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Abstract: The northern slope of the Tianshan Mountains city cluster (NSTM), as a key
urban agglomeration for the development of western China, has experienced rapid regional
economic development and high population concentration since the twenty-first century.
Accompanied by the increase in human activities in the NSTM, it has significantly altered
the land use structure, leading to varying levels of habitat disturbance and degradation.
In this paper, based on the land use and land cover (LULC) of NSTM from 2000 to 2020.
The InVEST model was employed to assess habitat quality, revealing notable spatial and
temporal variations. A geoprobe was further employed to explore the key drivers of the
spatially distributed pattern of habitat quality in the research region. The results show that
(1) from 2000 to 2020, the NSTM was largely characterized by grassland, unused land, and
cropland in terms of land use, with a notable expansion of cropland and construction land;
(2) the overall habitat quality in the study area is poor, with a clear spatial distribution
pattern of high in the south and low in the north, with a predominance of low grades, and
a trend of decreasing and then increasing is shown in the temporal direction; (3) under the
influence of rapid urbanization in the region, the degradation degree of habitat quality on
the NSTM shows a distinct radial structure, with high degradation in the middle and low
degradation at the edges, and shows the trend of “increase-decrease-increase” over time;
and (4) the results of the geodetector show that altitude and land use type have the greatest
influence on habitat quality on the NSTM, indicating that the habitat quality of the research
region is primarily influenced by the type of land use.

Keywords: northern slopes of Tianshan Mountain city cluster; land use; InVEST model;
habitat quality; influencing factors

1. Introduction
In the light of global warming, the importance of habitat quality (HQ) as a core indica-

tor for assessing ecosystem health and biodiversity has become increasingly prominent [1].
An essential measure of ecosystem services and ecosystem health, HQ shows how well
organisms can live and reproduce in a particular ecological niche. Human activities, such
as urbanization and economic growth, have made habitat shrinkage, ecological carrying
capacity loss, and the fragmentation of arable land worse. HQ research has attracted
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increasing attention, and examining the features of changes in HQ, revealing the factors
affecting regional ecosystems, and predicting HQ have become research hotspots. Eco-
logical survey techniques and evaluation model methods are the two categories of HQ
research methodologies. The ecological survey approach gathers pertinent indicators for
evaluating HQ throughout the investigated region via field surveys and employs them
to establish a system of indicators for assessing HQ. This method is time-consuming and
labor-intensive, making it more suitable for small-scale studies and challenging to carry out
long time-series evolutionary studies [2]. In contrast, the quantitative evaluation modeling
approach provides a quantitative assessment of habitat quality by means of mathematical
models and remotely sensed data. This approach has the advantages of being efficient and
cost-effective, allowing for the analysis of spatial and temporal dynamics. Therefore, many
scholars have chosen to use quantitative evaluation models to carry out their research.
Currently, commonly used models include the Habitat Suitability Index model (HSI) [3–5],
Social Values for Ecosystem Services (SolVES) [6,7], Integrated Valuation of Ecosystem Ser-
vices and Tradeoffs (InVEST) [8–10], Maxent Models [11,12], Artificial Intelligence Models
(ARIES) [13], etc. There are significant differences in the areas to which different quantita-
tive evaluation models apply and the functions they demonstrate. For example, the SolVES
model evaluates the value of the region’s cultural and social functions mainly from multiple
perspectives [14,15]. The MAXENT model concentrates on assessing the research area’s
HQ from the standpoint of the species [16,17]. In contrast, the InVEST has a wide range of
scales of application and good assessment results and offers solid assessment findings over
a wide variety of application sizes [18,19]. This includes changes in water production [20],
HQ [21–24], ecosystem services [25] etc.; it is applied in multi-scale studies, including land
use [21,25–27], nature reserves [28], tourist attractions [29], watersheds [30,31], different
regional scales [32,33] etc.. It is also highly suitable for analyzing changes in HQ across
time and space [34] and for simulation prediction [32].

Investigation into the factors influencing changes in HQ is a key component in under-
standing the characteristics of changes in HQ and enhancing the status of HQ. Currently,
analyses exploring the factors influencing changes in HQ fall into two categories, one based
on geoprobes, geographically weighted regression (GWR), and other models exploring the
contribution of driving mechanisms to the impacts on HQ [30]. HQ change is influenced by
climate, water distribution, socio-economic conditions, and other factors, and the internal
functions of influence are complicated, making it particularly important to systematically
analyze the mechanisms driving HQ change. The driving force of HQ change are multifac-
torial and comprehensive, in which the driving factors include natural and anthropogenic
influences such as land use, DEM, slope, rainfall, and temperature [35]. HQ-driven mech-
anisms are studied with geoprobes [30], GWR models, relevance analysis [21], and other
methods. Among these, geoprobes are spatial analysis methods that measure the degree of
spatial stratification inhomogeneity and are widely used to analyze climate change [36],
vegetation change [37], and other areas.

