Mapping Impacts of Human Activities from Nighttime Light on Vegetation Cover Changes in Southeast Asia
<p>(<b>A</b>) Study area of Southeast Asia, (<b>B</b>) original Visible Infrared Imaging Radiometer Suite - Day/Night Band (VIIRS/DNB) monthly composite data for 2018.04, and (<b>C</b>) 16 days composite of moderate resolution imaging spectroradiometer (MODIS)/normalized difference vegetation index (NDVI) data for 9 May 2012 (2012129) and 10 May 2018 (2018129).</p> "> Figure 2
<p>The workflow of this study (<b>A</b>), and the sketch map (<b>B</b>) for a VIIRS/DNB time series (VTS) and MODIS/NDVI time series (MTS) analysis, including temporal segmentation (B1–B3), iteration number of 2 as an example) and incorporation (B4—B6). Where “distance_” is the perpendicular distance between each data point and fitted line, “κ” is the slope of the fitted line, and “α” is the included angle between two adjoining fitted lines. The outputs of time series analysis contain four main features, including overall trend, maximum trend, start month, and duration.</p> "> Figure 3
<p>Frequency histogram shows the percent of all grid counts under different VIIRS/DNB overall trend ranges (trend interval: 0.01, <span class="html-italic">partial not total,</span> grid count: ≈21.41 × 10<sup>6</sup>), and the cumulative frequency curve shows the cumulative percent of grid counts for the whole Southeast Asia (SEA) region and 11 countries. The Gaussian fit curve shows the fitted distribution of the VIIRS change.</p> "> Figure 4
<p>The spatial distribution of the (<b>A</b>) VIIRS/DNB overall trend and (<b>D</b>) duration of the maximum trend (M_Tr). The statistics also show (<b>B</b>) relations between VIIRS/DNB overall trend and maximum trend, and (<b>C</b>) histogram of M_Tr duration and cumulative frequency of start month for M_Tr for SEA region for VIIRS change areas (grids count: ≈1.85 × 10<sup>6</sup>).</p> "> Figure 5
<p>The spatial pattern (<b>A</b>) and statistics (<b>B</b>) between VIIRS/DNB overall trend and MODIS/NDVI overall trend for the whole Southeast Asia region (SEA, grids count: ≈1.85 × 10<sup>6</sup>) and 11 countries. The color bar (<b>B</b>) shows the different proportion of grid density under different combinations of VIIRS/DNB and MODIS/NDVI change level.</p> "> Figure 6
<p>Spatial distribution of time lag effect (<b>A</b>) and duration difference (<b>B</b>) between MODIS/NDVI maximum trend and VIIRS/DNB maximum trend. The histogram and cumulative percent of grid count for time lag effect (<b>C</b>) and the bivariate kernel density between time lag effect and duration difference (<b>D</b>) for VIIRS change areas (grids count: ≈1.85 × 106).</p> "> Figure 7
<p>The spatial distribution of a major road network from OpenStreetMap in the Southeast Asia (SEA) region (<b>A</b>) and distance from VIIRS change grids (grids count: ≈1.85 × 106) to major roads (<b>B</b>). (<b>C</b>) Mean value of VIIRS/DNB and MODIS/NDVI overall trends under different distance (kilometers, KMs) to the nearest major roads.</p> "> Figure 8
<p>The heat map shows the correlation between VIIRS/DNB overall trend and MODIS/NDVI overall trend for the Southeast Asia region (SEA, total grids count: ≈1.85 × 10<sup>6</sup>) and 11 countries. The color map shows the different levels of grid density.</p> ">
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Materials
2.2.1. VIIRS/DNB Nighttime Lights Data
2.2.2. MODIS NDVI Data
3. Method
3.1. Preprocessing
3.2. Segmentation of Time Series
3.3. Incorporation and Feature Extraction
