41.61 | 64.29 |
Populus alba | 8.89 | 11.24 | 13.29 | 22.39 | 102.90 | 138.56 | 152.89 | 184.42 |
Quercus robur | 6.15 | 6.35 | 6.49 | 7.08 | 37.66 | 37.39 | 38.18 | 46.19 |
Tilia cordata | 6.70 | 7.04 | 7.23 | 8.45 | 36.73 | 35.32 | 36.50 | 50.15 |
Ulmus glabra | 11.34 | 11.93 | 14.65 | 21.48 | 83.88 | 94.56 | 107.19 | 139.08 |
Average | 7.93 | 8.65 | 9.88 | 14.29 | 58.77 | 66.69 | 73.31 | 97.58 |
Diameter Increment [%] | Height Increment [%] | |||||
---|---|---|---|---|---|---|
Species/Year | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 |
Acer campestre | 11.57 | 40.91 | 147.96 | 15.24 | 32.46 | 96.21 |
Carpinus betulus | −2.26 | 3.93 | 30.05 | −3.81 | −1.16 | 37.35 |
Fraxinus excelsior | 9.74 | 15.57 | 36.99 | 3.61 | 13.90 | 76.02 |
Populus alba | 26.35 | 49.50 | 151.80 | 34.66 | 48.59 | 79.23 |
Quercus robur | 3.30 | 5.56 | 15.19 | −0.72 | 1.37 | 22.66 |
Tilia cordata | 5.05 | 7.95 | 26.12 | −3.84 | −0.63 | 36.53 |
Ulmus glabra | 5.19 | 29.17 | 89.43 | 12.74 | 27.80 | 65.82 |
Average | 9.11 | 24.68 | 80.29 | 13.49 | 24.74 | 66.04 |
Average Increment [mm] | Average Height [cm] | |||||||
---|---|---|---|---|---|---|---|---|
Species/Year | 2016 | 2017 | 2018 | 2019 | 2016 | 2017 | 2018 | 2019 |
Acer campestre | 34.4 | 34.63 | 38.51 | 45.92 | 412.08 | 408.33 | 409.58 | 424.17 |
Carpinus betulus | 28.39 | 29.9 | 30.52 | 33.19 | 330.83 | 330 | 335 | 329.17 |
Fraxinus excelsior | 33.99 | 34.26 | 34.39 | 36.37 | 366.25 | 361.87 | 364.17 | 344.29 |
Populus alba | 9.8 | 13.94 | 21.49 | 30.97 | 181.88 | 225 | 253.13 | 327.5 |
Quercus robur | 31.46 | 32.04 | 33.36 | 37.85 | 352.18 | 346.62 | 346.31 | 336.87 |
Tilia cordata | 32.22 | 33.42 | 36.28 | 42.77 | 340.31 | 341.88 | 345 | 340.63 |
Ulmus glabra | 37.09 | 39.89 | 41.99 | 47.26 | 455 | 450 | 448.75 | 466.25 |
Average | 29.62 | 31.15 | 33.79 | 39.19 | 348.36 | 351.96 | 357.42 | 366.98 |
Average Increment [mm] | Average Height [cm] | |||||
---|---|---|---|---|---|---|
Species/Year | 2017 | 2018 | 2019 | 2017 | 2018 | 2019 |
Acer campestre | 0.65 | 11.93 | 33.48 | −0.91 | −0.61 | 2.93 |
Carpinus betulus | 5.29 | 7.5 | 16.88 | −0.25 | 1.26 | −0.5 |
Fraxinus excelsior | 0.79 | 1.18 | 7 | −1.19 | −0.57 | −6 |
Populus alba | 42.22 | 119.26 | 216.01 | 23.71 | 39.18 | 80.07 |
Quercus robur | 1.82 | 6.02 | 20.29 | −1.58 | −1.67 | −4.35 |
Tilia cordata | 3.72 | 12.6 | 32.72 | 0.46 | 1.38 | 0.09 |
Ulmus glabra | 7.55 | 13.21 | 27.44 | −1.1 | −1.37 | 2.47 |
Average | 5.16 | 14.07 | 32.29 | 1.03 | 2.6 | 5.35 |
Linear Regression—Coefficient of Determination R2 | ||
---|---|---|
Forestry Mode | Landscaping Mode | |
Acer campestre | 0.9928 | 0.8042 |