Occupying a spot in northwestern China, Xinjiang is marked by a classic temperate
continental climate. The region is rich in ecological elements and a variety of ecosystems.
The overall ecological environment is constrained by an arid climate and a fragile ecological
structure. Xinjiang is rich in mineral resources with high socio-economic value. Lately, the
fast-paced progress in the Tianshan zone has increased the susceptibility of the ecological
environment. ZHU et al. applied the InVEST to assess the spatiotemporal variations in
ecosystem services within Xinjiang’s nature reserves, discovering a positive link between
economic progress and the effectiveness of soil and water conservation [38]. Hui et al.
assisted in the management of ecosystems with the help of the InVEST system and showed
that precipitation and temperature affect ecosystem benefits [39]. Kou et al. evaluated the
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ecologically fragile Tuha region and proposed a new perspective for judging the equilibrium
of economic interests and HQ, which reconciled the contradiction between the region’s
economic development and its fragile ecological environment [40]. Wei et al. evaluated the
HQ of Wusu City and concluded that the adverse effects of anthropogenic factors on HQ
was the greatest and could not be reversed [41]. As a crucial ecological bulwark in China,
it is also important to analyze the changes in HQ of the northern slope of the Tianshan
Mountains (NSTM). Lu et al. used the Tianshan Mountains in Xinjiang as the investigative
domain and analyzed the changes in HQ in the Tianshan Mountains over the past two
decades and its dominant factors by using the InVEST system and a geodetector [42].
Han et al. focused on the spatiotemporal variations in HQ in urban agglomerations on the
NSTM and introduced partial least squares structural equation modeling to explore the
interactions between natural and non-natural factors and their effects on HQ [43].

The NSTM is the only city cluster in the core zone of the Silk Road Economic Belt
(SREB). With the implementation of China’s “Western Development Strategy”, the NSTM
has become the most economically developed area in Xinjiang and an important hub of the
SREB with a very important economic and locale. In parallel, the NSTM is also an important
ecological barrier in Central Asia, and the quality of its habitats is critical for the protection
of regional ecological balance and the spectrum of biodiversity. In recent years, the NSTM
has experienced accelerated urban growth, industrialization, agricultural intensification,
and other human activities, which have greatly affected the land use structure, causing
various degrees of disturbance and damage to HQ. As the most direct and significant
reflection of human activities on the natural environment, there is a close link between land
use change and HQ change. Although previous studies have initially explored the HQ of
NSTM, an in-depth understanding of its spatial and temporal differentiation characteristics
and driving factors remains lacking. Previous researchers mainly studied the natural
geographic region of the Tianshan Mountains and concluded that the influence of natural
factors was stronger than human activities (the influence of the concentration of human
activities around the Tianshan Mountains was not taken into account). In contrast, this
paper focuses on economic–geographical divisions, examines the urban agglomeration
on the northern slopes of the Tianshan Mountains, a key area for the development of
China’s Xinjiang, studies the harmony between economic development and the ecological
environment in environmentally fragile zones, and explores the impact of human activities
on the quality of habitats, arguing that the influence of topography and land use-type
shifts is stronger. Within the scope of this article, rooted in the LULC of the NSTM from
2000 to 2020, we operated with the InVEST to assess the HQ in the study area, reveal its
spatiotemporal variability characteristics, and explore the driving factors influencing HQ
using geoprobes. The above research content is of great significance for understanding the
mechanism of HQ change, assessing the health of ecosystems, and formulating scientific
and reasonable ecological protection and restoration strategies. It also provides reference
value for the central and local governments to formulate targeted policies.

2. Materials and Methods
2.1. Study Area

The NSTM is situated northwest of China (83◦24′~91◦34′ E, 42◦55′~46◦13′ N), encom-
passing an area of 1.24226 × 105 km2, which represents 7.46% of Xinjiang. The study area is
characterized by a continental arid climate, with terrain decreasing in altitude from south
to northwest, forming a pincer-shaped encirclement, and an altitude ranging from 182 to
5251 m. The NSTM exhibits a considerable elevated span above sea level, which gives
rise to distinctive topographical and geomorphological features. These include mountain
ranges, intermountain plains, intermountain basins, and hills and valleys (Figure 1). The
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municipalities on the NSTM comprise a total of eight urban areas and 25 districts and
counties, indicating the regions in Xinjiang that are the most economically advanced and
have the highest population density. Acting as a vital ecological barrier in the Xinjiang
Uygur Autonomous Region, the HQ of the NSTM is crucial for maintaining the ecological
balance of the region.

Land 2025, 14, x FOR PEER REVIEW 4 of 25 
 

northwest, forming a pincer-shaped encirclement, and an altitude ranging from 182 to 5251 
m. The NSTM exhibits a considerable elevated span above sea level, which gives rise to 
distinctive topographical and geomorphological features. These include mountain ranges, 
intermountain plains, intermountain basins, and hills and valleys (Figure 1). The municipal-
ities on the NSTM comprise a total of eight urban areas and 25 districts and counties, indi-
cating the regions in Xinjiang that are the most economically advanced and have the highest 
population density. Acting as a vital ecological barrier in the Xinjiang Uygur Autonomous 
Region, the HQ of the NSTM is crucial for maintaining the ecological balance of the region. 

 

Figure 1. Study area: DEM of the north slope of Tianshan Mountain city cluster. 

2.2. Database 

The data utilized in this study included the 2000, 2005, 2010, 2015, and 2020 land use 
data of the NSTM. The Geospatial Data Cloud furnished the DEM data. Rainfall data, 
sourced from CRU TS, were provided by the NERC Centers for Atmospheric Science (UK) 
(NCA-S), consisting of monthly data covering the land surface at a 0.5° resolution from 
1901 to 2023, available in NetCDF format. NDVI data were extracted from the Digital 
Earth Open Platform and selected from the 30 m NDVI dataset for China covering the 
years 2000 to 2020. The data format was GeoTIFF and ArcGIS grid format, in floating-
point type, with a resolution of 30 m. Population density data were obtained from a global 
population data assessment initiated by the University of Southampton in 2013, with a 
resolution of 100 m. The data in this paper are categorized as shown in Table 1. 

  

Figure 1. Study area: DEM of the north slope of Tianshan Mountain city cluster.