3.4. Time Lag Calculation and Validation
3.5. Spatial Comparison and Pattern Analysis
4. Results
4.1. Human Activities Trend from VIIRS/DNB Time Series
4.2. Vegetation Cover Trend in V-Change Regions
4.3. Time Lag Effect of Vegetation Cover Response to Human Impacts
4.4. Validation and Pattern Analysis
5. Discussion
5.1. Mapping Human Activities from Nighttime Lights
5.2. Human Impacts on Vegetation Cover Changes
5.3. Influential Factors of Spatial Difference
5.4. Evaluation and Validation of Time Series Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zahid, H.J.; Robinson, E.; Kelly, R.L. Agriculture, population growth, and statistical analysis of the radiocarbon record. Proc. Natl. Acad. Sci. USA 2016, 113, 931–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision; United Nations Publications: New York, NY, USA, 2017. [Google Scholar]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen years of change in the global terrestrial human footprint and implications for bio-diversity conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, G.Q.; Ho, H.C. Population stress: A spatiotemporal analysis of population change and land development at the county level in the contiguous United States, 2001–2011. Land Use Policy 2018, 70, 128–137. [Google Scholar] [CrossRef]
- Jia, W.X.; Zhao, S.Q.; Liu, S.G. Vegetation growth enhancement in urban environments of the Conterminous United States. Glob. Chang. Biol. 2018, 24, 4084–4094. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- He, C.Y.; Gao, B.; Huang, Q.X.; Ma, Q.; Dou, Y.Y. Environmental degradation in the urban areas of China: Evidence from multi-source remote sensing data. Remote Sens. Environ. 2017, 193, 65–75. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Day, J.; De Palma, A.; Díaz, S.; Echeverria-Londoño, S.; Edgar, M.J.; Feldman, A.; Garon, M.; Harrison, M.L.K.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.L.; Song, C.H.; Band, L.E.; Sun, G.; Li, J.X. Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening? Remote Sens. Environ. 2017, 191, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.Q.; Liu, S.G.; Zhou, D.C. Prevalent Vegetation Growth Enhancement in Urban Environment. Proc. Natl. Acad. Sci. USA 2016, 113, 6313–6318. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.B.; Chen, Y.L.; Clinton, N.; Wang, J.; Wang, X.Y.; Liu, C.X.; Gong, P.; Yang, J.; Bai, Y.Q.; Zheng, Y.M.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Lei, Y.C.; Pang, Y.; Liu, X.Z.; Wang, J.Z. Tree mortality in response to climate change induced drought across Beijing, China. Clim. Chang. 2014, 124, 179–190. [Google Scholar] [CrossRef]
- Gong, P. Remote sensing of environmental change over China: A review. Chin. Sci. Bull. 2012, 57, 2793–2801. [Google Scholar] [CrossRef] [Green Version]
- Pei, F.S.; Li, X.; Liu, X.P.; Wang, S.J.; He, Z.J. Assessing the differences in net primary productivity between pre- and post-urban land development in China. Agric. For. Meteorol. 2013, 171, 174–186. [Google Scholar] [CrossRef]
- Yang, F.; Matsushita, B.; Yang, W.; Fukushima, T. Mapping the human footprint from satellite measurements in Japan. ISPRS J. Photogramm. Remote Sens. 2014, 88, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ghosh, T.; Hsu, F.C.; Zhizhin, M.; Bazilian, M. The Dimming of Lights in China during the COVID-19 Pan-demic. Remote Sens. 2020, 12, 2851. [Google Scholar] [CrossRef]
