Relative Contribution of the Xiaolangdi Dam to Runoff Changes in the Lower Yellow River
<p>Location of the Xiaolangdi Dam, the Huayuankou hydrological station, and select meteorological stations in the Yellow River basin.</p> "> Figure 2
<p>Variation in precipitation annually (<b>a</b>), in the flood season (<b>b</b>), and in the non-flood season (<b>c</b>) from 1961–2018 in the Yellow River basin.</p> "> Figure 3
<p>Variation in air temperature annually (<b>a</b>), in the flood season (<b>b</b>), and in the non-flood season (<b>c</b>) from 1961–2018 in the Yellow River basin.</p> "> Figure 4
<p>Variation in runoff annually (<b>a</b>), in the flood season (<b>b</b>), and in the non-flood season (<b>c</b>) from 1961–2018 at the Huayuankou hydrological station.</p> "> Figure 5
<p>Abrupt changes in runoff annually (<b>a</b>,<b>d</b>), during the flood season (<b>b</b>,<b>e</b>), and during the non-flood season (<b>c</b>,<b>f</b>) from 1961–2018 at the Huayuankou hydrological station; change point assessments were made using Mann-Kendall tests and the double mass curve method.</p> "> Figure 6
<p>Double mass curves for cumulative precipitation-runoff measured annually (<b>a</b>), in the flood season (<b>b</b>), and in the non-flood season (<b>c</b>) in the Yellow River basin from 1961–2018.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.3. Methodology
2.3.1. Mann-Kendall Tests
2.3.2. Double Mass Curve
2.3.3. Budyko-Based Elasticity Method
3. Results
3.1. Changes in Annual and Seasonal Precipitation and Air Temperature
3.2. Changes in Annual and Seasonal Runoff
3.2.1. Trends in Annual and Seasonal Runoff
3.2.2. Abrupt Changes in Annual and Seasonal Runoff
3.3. Relative Contribution of Climate Change and Human Activities to Changes in Runoff
3.3.1. Attribution Analysis Using the Double Mass Curve Method
3.3.2. Attribution Analysis Using the Budyko-Based Elasticity Method
3.3.3. Comparison of the Double Mass Curve Method and Budyko-Based Elasticity Method
3.4. Relative Contribution of the Xiaolangdi Dam to Runoff Changes in the Lower Yellow River
4. Discussion
4.1. Changes in Runoff
4.2. Effects of Climate Change and Human Activities on Runoff
4.3. Runoff Changes Associated with the Xiaolangdi Dam
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rakhimova, M.; Liu, T.; Bissenbayeva, S.; Mukanov, Y.; Gafforov, K.S.; Bekpergenova, Z.; Gulakhmadov, A. Assessment of the impacts of climate change and human activities on runoff using climate elasticity method and general circulation model (GCM) in the Buqtyrma River basin, Kazakhstan. Sustainability 2020, 12, 22. [Google Scholar] [CrossRef]
- Zeng, F.; Ma, M.-G.; Di, D.-R.; Shi, W.-Y. Separating the impacts of climate change and human activities on runoff: A review of method and application. Water 2020, 12, 2201. [Google Scholar] [CrossRef]
- Wang, X.; He, K.; Dong, Z. Effects of climate change and human activities on runoff in the Beichuan River Basin in the northeastern Tibetan Plateau, China. Catena 2019, 176, 81–93. [Google Scholar] [CrossRef]
- Yang, X.; Sun, W.; Mu, X.; Gao, P.; Zhao, G. Run-off affected by climate and anthropogenic changes in a large semi-arid river basin. Hydrol. Process. 2020, 34, 1906–1919. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Hao, F.; Wu, Y.; Li, C.; Xu, Y. Evaluating the contributions of climate change and human activities to runoff in typical semi-arid area, China. J. Hydrol. 2020, 590, 125555. [Google Scholar] [CrossRef]
- Shahid, M.; Cong, Z.; Zhang, D. Understanding the impacts of climate change and human activities on streamflow: A case study of the Soan River basin, Pakistan. Theor. Appl. Climatol. 2017, 134, 205–219. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Wang, F.Y.; Fu, B.J.; Yan, J.P.; Wang, S.; Yang, Y.T.; Long, D.; Feng, M.Q. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Li, Z.; Huang, S.; Liu, D.; Leng, G.; Zhou, S.; Huang, Q. Assessing the effects of climate change and human activities on runoff variations from a seasonal perspective. Stoch. Environ. Res. Risk Assess. 2020, 34, 575–592. [Google Scholar] [CrossRef]