2.2. Database

The data utilized in this study included the 2000, 2005, 2010, 2015, and 2020 land use
data of the NSTM. The Geospatial Data Cloud furnished the DEM data. Rainfall data,
sourced from CRU TS, were provided by the NERC Centers for Atmospheric Science (UK)
(NCA-S), consisting of monthly data covering the land surface at a 0.5◦ resolution from
1901 to 2023, available in NetCDF format. NDVI data were extracted from the Digital Earth
Open Platform and selected from the 30 m NDVI dataset for China covering the years 2000
to 2020. The data format was GeoTIFF and ArcGIS grid format, in floating-point type, with
a resolution of 30 m. Population density data were obtained from a global population data
assessment initiated by the University of Southampton in 2013, with a resolution of 100 m.
The data in this paper are categorized as shown in Table 1.

Table 1. Data source classification.

Data Type Data Sources Website Address Spatial
Resolution

Land use Resource and Environmental Science Data
Centre of the Chinese Academy of Sciences

http://www.resdc.cn/,
accessed on 25 March 2024 30 m

DEM Geospatial Data Cloud http://www.gscloud.cn,
accessed on 25 March 2024 30 m

http://www.resdc.cn/
http://www.gscloud.cn
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Table 1. Cont.

Data Type Data Sources Website Address Spatial
Resolution

Rainfall NERC Centers for Atmospheric Science (UK) https://crudata.uea.ac.uk/cru/data/hrg/,
accessed on 25 March 2024 0.5◦

NDVI Digital Earth Open Platform https://open.geovisearth.com,
accessed on 28 March 2024 30 m

Population WorldPop https://www.worldpop.org/,
accessed on 28 March 2024 100 m

2.3. Methods
2.3.1. Dynamic Degree of Land Use

A depiction of the spatiotemporal progression of land use categories in the research
area regarding individual land use changes and integrated land use changes is provided
here [44]. The expression for the model is (Expression 1, Expression 2)

Single dynamic degree : K =
Ub − Ua

Ua
× 1

T
× 100% (1)

K represents the shift in orientation of a particular landform following the a-b interval;
Ua and Ub, respectively, represent the area of the land category during periods a and b. T is
the size of the study time. When K is greater than zero, it indicates that the landform area
increased during the study period, and when K is less than zero, it indicates a decrease.

Comprehensive dynamic degree : Lc =
∑n

i=1 ∆Luij

2∑n
i=1 Lui

× 1
T
× 100% (2)

Lc represents the combined dynamic attitude of land use in the study area; ∆Luij

denotes the difference in area between land class i and non-i land classes; and Lui is the
size of land class i in the initial period.

2.3.2. Land Transfer Matrix

The land use transfer matrix can characterize the structure of land use change on the
NSTM [45]. The expression for the land use transfer matrix model is (Equation (3))

Sij =


S11 S12 · · · S1n

S21 S22 · · · S2n
...

...
. . .

...
Sn1 Sn2 · · · Snn

 (3)

Sij is the size of the area transferred from land type i to land type j in the study area;
n denotes the quantity of land use categories within the research area. By analyzing the
direction of land resource transfer and the amount of transfer, the pattern and amount of
land use change in the study area can be clarified.

2.3.3. InVEST Habitat Quality Model

This paper is based on the HQ module of the InVEST to assess and analyze the NSTM.
The approach involves identifying the sources of threats to HQ, determining the extent of
habitat deterioration in the research area by establishing a functional relationship between
HQ and threat factors, linking the extent of habitat degradation to the habitat suitability of
each category within the region, and ultimately obtaining the final outcomes of the HQ

https://crudata.uea.ac.uk/cru/data/hrg/
https://open.geovisearth.com
https://www.worldpop.org/
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assessment for the research area [46]. The degree of habitat degradation is calculated as
follows [47,48]:

Dxj =
R

∑
r=1

Yr

∑
y=1

(
Wr/

R

∑
r=1

Wr)ryirxyβxSjr (4)

Dxj represents the total threat level of the j-th type of threat source to the x grid; R
signifies the count of threat sources; Yr signifies the count of threat source r; Wr denotes
the weight associated with threat source r; ry is the value of raster y in threat source r;
βx represents how accessible the threat source is to grid x. The value is from 0 to 1, with
1 indicating full exposure to the threat and 0 indicating full protection; Sjr indicates the
susceptibility of type j to threat source r, ranging from 0 to 1; irxy is the degree of influence
of the grid y on x. This includes the following two scenarios:

Linear Decline : irxy = 1 −
(

dxy

drmax

)
(5)

Index Recession : irxy = exp
(
−
(

2.99
drmax

)
dxy

)
(6)

dxy is the Euclidean distance between the grid y and x; drmax is the maximum extent
of the action of the threat source r.

Finally, the degree of regional habitat degradation as a function of HQ was established
and calculated as follows:

Qxj = Hj

(
1 −

(
Dz

xj

Dz
xj + kz

))
(7)

Qxj signifies the HQ of grid x in type j; Hj denotes the habitat suitability for type j; z
serves as the default parameter for normalizing the model (the Z value is usually taken
as 2.5. The highest correlation between the model predictions and the degree of habitat
degradation observed in the field was achieved when z was 2.5); and k, referred to as
the half-saturation coefficient, defaults to 0.05, or it can be taken to be assigned to half
the maximum value based on the degradation results of the first operation of the model.
Included among these, Qxj and Hj both take values in the range 0–1.

