Potential Sources of Ammonium-Nitrogen in the Coastal Groundwater Determined from a Combined Analysis of Nitrogen Isotope, Biological and Geological Parameters, and Land Use
"> Figure 1
<p>Land-use categories (<b>a</b>) and land-uses change from 2002 to 2019 (<b>b</b>) in Indramayu, Indonesia.</p> "> Figure 2
<p>Sampling points in the study site.</p> "> Figure 3
<p>Geology (<b>a</b>) and vertical profile in the B–A cross section (<b>b</b>) of Indramayu, Indonesia (Completely redrawn and modified after Maria et al., 2018 [<a href="#B29-water-13-00025" class="html-bibr">29</a>]).</p> "> Figure 4
<p>Exchangeable NH<sub>4</sub><sup>+</sup> ratio (<b>a</b>,<b>b</b>), δ<sup>15</sup>N (<b>c</b>,<b>d</b>), %N (<b>e</b>,<b>f</b>), and cation exchange capacity (CEC) (<b>g</b>,<b>h</b>), in the sediments of the upper and lower coastal area.</p> "> Figure 5
<p>Concentrations of NO<sub>3</sub><sup>−</sup>–N and NH<sub>4</sub><sup>+</sup>–N (mg/L) in the groundwater samples.</p> "> Figure 6
<p>Relationship of dissolved organic carbon (DOC) with NO<sub>3</sub><sup>−</sup>–N (<b>a</b>) and NH<sub>4</sub><sup>+</sup>–N (<b>b</b>) in the groundwater samples.</p> "> Figure 7
<p>NH<sub>4</sub><sup>+</sup>–N concentrations (mg/L) and δ<sup>15</sup>N<sub>NH4</sub> values (‰) in the groundwater samples, and potential sources of NH<sub>4</sub><sup>+</sup>–N based on δ<sup>15</sup>N<sub>NH4</sub> values of several sources (ranges values of δ<sup>15</sup>N<sub>NH4</sub> compositions for soil nitrogen, animal manure, and mineral fertilizer are adapted from Norrman et al., 2015 [<a href="#B6-water-13-00025" class="html-bibr">6</a>]; and for organic matter and household waste are adapted from Nikolenko et al., 2018 [<a href="#B19-water-13-00025" class="html-bibr">19</a>]).</p> "> Figure 8
<p>Relationship of NH<sub>4</sub><sup>+</sup>–N and Na<sup>+</sup> (<b>a</b>), K<sup>+</sup> (<b>b</b>), Mg<sup>2+</sup> (<b>c</b>), Ca<sup>2+</sup> (<b>d</b>) in groundwater samples.</p> "> Figure 9
<p>Average total major cations (<b>a</b>,<b>b</b>) (meq/L), NH<sub>4</sub><sup>+</sup> contents (meq/L) (<b>c</b>,<b>d</b>), and δ<sup>15</sup>N<sub>NH4</sub> values (‰) (<b>e</b>,<b>f</b>) in three depths of groundwater in upper and lower coastal areas.</p> ">
Abstract
:1. Introduction
2. Study Site
2.1. Land Uses of Indramayu
2.2. Geology and Aquifer System of Indramayu
3. Samples Collection and Analysis
3.1. Sediment Samples
3.2. Groundwater Samples
4. Results and Discussion
4.1. Chemical Properties of Sediments
4.2. Potential Sources of Ammonium-Nitrogen in Groundwater Systems
4.3. Relationship between Ammonium-Nitrogen and Water Chemical Properties
5. Conclusions
- NH4+–N in the lower coastal region, occupied by brackish-water aquaculture, potentially originated from the mineralization of organic nitrogen in sediments to ammonium. In agreement with this origin, the ratios of δ15N in the sediments indicate the mineralization of nitrogen. However, contamination by anthropogenic activity is possible considering the high values of total coliform bacteria. The strongly positive and significant relationship of NH4+–N and Na+ suggests that under high salinity, the exchangeable NH4+ is mobilized from sediments to the groundwater through cation exchange. Additionally, the high salinity of groundwater possibly arises from the brackish-water pond and marine clay.