- Patterson, L.A.; Lutz, B.; Doyle, M.W. Climate and direct human contributions to changes in mean annual streamflow in the South Atlantic, USA. Water Resour. Res. 2013, 49, 7278–7291. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, C.; Zeng, G.; Liang, J.; Guo, S.; Huang, L.; Wu, H.; Hua, S. Quantitative assessment of the contribution of climate variability and human activity to streamflow alteration in Dongting Lake, China. Hydrol. Process. 2016, 30, 1929–1939. [Google Scholar] [CrossRef]
- Shi, H.; Wang, G. Impacts of climate change and hydraulic structures on runoff and sediment discharge in the middle Yellow River. Hydrol. Process. 2015, 29, 3236–3246. [Google Scholar] [CrossRef] [Green Version]
- Chien, H.; Yeh, P.J.F.; Knouft, J.H. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J. Hydrol. 2013, 491, 73–88. [Google Scholar] [CrossRef]
- Liuzzo, L.; Noto, L.V.; Vivoni, E.R.; La Loggia, G. Basin-scale water resources assessment in oklahoma under synthetic climate change scenarios using a fully distributed hydrologic model. J. Hydrol. Eng. 2010, 15, 107–122. [Google Scholar] [CrossRef]
- Wu, Y.; Fang, H.; Huang, L.; Ouyang, W. Changing runoff due to temperature and precipitation variations in the dammed Jinsha River. J. Hydrol. 2020, 582, 124500. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Zabalza, J.; Vicente-Serrano, S.M.; Revuelto, J.; Gilaberte, M.; Azorin-Molina, C.; Morán-Tejeda, E.; García-Ruiz, J.M.; Tague, C. Impact of climate and land use change on water availability and reservoir management: Scenarios in the Upper Aragón River, Spanish Pyrenees. Sci. Total Environ. 2014, 493, 1222–1231. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, G.; He, R.; Liu, C. Variation trends of runoffs in the Middle Yellow River basin and its response to climate change. Adv. Water Sci. 2009, 20, 153–158. [Google Scholar]
- Voudouris, K.; Mavromatis, T.; Krinis, P. Assessing runoff in future climate conditions in Messara valley in Crete with a rainfall-runoff model. Meteorol. Appl. 2012, 19, 473–483. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Singh, V.P.; Shi, P. Contribution of multiple climatic variables and human activities to streamflow changes across China. J. Hydrol. 2017, 545, 145–162. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, Q.; Singh, V.P.; Shi, P.; Sun, P. Hydrological effects of cropland and climatic changes in arid and semi-arid river basins: A case study from the Yellow River basin, China. J. Hydrol. 2017, 549, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, S.; Felfelani, F.; Shin, S.; Pokhrel, Y. Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. J. Hydrol. 2018, 560, 342–353. [Google Scholar] [CrossRef]
- Shi, H.; Li, T.; Wang, K.; Zhang, A.; Wang, G.; Fu, X. Physically based simulation of the streamflow decrease caused by sediment-trapping dams in the middle Yellow River. Hydrol. Process. 2016, 30, 783–794. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Shi, C.; Fan, X.; Shao, W. The influence of climate change and anthropogenic activities on annual runoff of Huangfuchuan basin in northwest China. Theor. Appl. Climatol. 2015, 120, 137–146. [Google Scholar] [CrossRef]
- He, Y.; Wang, F.; Mu, X.; Guo, L.; Gao, P.; Zhao, G. Human activity and climate variability impacts on sediment discharge and runoff in the Yellow River of China. Theor. Appl. Climatol. 2017, 129, 645–654. [Google Scholar] [CrossRef]