According to the data requirements of the InVEST, this paper, based on the reference to
expert opinions and previous studies, selects arable land and construction land, which are
more frequently interfered with by man and where human activities are most concentrated,
as the main threat sources. At the same time, taking into account the regional characteristics
of the northern slope of Tianshan Mountain, sandy land, Gobi, bare land, and other unused
land, which account for a large proportion of the area of the region and result in substantial
harm to the environment, are taken as the key objects to be analyzed. The layout of threat
sources in the area is displayed in Figure 2. Finally, according to the manual for the use of
the InVEST, the actual geographical conditions of the region and the relevant studies on
HQ were integrated to determine the threat source attributes and the sensitivity values for
each category [49–55]. See Appendix A for specific data (Tables A1 and A2).

2.3.4. Spatial Autocorrelation Analysis

This study was analyzed using the global Moran’s index and local Moran’s index.
The Moran index reveals spatially clustered features of habitat quality by quantifying
the similarity between spatial units. The global Moran’s index is capable of determining
whether habitat quality is spatially autocorrelated or not at an aggregate level. The local
Moran index identifies areas where habitat quality is spatially clustered. On the overall
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NSTM, the global Moran index is used in this paper to represent it [51]. Its calculation
formula is as follows:

I =
n

∑n
i=1 ∑n

j=1 wij
∗

∑n
i=1 ∑n

j=1 wij(xi − x)
(
xj − x

)
∑n

i (xi − x)2 (8)

n represents the overall count of spatial units. wij denotes the spatial adjacency weight
between spatial units i and j. xi and xj represent the values of spatial i and j. x is the mean.
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Locally on the NSTM, this paper utilizes the local Moran’s index [52], which is calcu-
lated using the following formula:

Ii =
xi − x

S2
i

∗
n

∑
j=1,j ̸=i

wij
(
xj − x

)
(9)

S2
i =

∑n
j=1,j ̸=i(xi − x)2

n − 1
− x2 (10)

2.3.5. Geoprobe Model

This paper analyzes the possible driving factors in the study region by means of
geo-detectors. The magnitude of the driving force of each driver is investigated, and the
existence of a linear relationship that can cause a greater degree of change in HQ when the
factors interact two by two is also explored [55]. The calculations are as follows:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 (11)

q indicates the magnitude of the driving force of the driver on the dependent variable, with
values spanning from 0 to 1. The value’s magnitude correlates with the effect’s strength; L
is the total number of partitions; N signifies the cell count throughout the study region; Nh

is the number of cells in partition h; σ2 is the variance of the dependent variable within the
research region; and σ2

h is the variance of the h partition [56].
The research process of this paper is shown in Figure 3.
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3. Results
3.1. Characteristics of the Spatial and Temporal Evolution of Land Use

Spatially, there was a considerable shift in land use within the investigative domain
between 2000 and 2020 (Figure 4), with a significant increase in the area occupied by arable
land, built-up land, and unused land, and a sharp fall within the region belonging to
forest land, grassland, and water. Among them, grassland and arable land showed the
greatest change, with grassland decreasing from 42.92 percent to 38.89 percent, while the
share of arable land area increased from 11.65 percent to 17.05 percent. The large-scale
development of the urban agglomeration on the NSTM has led to a significant increase in
the area of land used for urban construction by 1.50 × 103 km2, and the appetite for arable
land has broadened by 6.71 × 103 km2 resulting from city development and a population
surge (Table 2).

Land 2025, 14, x FOR PEER REVIEW 9 of 25 
 

3. Results 
3.1. Characteristics of the Spatial and Temporal Evolution of Land Use 

Spatially, there was a considerable shift in land use within the investigative domain 
between 2000 and 2020 (Figure 4), with a significant increase in the area occupied by arable 
land, built-up land, and unused land, and a sharp fall within the region belonging to forest 
land, grassland, and water. Among them, grassland and arable land showed the greatest 
change, with grassland decreasing from 42.92 percent to 38.89 percent, while the share of 
arable land area increased from 11.65 percent to 17.05 percent. The large-scale development 
of the urban agglomeration on the NSTM has led to a significant increase in the area of land 
used for urban construction by 1.50 × 103 km2, and the appetite for arable land has broadened 
by 6.71 × 103 km2 resulting from city development and a population surge (Table 2). 

 

Figure 4. Spatial distribution of land use on NSTM, 2000–2020. 

Table 2. Structure and proportion of land use on NSTM (103 km2). 

Land Type 
2000 2005 2010 2015 2020  

Area Percentage Area Percentage Area Percentage Area Percentage Area Percentage Subtotal 
arable land 14.47 11.65% 15.44 12.43% 20.00 16.10% 20.35 16.38% 21.18 17.05% 6.71 
woodland 4.94 3.97% 4.90 3.94% 2.64 2.13% 2.63 2.12% 2.51 2.02% −2.42 

Figure 4. Spatial distribution of land use on NSTM, 2000–2020.



Land 2025, 14, 539 10 of 24

Table 2. Structure and proportion of land use on NSTM (103 km2).

Land Type
2000 2005 2010 2015 2020

Area Percentage Area Percentage Area Percentage Area Percentage Area Percentage Subtotal

arable land 14.47 11.65% 15.44 12.43% 20.00 16.10% 20.35 16.38% 21.18 17.05% 6.71
woodland 4.94 3.97% 4.90 3.94% 2.64 2.13% 2.63 2.12% 2.51 2.02% −2.42
grassland 53.32 42.92% 52.44 42.21% 47.19 37.98% 46.54 37.47% 48.31 38.89% −5.00

body of water 3.28 2.64% 3.28 2.64% 1.78 1.43% 1.66 1.33% 1.69 1.36% −1.59
building site 1.49 1.20% 1.62 1.30% 2.10 1.69% 2.57 2.07% 2.99 2.41% 1.50
unused land 46.7 37.62% 46.55 37.47% 50.53 40.67% 50.48 40.64% 47.55 38.27% 0.81

In the sphere of land use dynamics (Table 3), the combined dynamics on the NSTM are
small, and the overall change is relatively smooth. Among them, the highest comprehensive
dynamic was in 2005–2010, reaching 1.45%, during which the land use categories in the
research region changed drastically. From the perspective of single-dynamic motivation,
it can be seen that during the period of 2005–2010, the motivation attitude of forest land
and water areas was −9.22% and −9.14%, while for cultivated land and construction
land, it was 5.90% and 5.88%, respectively. In addition, the single-motivation attitude
of cultivated land and construction land was consistently positive, while that of forest
land was negative, further indicating that the influence of anthropogenic factors has been
increasing in the NSTM. This trend also indirectly reflects that the urban agglomeration on
the NSTM is expanding.