- Hu, K.; Qi, K.L.; Guan, Q.F.; Wu, C.Q.; Yu, J.M.; Qing, Y.X.; Zheng, J.; Wu, H.Y.; Li, X. A Scientometric Visualization Analysis for Night-Time Light Remote Sensing Research from 1991 to 2016. Remote Sens. 2017, 9, 802. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.X.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y.Y. Application of DMSP/OLS Nighttime Light Images: A Meta-Analysis and a Systematic Literature Review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef] [Green Version]
- Bennett, M.M.; Smith, L.C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 2017, 192, 176–197. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.H.; Pei, T.; Haynie, S.; Fan, J.F. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Peng, J.; Hu, Y.N.; Liu, Y.X.; Ma, J.; Zhao, S.Q. A new approach for urban-rural fringe identification: Integrating impervious surface area and spatial continuous wavelet transform. Landsc. Urban. Plan. 2018, 175, 72–79. [Google Scholar] [CrossRef]
- Shi, K.F.; Yu, B.L.; Huang, Y.X.; Hu, Y.J.; Yin, B.; Chen, Z.Q.; Chen, L.J.; Wu, J.P. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef] [Green Version]
- Coscieme, L.; Sutton, P.C.; Anderson, S.; Liu, Q.; Elvidge, C.D. Dark Times: Nighttime satellite imagery as a detector of re-gional disparity and the geography of conflict. Gisci. Remote Sens. 2017, 54, 118–139. [Google Scholar] [CrossRef]
- Levin, N. The impact of seasonal changes on observed nighttime brightness from 2014 to 2015 monthly VIIRS DNB composites. Remote Sens. Environ. 2017, 193, 150–164. [Google Scholar] [CrossRef]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.P.; Cao, X.; Chen, L.J.; Chen, X.H.; He, C.Y.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Fensholt, R.; Verbesselt, J.; Grogan, K.; Horion, S.; Wang, Y.J. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 2015, 163, 326–340. [Google Scholar] [CrossRef]
- Miao, C.Y.; Yang, L.; Chen, X.H.; Gao, Y. The vegetation cover dynamics (1982-2006) in different erosion regions of the Yellow River Basin, China. Land Degrad. Dev. 2012, 23, 62–71. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Li, S.C.; Motesharrei, S.C. Spatial and Temporal Patterns of Global NDVI Trends: Correlations with Climate and Human Factors. Remote Sens. 2015, 7, 13233–13250. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.L.; Yang, Y.P.; Yue, X.F.; Zhao, X.D. Mapping Urban Areas with Integration of DMSP/OLS Nighttime Light and MODIS Data Using Machine Learning Techniques. Remote Sens. 2015, 7, 12419–12439. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.C.; Tateishi, R.; Hara, K.; Gharechelou, S.; Iizuka, K. Global mapping of urban built-up areas of year 2014 by combining MODIS multispectral data with VIIRS nighttime light data. Int. J. Digit. Earth 2016, 9, 1004–1020. [Google Scholar] [CrossRef]
- Goldblatt, R.; Stuhlmacher, M.F.; Tellman, B.; Clinton, N.; Hanson, G.; Georgescu, M.; Wang, C.Y.; Serrano-Candela, F.; Khandelwal, A.K.; Cheng, W.H.; et al. Using Landsat and nighttime lights for supervised pixel-based image classification of urban land cover. Remote Sens. Environ. 2018, 205, 253–275. [Google Scholar] [CrossRef]
- Silveira, E.M.D.O.; Bueno, I.T.; Junior, F.W.A.; De Mello, J.M.; Scolforo, J.R.S.; Wulder, M.A. Using Spatial Features to Reduce the Impact of Seasonality for Detecting Tropical Forest Changes from Landsat Time Series. Remote Sens. 2018, 10, 808. [Google Scholar] [CrossRef] [Green Version]
- National Centers for Environment Information (NCEI), National Oceanic and Atmospheric Administration (NOAA). Available online: http://www.ngdc.noaa.gov/eog/viirs/download_monthly.html (accessed on 1 July 2018).