- Chawla, I.; Mujumdar, P.P. Isolating the impacts of land use and climate change on streamflow. Hydrol. Earth Syst. Sci. 2015, 19, 3633–3651. [Google Scholar] [CrossRef] [Green Version]
- Cuo, L.; Zhang, Y.; Gao, Y.; Hao, Z.; Cairang, L. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China. J. Hydrol. 2013, 502, 37–52. [Google Scholar] [CrossRef]
- Sterling, S.M.; Ducharne, A.; Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Chang. 2013, 3, 385–390. [Google Scholar] [CrossRef]
- Döll, P.; Fiedler, K.; Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. 2009, 13, 2413–2432. [Google Scholar] [CrossRef] [Green Version]
- Biemans, H.; Haddeland, I.; Kabat, P.; Ludwig, F.; Hutjes, R.W.A.; Heinke, J.; von Bloh, W.; Gerten, D. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res. 2011, 47, W03509. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Fu, B.; Wang, S.; Liang, W.; Jiang, X. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Sci. Total Environ. 2016, 557–558, 331–342. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, Z.Y.; Luo, X.G.; Wang, C.; Zhang, H.R. Quantifying the contributions of climate change and human activities to drought extremes, using an improved evaluation framework. Water Resour. Manag. 2019, 33, 5051–5065. [Google Scholar] [CrossRef]
- Wang, F.; Duana, K.; Fu, S.; Goua, F.; Liang, W.; Yana, J.; Zhang, W. Partitioning climate and human contributions to changes in mean annual streamflow based on the Budyko complementary relationship in the Loess Plateau, China. Sci. Total Environ. 2019, 665, 579–590. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Zhang, X.; Yang, T.; Duan, Q. Detecting the quantitative hydrological response to changes in climate and human activities. Sci. Total Environ. 2017, 586, 328–337. [Google Scholar] [CrossRef]
- Wang, H.; Stephenson, S.R. Quantifying the impacts of climate change and land use/cover change on runoff in the lower Connecticut River Basin. Hydrol. Process. 2018, 32, 1301–1312. [Google Scholar] [CrossRef]
- Wu, L.; Wang, S.; Bai, X.; Luo, W.; Tian, Y.; Zeng, C.; Luo, G.; He, S. Quantitative assessment of the impacts of climate change and human activities on runoff change in a typical karst watershed, SW China. Sci. Total Environ. 2017, 601–602, 1449–1465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Nan, Z.; Wang, W.; Ren, D.; Zhao, Y.; Wu, X. Separating climate change and human contributions to variations in streamflow and its components using eight time-trend methods. Hydrol. Process. 2019, 33, 383–394. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, S.; Deng, L.; Dong, S.; Yang, J.; Wang, C. The effects of dam construction and precipitation variability on hydrologic alteration in the Lancang River Basin of southwest China. Stoch. Environ. Res. Risk Assess. 2012, 26, 993–1011. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, S.; Deng, L.; Dong, S. Evaluating influences of the Manwan Dam and climate variability on the hydrology of the Lancang-Mekong River, Yunnan Province, southwest China. J. Hydrol. Eng. 2013, 18, 1322–1330. [Google Scholar] [CrossRef]
- Tonkin, J.D.; Merritt, D.M.; Olden, J.D.; Reynolds, L.V.; Lytle, D.A. Flow regime alteration degrades ecological networks in riparian ecosystems. Nat. Ecol. Evol. 2018, 2, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef]
- Günther, G.; Bernhard, L.; Alexander, E.L.; Graham, K.M.; Christiane, Z.; Catherine Reidy, L. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 2015, 10, 015001. [Google Scholar]
- Ibon, A.; Maite, A.; Aitor, L.; Lydia, P.; Sergi, S.; Daniel, S.; Arturo, E.; Vicenç, A. Flow regulation by dams affects ecosystem metabolism in Mediterranean rivers. Freshw. Biol. 2014, 59, 1816–1829. [Google Scholar]
- Dey, P.; Mishra, A. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions. J. Hydrol. 2017, 548, 278–290. [Google Scholar] [CrossRef]