Table 3. Single/comprehensive land use dynamics, 2000–2020.

Single-
dynamic

motivation

Land use type 2000–2005 2005–2010 2010–2015 2015–2020

arable land 1.35% 5.90% 0.35% 0.82%
woodland −0.16% −9.22% −0.06% −0.89%
grassland −0.33% −2.00% −0.27% 0.76%

body of water 0.00% −9.14% −1.40% 0.38%
building site 1.75% 5.88% 4.48% 3.30%
unused land −0.08% 1.71% −0.02% −1.16%

comprehensive dynamic 0.18% 1.45% 0.13% 0.49%

As shown in Figure 5, the overall degree of land use transfer in the region on the
NSTM is weak, and land use transfer occurs mainly between grassland, cropland, and
unused land, while the transfer of watersheds and forested land is relatively small. The
data (see Table A3 in Appendix A for specific data) show that land use shifted drastically
from 2005 to 2010. Among these changes, grassland was transferred to unused land
by 11.10 × 103 km2 and to arable land by 4.03 × 103 km2, indicating that grassland was
reclaimed to meet the demand for arable land due to population changes during this period,
and that there was a significant desertification of grassland in the study area’s ecological
environment. Additionally, unused land was transferred to grassland by 7.00 × 103 km2,
indicating that during the process of urbanization and development on the NSTM, certain
ecological restoration measures were taken, which contributed to maintaining the region’s
ecological balance.

3.2. Habitat Quality Assessment of the Northern Slopes of the Tianshan Mountains

The study’s conclusions demonstrated that the overall HQ on the NSTM was low
and declining year by year (Table 4), with significant spatial heterogeneity (Figure 6),
characterized by “high in the south and low in the north”. Among them, the distribution of
inferior habitats is primarily in the north of the northwestern–southeastern belt and the
southwestern border, mostly consisting of cultivated land, construction land, and unused
land. High-grade habitat is concentrated in the south of the northwestern–southeastern
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belt of the study area, mostly covering forest and grassland in the northern foothills of the
Tianshan Mountains. Only the areas of the low-grade and lower-grade types increased from
2000 to 2020, while the areas of the remaining three types decreased to varying degrees,
and the overall HQ was lower than that of the low grade. The average quality decreased
by 3.2 percent, indicating an overall trend of ecological degradation on the NSTM.
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Table 4. Changes in HQ on the northern slopes of the Tianshan Mountains (103 km2).

Habitat
Quality

2000 2005 2010 2015 2020
Subtotal

Area Percentage Area Percentage Area Percentage Area Percentage Area Percentage

Lowest level 69.64 56.06% 69.93 56.30% 74.23 59.75% 74.95 60.34% 74.75 60.17% 5.11
Lower level 15.17 12.21% 15.93 12.82% 17.71 14.25% 17.29 13.92% 16.26 13.09% 1.09

Medium level 6.81 5.48% 6.72 5.41% 6.58 5.30% 6.43 5.18% 6.08 4.89% −0.73
Higher level 15.96 12.85% 15.15 12.20% 11.10 8.94% 10.97 8.83% 13.12 10.56% −2.84

Top level 16.65 13.40% 16.49 13.27% 14.61 11.76% 14.57 11.73% 14.02 11.29% −2.62

On average 0.33 0.32 0.29 0.29 0.29

Analyzing the changes in HQ, one can observe (Figure 7) that the overall HQ of
the NSTM showed a declining trend. Of these alterations, the territory with improved
HQ stretched over 4.73 × 103 km2, largely found in the eastern district of Changji Hui
Autonomous Prefecture in the eastern section of the study area, the western part of the
Tacheng area, and the southern part of the Tianshan Mountains. The fact that such results
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have been achieved is largely due to the efforts of the local government sector. The quality
of the environment has been improved through the implementation of a series of policies
and governance measures, such as the Wetland Conservation and Restoration Program.
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The area where HQ decreased was 67.78 × 103 km2, mainly focused in the urban
clusters of Urumqi, Shihezi, Karamay, and Ili Kazakh Autonomous Prefecture. The expanse
with the least change in HQ, covering 9.92 × 103 km2, was mainly located in the northern
and southern zones of the research region. This stems from the NSTM being adjacent to
the Gurbantunggut Desert in the north, with harsher geographic conditions, and to the
Tianshan Mountain Range in the south, with more favorable natural conditions, generally
higher elevations, and fewer human interventions, which allowed the HQ to remain stable.
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3.3. Level of Habitat Degradation on the Northern Slope of Tianshan Mountains

The extent of habitat degradation correlates with the level of impact that threat sources
have on the region, and its high or low value characterizes the potential status of ecological
damage in the region. It is an attribute, not a state quantity. Specifically, it describes the
ecological sensitivity of the area and does not indicate that the ecosystem is experiencing
structural damage, functional decline, etc. Habitat degradation on the NSTM is relatively
poor (less than 0.027), showing a clear radial structure, with low degradation at the margins
and high degradation at the nucleus (Figure 8). Among them, weak deterioration is
dispersed over the research area and takes up the most space, where the environment is
relatively stable, consisting mainly of grassland, woodland, and unused land. On the other
hand, habitat degradation is significantly higher in the central area, mostly made up of
construction land and arable land and where human activity is frequent and where strong
ecological interference and a more fragile environment exist.