Carpinus betulus | 0.9803 | 0.0622 |
Fraxinus excelsior | 0.9241 | 0.9799 |
Populus alba | 0.8677 | 0.9774 |
Quercus robur | 0.9020 | 0.9214 |
Tilia cordata | 0.8952 | 0.0032 |
Ulmus glabra | 0.9796 | 0.4608 |
Average | 0.9345 | 0.6013 |
FORESTRY MODE OF PLANTING | ||||||||
Average Height [cm] | Height Increment [%] | |||||||
Species/Year | 2016 | 2017 | 2018 | 2019 | 2016 | 2017 | 2018 | 2019 |
Corylus avellana | 45.47 | 46.00 | 46.33 | 56.00 | 0 | 1.17 | 1.91 | 23.17 |
Cornus sanguinea | 46.67 | 48.36 | 50.58 | 70.31 | 0 | 3.62 | 8.36 | 50.65 |
Euonymus europaeus | 69.41 | 69.67 | 89.04 | 118.61 | 0 | 0.37 | 28.28 | 70.89 |
Ligustrum vulgare | 67.35 | 68.77 | 77.76 | 106.35 | 0 | 2.11 | 15.46 | 57.91 |
Lonicera xylosteum | 83.85 | 83.54 | 90.50 | 108.70 | 0 | −0.37 | 7.92 | 29.63 |
Rhamnus cathartica | 46.26 | 48.07 | 65.22 | 103.36 | 0 | 3.92 | 41.00 | 123.44 |
Average | 59.83 | 60.73 | 69.90 | 93.89 | 0 | 1.50 | 16.83 | 56.91 |
LANDSCAPING MODE | ||||||||
Average height [cm] | Height increment [%] | |||||||
Species/Year | 2016 | 2017 | 2018 | 2019 | 2016 | 2017 | 2018 | 2019 |
Corylus avellana | 17.75 | 18.75 | 11.25 | 31.50 | 0 | 5.63 | −36.62 | 77.46 |
Cornus sanguinea | 37.37 | 31.88 | 29.71 | 33.74 | 0 | −14.70 | −20.52 | −9.73 |
Euonymus europaeus | 72.35 | 58.83 | 67.27 | 71.60 | 0 | −18.69 | −7.03 | −1.04 |
Ligustrum vulgare | 55.05 | 50.78 | 57.67 | 68.85 | 0 | −7.76 | 4.76 | 25.07 |
Lonicera xylosteum | 69.35 | 76.30 | 76.89 | 76.50 | 0 | 10.01 | 10.87 | 10.30 |
Rhamnus cathartica | 42.74 | 29.73 | 41.61 | 46.08 | 0 | −30.43 | −2.64 | 7.82 |
Average | 49.10 | 44.38 | 47.40 | 54.71 | 0 | −9.62 | −3.47 | 11.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacina, D.; Kupec, P. Planting a Linear Vegetation Element in Landscape Using a Forestry and Landscaping Method—Can We Tell Which Deliver Greater Success? Land 2023, 12, 1766. https://doi.org/10.3390/land12091766
Lacina D, Kupec P. Planting a Linear Vegetation Element in Landscape Using a Forestry and Landscaping Method—Can We Tell Which Deliver Greater Success? Land. 2023; 12(9):1766. https://doi.org/10.3390/land12091766
Chicago/Turabian StyleLacina, Darek, and Petr Kupec. 2023. "Planting a Linear Vegetation Element in Landscape Using a Forestry and Landscaping Method—Can We Tell Which Deliver Greater Success?" Land 12, no. 9: 1766. https://doi.org/10.3390/land12091766
APA StyleLacina, D., & Kupec, P. (2023). Planting a Linear Vegetation Element in Landscape Using a Forestry and Landscaping Method—Can We Tell Which Deliver Greater Success? Land, 12(9), 1766. https://doi.org/10.3390/land12091766