- Bai, P.; Liu, W.; Guo, M. Impacts of climate variability and human activities on decrease in streamflow in the Qinhe River, China. Theor. Appl. Climatol. 2014, 117, 293–301. [Google Scholar] [CrossRef]
- Li, J.; Xia, J.; Ji, Q. Rapid and long-distance channel incision in the Lower Yellow River owing to upstream damming. Catena 2021, 196, 104943. [Google Scholar] [CrossRef]
- Kong, D.; Latrubesse, E.M.; Miao, C.; Zhou, R. Morphological response of the Lower Yellow River to the operation of Xiaolangdi Dam, China. Geomorphology 2020, 350, 106931. [Google Scholar] [CrossRef]
- Li, Y.; Chang, J.; Tu, H.; Wang, X. Impact of the Sanmenxia and Xiaolangdi reservoirs operation on the hydrologic regime of the Lower Yellow River. J. Hydrol. Eng. 2016, 21, 06015015. [Google Scholar] [CrossRef]
- Hong, Z.; Ding, S.; Zhao, Q.; Qiu, P.; Chang, J.; Peng, L.; Wang, S.; Hong, Y.; Liu, G.-J. Plant trait-environment trends and their conservation implications for riparian wetlands in the Yellow River. Sci. Total Environ. 2021, 767, 144867. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, H.M.; Julich, S.; Patil, S.D.; McDonald, M.A.; Feger, K.H. Relative contribution of land use change and climate variability on discharge of upper Mara River, Kenya. J. Hydrol. Reg. Stud. 2016, 5, 244–260. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhang, Q. Variation of floods characteristics and their responses to climate and human activities in Poyang Lake, China. Chin. Geogr. Sci. 2015, 25, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guan, D.; Jin, C.; Wang, A.; Wu, J.; Yuan, F. Impacts of climate change and land use change on runoff of forest catchment in northeast China. Hydrol. Process. 2014, 28, 186–196. [Google Scholar] [CrossRef]
- Wu, J.; Miao, C.; Wang, Y.; Duan, Q.; Zhang, X. Contribution analysis of the long-term changes in seasonal runoff on the Loess Plateau, China, using eight Budyko-based methods. J. Hydrol. 2017, 545, 263–275. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, Z. Change-point analysis for the precipitation-runoff relationships of the Yellow River based on likelihood function. Yellow River 2018, 40, 10–13. [Google Scholar]
- Hu, H.; Cui, K.; Cao, Q.; Li, S.; Chang, X.; Shen, L. Analysis of the characteristics of runoff evolution in Yellow River in recent 100 years. Yellow River 2019, 41, 14–19. [Google Scholar]
- Wang, Y.; Ding, Y.; Ye, B.; Liu, F.; Wang, J.; Wang, J. Contributions of climate and human activities to changes in runoff of the Yellow and Yangtze rivers from 1950 to 2008. Sci. China Earth Sci. 2013, 56, 1398–1412. [Google Scholar] [CrossRef]
- Peng, S.; Liu, W.; Wang, W.; Shao, Q.; Jiao, X.; Yu, Z.; Xing, W.; Xu, J.; Zhang, Z.; Luo, Y. Estimating the effects of climatic variability and human activities on streamflow in the Hutuo River basin, China. J. Hydrol. Eng. 2013, 18, 422–430. [Google Scholar] [CrossRef]
- Fang, H.; Yuan, Z.; Yan, D.; Yang, Z.; Yan, S. Study on attribution of runoff evolution of Yellow River. Water Resour. Hydropower Eng. 2014, 45, 1–6,58. [Google Scholar]
- Qi, P.; Xu, Y.J.; Wang, G. Quantifying the individual contributions of climate change, dam construction, and land use/land cover change to hydrological drought in a marshy river. Sustainability 2020, 12, 3777. [Google Scholar] [CrossRef]
Mean (mm) | Standard Normal Variable (ZS) | Significance Level (p) | Trend Direction | Coefficient of Variation (Cv) | Extreme Value Ratio (ρ) | |
---|---|---|---|---|---|---|
Annual | 489.71 | −0.52 | ns | Decreasing | 0.13 | 2.08 |
Flood season | 370.45 | −0.60 | ns | Decreasing | 0.15 | 2.26 |
Non-flood season | 119.26 | −0.04 | ns | Decreasing | 0.24 | 2.36 |
Mean (°C) | Standard Normal Variable (ZS) | Significance Level (p) | Trend Direction | Coefficient of Variation (Cv) | Change Rate (°C/10a) | |