- Fensholt, R.; Proud, S.R. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 2018, 210, 12–24. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Kennedy, R.E.; Yang, Z.Q.; Braaten, J.; Krankina, O.N.; Friedl, M.A. Detecting forest disturbance in the Pacific Northwest from MODIS time series using temporal segmentation. Remote Sens. Environ. 2014, 151, 114–123. [Google Scholar] [CrossRef]
- Roman, M.O.; Stokes, E.C. Holidays in lights: Tracking cultural patterns in demand for energy services. Earth’s Future 2015, 3, 182–205. [Google Scholar] [CrossRef]
- Eklundh, L.; Olsson, L. Vegetation index trends for the African Sahel 1982–1999. Geophys. Res. Lett. 2003, 30, 30. [Google Scholar] [CrossRef]
- Jamali, S.; Seaquist, J.; Eklundh, L.; Ardö, J. Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote Sens. Environ. 2014, 141, 79–89. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Jones, S.D.; Soto-Berelov, M.; Haywood, A.; Hislop, S. A spatial and temporal analysis of forest dynamics using Landsat time-series. Remote Sens. Environ. 2018, 217, 461–475. [Google Scholar] [CrossRef]
- Wu, D.H.; Zhao, X.; Liang, S.L.; Zhou, T.; Huang, K.C.; Tang, B.J.; Zhao, W.Q. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Niță, M.-D.; Munteanu, C.; Gutman, G.; Abrudan, I.V.; Radeloff, V.C. Widespread forest cutting in the aftermath of World War II captured by broad-scale historical Corona spy satellite photography. Remote Sens. Environ. 2018, 204, 322–332. [Google Scholar] [CrossRef]
- Bürgi, M.; Östlund, L.; Mladenoff, D.J. Legacy Effects of Human Land Use: Ecosystems as Time-Lagged Systems. Ecosystems 2017, 20, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.E.; Yang, Z.G.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Jamali, S.; Jönsson, P.; Eklundh, L.; Ardö, J.; Seaquist, J. Detecting changes in vegetation trends using time series segmentation. Remote Sens. Environ. 2015, 156, 182–195. [Google Scholar] [CrossRef]
- Wang, R.; Wan, B.; Guo, Q.H.; Hu, M.S.; Zhou, S.P. Mapping Regional Urban Extent Using NPP-VIIRS DNB and MODIS NDVI Data. Remote Sens. 2017, 9, 862. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Jonsson, P.; Tamura, M.; Gu, Z.H.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Schwarz, G.E. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Abrahams, A.; Oram, C.; Lozano-Gracia, N. Deblurring DMSP nighttime lights: A new method using Gaussian filters and frequencies of illumination. Remote Sens. Environ. 2018, 210, 242–258. [Google Scholar] [CrossRef]
- Tiefelsdorf, M. The saddlepoint approximation of Moran’s I’s and local Moran’s I-i’s reference distributions and their numerical evaluation. Geogr. Anal. 2002, 34, 187–206. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.F.; Zhai, T.L.; He, T.; Qi, Y.; Jin, Z.F.; Cai, Y.M. The role of human activity in decreasing ecologically sound land use in China. Land Degrad. Dev. 2018, 29, 446–460. [Google Scholar] [CrossRef]
- Han, B.L.; Wang, R.S.; Tao, Y.; Gao, H. Urban population agglomeration in view of complex ecological niche: A case study on Chinese prefecture cities. Ecol. Indic. 2014, 47, 128–136. [Google Scholar] [CrossRef]
- Miettinen, J.; Shi, C.H.; Liew, S.C. 2015 Land cover map of Southeast Asia at 250 m spatial resolution. Remote Sens. Lett. 2016, 7, 701–710. [Google Scholar] [CrossRef]
- Deville, P.; Linard, C.; Martin, S.; Gilbert, M.; Stevens, F.R.; Gaughan, A.E.; Blondel, V.D.; Tatem, A.J. Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. USA 2014, 111, 15888–15893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, T. Multi-Level Relationships between Satellite-Derived Nighttime Lighting Signals and Social Media–Derived Human Population Dynamics. Remote Sens. 2018, 10, 1128. [Google Scholar] [CrossRef] [Green Version]
- Wildlife Conservation Society (WCS) and Center for International Earth Science Information Network (CIESIN), NASA So-cioeconomic Data and Applications Center (SEDAC). Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). Available online: http://http://sedac.ciesin.columbia.edu/data/collection/wildareas-v2 (accessed on 26 September 2018).