As shown in Table 5, only the more strongly degraded areas increased in the study
area, while the remaining three categories all showed varying degrees of shrinkage, and
the ecological environment on the NSTM became increasingly fragile by 2020. During
the period from 2000 to 2020, the level of habitat deterioration on the NSTM exhibited a
“increasing-decreasing-increasing” pattern, with the lowest average habitat degradation
occurring in 2010 and the greatest in 2020. Among them, the period from 2015 to 2020 is
the most significant, with the cities of Karamay, Shihezi, and Urumqi serving as axes for
outward expansion, increasing the level of habitat degradation, while the radial structure
gradually appears in the southeast. Combined with the LULC (Table A4), the development
of the three central urban agglomerations further drove the economy of surrounding areas,
including the gradual development of remote villages and the regional energy sector, thus
contributing to habitat degradation.
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Table 5. Changes in habitat degradation on the northern slopes of Tianshan Mountains (103 km2).

Degree of Habitat
Degradation

2000 2005 2010 2015 2020
Subtotal

Area Percentage Area Percentage Area Percentage Area Percentage Area Percentage

Least degraded 72.51 58.37% 72.14 58.07% 72.43 58.31% 73.84 59.44% 72.49 58.35% −0.03
Weakly degraded 21.59 17.38% 21.33 17.17% 20.23 16.29% 19.84 15.97% 20.21 16.27% −1.34

Moderate
degradation 19.58 15.76% 19.71 15.87% 20.65 16.63% 20.20 16.26% 19.43 15.64% −0.15

Highly degraded 8.50 6.85% 9.06 7.29% 8.44 6.79% 8.14 6.56% 9.22 7.42% 0.72
Most degraded 2.04 1.64% 1.99 1.60% 2.47 1.99% 2.19 1.77% 2.88 2.32% 0.84

On average 0.02 0.03 0.02 0.02 0.03

4. Discussion
4.1. Characteristics of Factors Influencing Habitat Quality

To investigate the causes of spatial patterns of HQ on the NSTM, this paper considers
the unique geographic conditions of the region and the existing findings of previous
studies [57–60]. Five categories of influences, including natural drivers (elevation, slope,
rainfall) and anthropogenic drivers (population density, normalized difference vegetation
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index (NDVI)), were screened and categorized for discussion. In addition to this, additional
LULC impact factors were added for categorical discussion.

The six factors of HQ in the study area exhibit a distinct spatial distribution pattern
(Figure 9). Among them, the southern area has steeper slopes and higher elevations,
whereas the northern area has more gradual slopes and lower elevations; the cities of
Urumqi, Shihezi, and Karamay are the primary locations for the population. The northwest-
ern and eastern regions receive less rainfall and are mostly unused land, while the central
and southwestern regions receive more rainfall and are predominantly forested, grassland,
and cropland. This also results in higher vegetation cover along the northwestern and
southeastern locations within the research locale.
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Further study of the first five categories of factors reveals a clear pattern of change in
HQ corresponding to each gradient as the gradient increases. The results showed that the
fifth gradient accounted for a smaller area in the study area. Except for rainfall, the other
four types of factors were dominated by the first gradient, with the population density
of the first gradient occupying almost the entire study area, while rainfall was mainly
concentrated in the second and third gradients.

The findings obtained from Pearson’s correlation analysis pointed out that among
the five types of factors, only the HQ associated with population density was negatively
correlated with the gradient, while the HQ of the other four factors was positively correlated
with the gradient (Figure 10). This indicates that HQ increased with the gradient. Among
these, slope gradient had the highest positive correlation (0.766), suggesting that ecological
conditions were poorer in low-gradient areas, whereas HQ was better in moderate-gradient
areas, which are more suitable for organism survival. Population density showed the
highest negative correlation (−0.742), revealing that HQ was better in areas with lower
population density in the study area, highlighting the significant influence of anthropogenic
factors on HQ. Additionally, vegetation cover had the smallest correlation (0.307). The
pattern of HQ changes in DEM and the NDVI showed a significant correlation (0.891).
Most areas with better HQ in NDVI gradients overlapped with areas of better HQ in DEM
gradients. The combined curves showed that HQ was better in areas with higher elevations,
where there are fewer disturbances and conditions are suitable for large-scale vegetation
growth, resulting in higher vegetation cover. Also, when analyzed in conjunction with
Figure 6 and the DEM, habitat quality is good at higher elevations and poor at lower
elevations. This can reflect that the habitat quality in the study area is mainly determined
by the spatial distribution of elevation.
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4.2. Study of the Drivers of Habitat Quality Impact Factors

The analysis conducted by the geoprobe showed that HQ on the NSTM was mainly
influenced by elevation (0.4973) and land use type (0.3654), followed by slope, the NDVI,
rainfall, and population density (Figure 11).