---|---|---|---|---|---|---|
Annual | 9.67 | 6.16 | 0.01 | Increasing | 0.07 | 0.29 |
Flood season | 18.26 | 5.24 | 0.01 | Increasing | 0.03 | 0.19 |
Non-flood season | 3.54 | 6.29 | 0.01 | Increasing | 0.22 | 0.37 |
Mean (mm) | Standard Normal Variable (ZS) | Significance Level (p) | Trend Direction | Coefficient of Variation (Cv) | Extreme Value Ratio (ρ) | |
---|---|---|---|---|---|---|
Annual | 48.09 | −5.38 | 0.01 | Decreasing | 0.41 | 6.04 |
Flood season | 28.13 | −4.86 | 0.01 | Decreasing | 0.53 | 10.71 |
Non-flood season | 19.96 | −4.78 | 0.01 | Decreasing | 0.28 | 3.37 |
Periods | Observed Q (mm) | Simulated Q (mm) | ΔQT (mm) | ΔQC (mm) | ΔQH (mm) | ηC (%) | ηH (%) | |
---|---|---|---|---|---|---|---|---|
Annual | 1961–1986 | 62.07 | ||||||
1987–2018 | 36.73 | 57.5 | −25.34 | −4.57 | −20.76 | (+)18.06 | (+)81.94 | |
Flood season | 1961–1989 | 38.01 | ||||||
1990–2018 | 18.25 | 35.33 | −19.76 | −2.67 | −17.08 | (+)13.53 | (+)86.47 | |
Non-flood season | 1961–1986 | 23.41 | ||||||
1987–2018 | 17.17 | 22.79 | −6.24 | −0.61 | −5.63 | (+)9.80 | (+)90.20 |
Period | Q (mm) | P (mm) | PET (mm) | εP | εPET | |
---|---|---|---|---|---|---|
Annual | 1961–1986 | 62.07 | 500.41 | 914.67 | 3.13 | −2.13 |
1987–2018 | 36.73 | 481.02 | 906.27 | 3.09 | −2.09 | |
Flood season | 1961–1989 | 38.01 | 378.37 | 501.52 | 2.73 | −1.73 |
1990–2018 | 18.25 | 362.54 | 494.69 | 2.72 | −1.72 | |
Non-flood season | 1961–1986 | 23.41 | 119.16 | 417.78 | 5.09 | −4.09 |
1987–2018 | 17.17 | 119.34 | 409.59 | 4.25 | −3.25 |
Post-Change Period | ΔQ (mm) | ΔQ’ (mm) | ΔQP (mm) | ΔQPET (mm) | ΔQH (mm) | ηP (%) | ηPET (%) | ηH (%) | |
---|---|---|---|---|---|---|---|---|---|
Annual | 1987–2018 | −25.34 | 27.22 | −5.93 | 0.94 | −20.35 | (+)21.79 | (−)3.45 | (+)74.76 |
Flood season | 1990–2018 | −19.76 | 21.08 | −3.27 | 0.66 | −17.15 | (+)15.51 | (−)3.13 | (+)81.36 |
Non-flood season | 1987–2018 | −6.24 | 8.68 | 0.11 | 1.11 | −7.46 | (−)1.27 | (−)12.79 | (+)85.94 |
Scale | Period | Q (mm) | P (mm) | PET (mm) | εP | εPET |
---|---|---|---|---|---|---|
Annual | Pre-dam (1987–2001) | 37.16 | 461.31 | 920.58 | 3.16 | −2.16 |
Post-dam (2002–2018) | 36.36 | 498.41 | 890.47 | 3.03 | −2.03 | |
Flood season | Pre-dam (1990–2001) | 16.45 | 343.09 | 502.24 | 2.80 | −1.80 |
Post-dam (2002–2018) | 19.52 | 376.27 | 487.39 | 2.65 | −1.65 | |
Non-flood season | Pre-dam (1987–2001) | 17.54 | 116.16 | 416.96 | 4.34 | −3.34 |
Post-dam (2002–2018) | 16.83 | 122.14 | 403.08 | 4.18 | −3.18 |
Scale | ΔQ | ΔQ’ | ΔQP | ΔQPET | ΔQdam | ηP | ηPET | ηdam |
---|---|---|---|---|---|---|---|---|
Annual | −0.80 | 26.12 | 8.20 | 4.46 | −13.46 | (−)31.39 | (−)17.08 | (+)51.53 |
Flood season | 3.08 | 8.60 | 4.57 | 1.27 | −2.76 | (+)53.14 | (+)14.77 | (−)32.09 |
Non-flood season | −0.71 | 19.79 | 3.45 | 6.09 | −10.25 | (−)17.43 | (−)30.77 | (+)51.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Ding, S.; Ji, X.; Hong, Z.; Lu, M.; Wang, P. Relative Contribution of the Xiaolangdi Dam to Runoff Changes in the Lower Yellow River. Land 2021, 10, 521. https://doi.org/10.3390/land10050521
Zhao Q, Ding S, Ji X, Hong Z, Lu M, Wang P. Relative Contribution of the Xiaolangdi Dam to Runoff Changes in the Lower Yellow River. Land. 2021; 10(5):521. https://doi.org/10.3390/land10050521
Chicago/Turabian StyleZhao, Qinghe, Shengyan Ding, Xiaoyu Ji, Zhendong Hong, Mengwen Lu, and Peng Wang. 2021. "Relative Contribution of the Xiaolangdi Dam to Runoff Changes in the Lower Yellow River" Land 10, no. 5: 521. https://doi.org/10.3390/land10050521
APA StyleZhao, Q., Ding, S., Ji, X., Hong, Z., Lu, M., & Wang, P. (2021). Relative Contribution of the Xiaolangdi Dam to Runoff Changes in the Lower Yellow River. Land, 10(5), 521. https://doi.org/10.3390/land10050521