- Esch, T.; Heldens, W.; Hirner, A.; Keil, M.; Marconcini, M.; Roth, A.; Zeidler, J.; Dech, S.; Strano, E. Breaking new ground in mapping human settlements from space—The Global Urban Footprint. ISPRS J. Photogramm. Remote Sens. 2017, 134, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wang, P.; Chen, H.; Huang, Q.L.; Jiang, H.B.; Zhang, Z.J.; Zhang, Y.M.; Luo, X.; Sun, S.J. A novel method for urban area extraction from VIIRS DNB and MODIS NDVI data: A case study of Chinese cities. Int. J. Remote Sens. 2017, 38, 6094–6109. [Google Scholar] [CrossRef]
- Chen, R.S.; Ye, C.; Cai, Y.L.; Xing, X.S.; Chen, Q. The impact of rural out-migration on land use transition in China: Past, present and trend. Land Use Policy 2014, 40, 101–110. [Google Scholar] [CrossRef]
- Van der Werf, G.R.; Dempewolf, J.; Trigg, S.N.; Randerson, J.T.; Kasibhatla, P.S.; Giglio, L.; Murdiyarso, D.; Peters, W.; Morton, D.C.; Collatz, G.J.; et al. Climate regulation of fire emissions and deforestation in equatorial Asia. Proc. Natl. Acad. Sci. USA 2008, 105, 20350–20355. [Google Scholar] [CrossRef] [Green Version]
- Carlson, K.M.; Curran, L.M.; Ratnasari, D.; Pittman, A.M.; Soares-Filho, B.S.; Asner, G.P.; Trigg, S.N.; Gaveau, D.A.; Lawrence, D.; Rodrigues, H.O. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proc. Natl. Acad. Sci. USA 2012, 109, 7559–7564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.C.; Piao, S.L.; Myneni, R.B.; Huang, M.T.; Zeng, Z.Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2018, 6, 791–795. [Google Scholar] [CrossRef]
- Meng, Z.Q.; Liu, M.; Gao, C.C.; Zhang, Y.; She, Q.N.; Long, L.B.; Tu, Y.; Yang, Y.X. Greening and browning of the coastal areas in mainland China: Spatial heterogeneity, seasonal variation and its influential factors. Ecol. Indic. 2020, 110, 105888. [Google Scholar] [CrossRef]
- Shi, Y.; Jin, N.; Ma, X.L.; Wu, B.Y.; He, Q.S.; Yue, C.; Yu, Q. Attribution of climate and human activities to vegetation change in China using machine learning techniques. Agric. For. Meteorol. 2020, 294, 108146. [Google Scholar] [CrossRef]
- Vagneron, I. Economic appraisal of profitability and sustainability of peri-urban agriculture in Bangkok. Ecol. Econ. 2007, 61, 516–529. [Google Scholar] [CrossRef] [Green Version]
- Wong, N.H.; Chen, Y.; Ong, C.L.; Sia, A. Investigation of thermal benefits of rooftop garden in the tropical environment. Build. Environ. 2003, 38, 261–270. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.G.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
Country. | Abbr. | Area (104km2) | Pop_2012 (106) | Pop_2018 (106) | U-pop an_gr (%) | R-pop an_gr(%) | GDP an_gr (%) |
---|---|---|---|---|---|---|---|
Brunei | BRN | 0.58 | 0.40 | 0.43 | 1.79 | −0.62 | −0.26 |
Indonesia | IDN | 190.11 | 248.45 | 267.66 | 2.65 | −0.21 | 5.46 |
Cambodia | KHM | 18.25 | 14.78 | 16.25 | 3.26 | 1.12 | 6.24 |
Laos | LAO | 23.11 | 6.44 | 7.06 | 3.36 | 0.54 | 7.67 |
Myanmar | MMR | 67.26 | 51.41 | 53.71 | 1.50 | 0.54 | 7.90 |
Malaysia | MYS | 33.15 | 29.07 | 31.53 | 2.71 | −0.82 | 4.74 |