Among them, DEM characterizes the regional altitude. Since the study area is situated
in the northwest inland, the altitude span is extremely large, and the natural distribution of
organisms is closely related to altitude. The high-altitude areas are primarily the Tianshan
mountain range, while the low-altitude areas are mainly the Gurbantunggut Desert. Both
feature harsh natural conditions and extreme ecological environments, resulting in lower
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biodiversity. In contrast, areas with moderate altitude are more suitable for the survival of
organisms. Therefore, the spatial distribution of DEM is crucial for the quality of habitats
in the area, playing a dominant role in determining HQ.
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Land use types are affected by a blend of socio-economic and natural factors. Among
them, the HQ of arable land and construction land is inadequate. With the development
and expansion of western cities, the growth of urban agglomerations centered around
Urumqi, Shihezi, and Karamay has further reduced the HQ of the three central cities and
their surroundings, gradually threatening forested and grassed areas. At the same time,
extreme natural environments such as deserts and the Gobi, which are widely distributed
throughout vast regions of unused land, have also seriously affected the HQ pattern of the
NSTM. Despite low levels of human intervention, the HQ in these areas in these regions
has remained poor over time, and the ecosystem services functions are weak.

To further scrutinize the effects resulting from the interaction of multiple factors
on the HQ within the research region, the conclusions drawn were that for the spatial
distribution pattern of HQ on the NSTM, the interaction of any two factors exhibited non-
linear enhancement without a relationship of mutual independence or weakening. This
means that the driving force behind any two factors interacting was stronger than the force
behind any one element acting alone, suggesting that the spatial distribution pattern of HQ
on the NSTM is driven by multiple factors. This implies that the spatial pattern of HQ on
the NSTM results from the collective effect of several factors. The interplay between DEM
and land use had the most substantial impact on the HQ of the NSTM (0.6414), followed
by slope and land use (0.5587) and DEM and rainfall (0.5558) (Figure 12). Meanwhile, the
interaction results between DEM and the remaining factors were generally high (all greater
than 0.49), suggesting that the regional spatial arrangement of elevation on the NSTM
plays a very important role in the ecosystems of the entire NSTM. That is, it determines the
spatial pattern of HQ on the NSTM to a certain extent.
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4.3. Limitations and Outlook

The study in this paper only considered spatial heterogeneity on a single scale and
did not consider the problem from a multi-scale perspective. Secondly, the parameter
settings in a geodetector are subjective and must be referred to previous studies, with no
indicators of uniformity. In addition to this, the findings of this paper are only regionally
specific and cannot be applied to, for example, the Yangtze River Economic Belt [61], highly
urbanized Shenzhen [62], the tropical rainforests of Cambodia [63], and so on. However,
the application of the research methodology in terms of other models and other studied
areas is equally valuable. The InVEST model and species distribution models (SDMs) were
combined to predict the habitat suitability of 29 bird species in Italy with high accuracy [64].
In different research areas, such as remote sensing, modeling the ecological quality of the
Bengal tiger using high-accuracy remote sensing imagery and random forest algorithms
and simulations using the InVEST model is important for animal conservation [65].

5. Conclusions
This paper assesses the spatiotemporal progression of land use types on the NSTM,

leveraging LULC data from 2000, 2005, 2010, 2015, and 2020 while assessing the HQ by
using the InVEST and filtering six influencing factors, namely elevation, slope, rainfall,
land use, population density, and the NVDI, by using a geoprobe. The key drivers of the
spatiotemporal variation pattern in HQ within the study area were investigated. The study
yielded the following primary conclusions:

(1) The land use types on the NSTM from 2000 to 2020 were dominated by grassland,
unused land, and arable land, covering more than 90 percent of the total region. During
the study period, the domain of farmable land and construction zones persisted in its
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expansion, and the expansion trend was obvious, with the percentage of arable land
rising from 11.65% to 17.05% and the proportion of construction land expanding from
1.20% to 2.41%. Simultaneously, the transformation in the comprehensive land use
dynamics within the study area was quite limited, and the rate of land use conversion
was relatively smooth. From the perspective of the single motive, the evident trajectory
of expanding farmable and built-up land is accompanied by a steady decline in forest
area. Land use change is mostly manifested in the shift in grassland and forest land to
arable land, construction land, and unused land.

(2) The HQ of the NSTM from 2000 to 2020 was generally poor, dominated by a low grade
with a clear distribution pattern of north–south differences. The lower grades were
predominantly concentrated in the northern region of the north–west–south–east belt,
mostly in arable land, construction land, and unused land. On the other hand, the
higher grades are mainly clustered south of the north–west–south–east belt, consisting
mostly of woodland and grassland. On the time scale, there is a “decrease followed by
an increase”, and the quality of habitats shows a trend of degradation.

(3) The spatial pattern of habitat degradation on the NSTM from 2000 to 2020 shows a
significant radial structure, with low degradation at the edges and high degradation
in the center. Habitat deterioration within the research region shows a progression
in the direction of “increasing-decreasing-increasing” over time. Overall, the highest
average habitat degradation was in 2020, and the lowest was in 2010, indicating that
the ecological environment in 2010 was more stable, while the ecological environment
in 2020 was more susceptible to disturbance by external factors.

(4) Regarding the influencing factors of HQ, according to the results of multi-factor
interaction detection, one can observe that the spatial arrangement of habitat quality in
the NSTM is not shaped by one factor alone but is the result of multiple factors driving
the results together. Among these, the highest results of the interaction detection
between the DEM and the land use type show the strongest driving effect on the HQ
of the study area, and the results of the interaction detection between the DEM and
its residual factors are generally high, indicating that the HQ in the study area was
mainly determined by the spatial distribution of elevation. Therefore, the research area
should emphasize the actual spatial layout of altitude in the locale and consider the
planning of land use sorts so as to adopt relevant ecological environmental protection
measures and formulate reasonable habitat protection policies.
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Appendix A

Table A1. Table of threat source attributes for the northern slopes of the Tianshan Mountains.