Philippines | PHL | 29.58 | 97.21 | 106.65 | 1.86 | 1.40 | 5.61 |
Singapore | SGP | 0.07 | 5.31 | 5.64 | 2.01 | 0.00 | 4.41 |
Thailand | THA | 51.62 | 67.84 | 69.43 | 2.50 | −1.25 | 3.05 |
Timor-Leste | TLS | 1.50 | 1.13 | 1.27 | 3.20 | 1.48 | −0.38 |
Vietnam | VNM | 33.02 | 89.80 | 95.54 | 3.18 | 0.08 | 6.01 |
VIIRS_Overall | VIIRS_Max | MODIS_Overall | MODIS_Max | |||
---|---|---|---|---|---|---|
G_MI | 0.5351 | 0.4203 | 0.2342 | 0.1603 | ||
z-score | 15,562.6845 | 12,219.3249 | 6796.0787 | 4651.3304 | ||
VII_MOD_level * | Time lag effect | Duration_diff | ||||
G_MI | 0.2886 | 0.0561 | 0.0602 | |||
z-score | 8374.7861 | 1628.5557 | 1747.3804 |
Regions | All VIIRS Trend | Positive VIIRS Trend | Negative VIIRS Trend | |||
---|---|---|---|---|---|---|
VIIRS | MOD (10−4) | VIIRS | MOD (10−4) | VIIRS | MOD (10−4) | |
SEA | 2.12 | 226.85 | 2.38 | 215.34 | −2.11 | 417.66 |
BRN | 3.90 | 109.34 | 4.88 | 93.09 | −1.97 | 207.52 |
IDN | 1.21 | 146.72 | 1.58 | 125.66 | −3.08 | 390.76 |
KHM | 1.41 | −13.58 | 1.65 | −109.77 | −0.78 | 834.16 |
LAO | 1.07 | 140.45 | 1.38 | 73.06 | −1.02 | 597.85 |
MMR | 0.87 | 673.79 | 1.20 | 643.01 | −1.13 | 857.61 |
MYS | 2.62 | 26.36 | 2.85 | 20.09 | −1.86 | 153.10 |
PHL | 1.32 | 184.38 | 1.52 | 179.26 | −1.21 | 247.37 |
SGP | 7.23 | −42.50 | 10.59 | −64.47 | −6.38 | 46.67 |
THA | 1.75 | 290.85 | 1.85 | 289.52 | −1.28 | 331.24 |
TLS | 0.15 | 153.99 | 0.82 | 205.09 | −1.23 | 48.31 |
VNM | 4.60 | 311.47 | 4.75 | 308.25 | −1.52 | 451.98 |
Regions | Start Month (2012.04–2018.04) | Duration (Months) | |||
---|---|---|---|---|---|
VIIRS | MODIS | Lag Effect | VIIRS | MODIS | |
SEA | 8.65 | 18.91 | 10.26 | 48.03 | 39.73 |
BRN | 7.28 | 17.67 | 10.39 | 34.87 | 42.23 |
IDN | 9.10 | 19.74 | 10.64 | 49.68 | 39.65 |
KHM | 4.93 | 18.66 | 13.73 | 54.05 | 36.52 |
LAO | 8.57 | 20.65 | 12.08 | 47.37 | 39.87 |
MMR | 9.35 | 15.81 | 6.46 | 53.27 | 41.69 |
MYS | 9.77 | 19.51 | 9.74 | 44.01 | 38.11 |
PHL | 9.60 | 18.73 | 9.13 | 47.23 | 40.51 |
SGP | 12.88 | 19.41 | 6.53 | 39.39 | 38.90 |
THA | 7.73 | 19.95 | 12.22 | 46.14 | 38.96 |
TLS | 7.41 | 17.34 | 9.93 | 50.28 | 43.73 |
VNM | 8.38 | 16.18 | 7.80 | 49.71 | 41.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, N.; Li, M.; Cheng, L. Mapping Impacts of Human Activities from Nighttime Light on Vegetation Cover Changes in Southeast Asia. Land 2021, 10, 185. https://doi.org/10.3390/land10020185
Xia N, Li M, Cheng L. Mapping Impacts of Human Activities from Nighttime Light on Vegetation Cover Changes in Southeast Asia. Land. 2021; 10(2):185. https://doi.org/10.3390/land10020185
Chicago/Turabian StyleXia, Nan, Manchun Li, and Liang Cheng. 2021. "Mapping Impacts of Human Activities from Nighttime Light on Vegetation Cover Changes in Southeast Asia" Land 10, no. 2: 185. https://doi.org/10.3390/land10020185
APA StyleXia, N., Li, M., & Cheng, L. (2021). Mapping Impacts of Human Activities from Nighttime Light on Vegetation Cover Changes in Southeast Asia. Land, 10(2), 185. https://doi.org/10.3390/land10020185