Source of Threat Maximum Impact Distance/km Weights Recession Function

Cropland 6 0.6 Linear
Urban land 8 0.8 Exponential

Rural settlements 6 0.6 Exponential
Other construction land 7 0.7 Exponential

Sandy land 6 0.6 Exponential
Gobi 5 0.6 Exponential

Bare ground 5 0.5 Exponential
Other unused land 4 0.4 Linear

Table A2. Sensitivity of different land classes to different threat sources on the northern slopes of
Tianshan Mountains.

Land Use Type Habitat
Suitability

Arable
Land Town Rural

Settlements

Other
Building

Land

Sand
Field

Gobi
(Desert)

Bare
Ground

Other
Unused

Land

Paddy field 0.4 0 0.5 0.7 0.6 0.2 0.2 0.1 0
Dryland 0.3 0 0.5 0.6 0.5 0.3 0.3 0.2 0.1

Wooded land 1 0.7 1 0.8 0.6 0.5 0.5 0.4 0.4
Shrubland 1 0.6 0.8 0.7 0.6 0.6 0.6 0.5 0.3

Open woodland 0.9 0.7 0.9 0.8 0.7 0.7 0.7 0.6 0.4
Other woodland 0.8 0.6 0.8 0.7 0.6 0.6 0.6 0.5 0.3

High-cover
grassland 0.9 0.5 0.7 0.6 0.5 0.4 0.4 0.3 0.3

Medium-cover
grassland 0.8 0.5 0.6 0.5 0.4 0.5 0.5 0.4 0.2

Low-cover
grassland 0.7 0.4 0.5 0.4 0.3 0.6 0.6 0.5 0.1

River and canal 1 0.6 0.9 0.7 0.5 0.5 0.5 0.4 0.4
Lakes 1 0.6 0.9 0.7 0.5 0.5 0.5 0.4 0.4

Reservoirs and
ponds 0.9 0.7 0.8 0.6 0.4 0.6 0.6 0.5 0.3

Glaciers 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1
Beaches 0.9 0.7 0.8 0.6 0.4 0.6 0.6 0.5 0.3

Urban land 0 0 0 0 0 0 0 0 0
Rural land 0 0 0 0 0 0 0 0 0

Other building
land 0 0 0 0 0 0 0 0 0

Sand 0.1 0.1 0 0 0 0 0 0.1 0.1
Gobi 0.1 0.1 0 0 0 0 0 0.1 0.1

Salt and alkaline
land 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.1

Marshland 0.4 0.6 0.6 0.5 0.4 0.4 0.4 0.3 0.3
Bare land 0.1 0.1 0 0 0 0.1 0.1 0 0.1
Bare rocky

ground 0.1 0.1 0 0 0 0.1 0.1 0 0.1

Other unused
land 0.2 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0

Table A3. Land use transfer matrix 2000–2020 (km2).

Year Land Use
Type Grassland Building Site Arable Land Woodland Body of

Water
Unused

Land

2000–2005

Grassland 52,229.05 43.89 843.95 45.35 44.44 111.45
Building land 2.45 1481.15 2.70 0.48 0.14 3.14

Cropland 113.97 34.10 14,196.88 0.75 2.85 119.42
Forest land 25.92 2.89 61.15 4839.57 4.04 2.51

Water 33.40 1.07 3.57 1.68 3206.49 31.30
Unused land 31.16 57.03 334.89 9.11 19.48 46,284.82
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Table A3. Cont.

Year Land Use
Type Grassland Building Site Arable Land Woodland Body of

Water
Unused

Land

2005–2010

Grassland 35,875.75 305.95 4028.51 858.70 267.73 11,098.78
Building land 106.08 1012.95 342.89 4.80 19.61 133.81

Cropland 1099.33 428.33 13,760.99 29.27 49.44 75.76
Forest land 2460.05 37.85 435.86 1722.13 27.08 214.13

Water 641.23 12.26 44.30 0.82 1113.66 1464.82
Unused land 6999.42 299.33 1384.45 24.70 302.14 37,541.26

2010–2015

Grassland 46,092.34 242.00 726.72 50.59 32.55 31.97
Building land 2.02 2081.55 12.05 0.09 0.12 0.84

Cropland 290.89 120.53 19,576.30 0.69 2.52 6.08
Forest land 58.90 0.09 0.65 2580.20 0.18 0.41

Water 54.65 50.27 2.79 0.24 1596.20 75.36
Unused land 40.49 72.07 26.83 0.37 23.75 50,364.09

2015–2020

Grassland 43,457.96 343.31 1363.77 178.54 62.99 1129.79
Building land 150.09 2205.39 69.29 0.23 4.44 137.06

Cropland 406.44 273.82 19,624.12 4.72 9.71 26.49
Forest land 284.35 7.34 9.72 2329.06 0.66 0.92

Water 33.84 7.11 15.69 0.66 1529.74 67.76
Unused land 3965.98 153.30 96.43 1.27 78.57 46,177.55

Table A4. Land use/cover classification of the northern slopes of the Tianshan Mountains.

Level I Land Category Level II Land Category

Grade Typology Grade Typology

1 arable land
11 Paddy field
12 Dryland

2 woodland

21 Forested land
22 Shrubland
23 Open woodland
24 Other woodlands

3 grassland
31 High-cover grassland
32 Medium-cover grassland
33 Low cover grassland

4 body of water

41 Rivers and canals
42 Lakes
43 Reservoir pit ponds
44 Permanent glacial snowfields
46 Mudflats

5 urban, rural, industrial, mining, and residential land
51 Townsite
52 Rural settlements
53 Other building land

6 unused land

61 Sandy land
62 Gobi
63 Salt and alkaline land
64 Marshland
65 Bare land
66 Bare rocky ground
67 Other
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