- Further, attenuation of ammonium-nitrogen from manure, sewage, and pit latrines occurs in the groundwater in the upper coastal region, where land is used mainly for agricultural and residential purposes. Both total coliform and E. coli values confirm this condition. The ratios of δ15N in several layers of sediments suggest the possibility of nitrogen mineralization to ammonium; nevertheless, the nitrogen contents suggest that this process is more likely in the sediments of lower coastal region. The significantly lower salinity followed by weak and not significant relationships of NH4+–N and all major cations indicate less possibility of NH4+–N mobilize to groundwater through cation exchange.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, B.; Thorling, L.; Schullehner, J.; Termansen, M.; Dalgaard, T. Groundwater nitrate response to sustainable nitrogen management. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shakya, B.M.; Nakamura, T.; Kamei, T.; Shrestha, S.D.; Nishida, K. Seasonal groundwater quality status and nitrogen contamination in the shallow aquifer system of the Kathmandu Valley, Nepal. Water 2019, 11, 2184. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, P.; Xue, L.; Dong, Z.; Li, D. Solute geochemistry and groundwater quality for drinking and irrigation purposes: A case study in Xinle City, North China. Geochemistry 2020, 80, 125609. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Koda, E.; Sieczka, A.; Osinski, P. Ammonium concentration and migration in groundwater in the vicinity of waste management site located in the neighborhood of protected areas of Warsaw, Poland. Sustainability 2016, 8, 1253. [Google Scholar] [CrossRef] [Green Version]
- Norrman, J.; Sparrenbom, C.J.; Berg, M.; Dang, D.N.; Jacks, G.; Harms-Ringdahl, P.; Pham, Q.N.; Rosqvist, H. Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope (δ15N) values. Appl. Geochem. 2015, 61, 248–258. [Google Scholar] [CrossRef]
- Li, S.; Huang, G.; Kong, X.; Yang, Y.; Liu, F.; Hou, G.; Chen, H. Ammonium removal from groundwater using a zeolite permeable reactive barrier: A pilot-scale demonstration. Water Sci. Technol. 2014, 70, 1540–1547. [Google Scholar] [CrossRef]
- Huang, G.; Liu, F.; Yang, Y.; Deng, W.; Li, S.; Huang, Y.; Kong, X. Removal of ammonium-nitrogen from groundwater using a fully passive permeable reactive barrier with oxygen-releasing compound and clinoptilolite. J. Environ. Manag. 2015, 154, 1–7. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, C.; Adeyeye, O.; Yang, W.; Liang, X. Source and Mobilization Mechanism of Iron, Manganese and Arsenic in Groundwater of Shuangliao City, Northeast China. Water 2020, 12, 534. [Google Scholar] [CrossRef] [Green Version]
- Winkel, L.; Berg, M.; Amini, M.; Hug, S.J.; Johnson, C.A. Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat. Geosci. 2008, 1, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Onodera, S.I. Subsurface pollution in Asian megacities. In Groundwater and Subsurface Environments; Taniguchi, M., Ed.; Springer: Tokyo, Japan, 2011; pp. 159–184. [Google Scholar] [CrossRef]
- Hosono, T.; Nakano, T.; Shimizu, Y.; Onodera, S.I.; Taniguchi, M. Hydrogeological constraint on nitrate and arsenic contamination in Asian metropolitan groundwater. Hydrol. Processes 2011, 25, 2742–2754. [Google Scholar] [CrossRef]
- Umezawa, Y.; Hosono, T.; Onodera, S.I.; Siringan, F.; Buapeng, S.; Delinom, R.; Yoshimizu, C.; Tayasu, I.; Nagata, T.; Taniguchi, M. Tracing the sources of nitrate and ammonium contaminations in groundwater at developing Asian megacities, using GIS data and nitrate δ15N and d18O. Sci. Total Environ. 2008, 404, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Kagabu, M.; Shimada, J.; Delinom, R.; Tsujimura, M.; Taniguchi, M. Groundwater flow system under a rapidly urbanizing coastal city as determined by hydrogeochemistry. J. Asian Earth Sci. 2011, 40, 226–239. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.J.; Wang, Y.; Cherry, J.A.; Wang, X.; Zhi, B.; Du, H.; Wen, D. Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China. Environ. Sci. Technol. 2010, 44, 7470–7475. [Google Scholar] [CrossRef] [PubMed]
- Buss, S.R.; Herbert, A.W.; Morgan, P.; Thornton, S.F.; Smith, J.W.N. A Review of Ammonium Attenuation in Soil and Groundwater. Q. J. Eng. Geol. Hydrogeol. 2004, 37, 347–359. [Google Scholar] [CrossRef]
- Wen, X.; Lu, J.; Wu, J.; Lin, Y.; Luo, Y. Influence of coastal groundwater salinization on the distribution and risks of heavy metals. Sci. Total Environ. 2019, 652, 267–277. [Google Scholar] [CrossRef]
- Lingle, D.A.; Kehew, A.E.; Krishnamurthy, R.V. Use of nitrogen isotopes and other geochemical tools to evaluate the source of ammonium in a confined glacial drift aquifer, Ottawa County, Michigan, USA. Appl. Geochem. 2017, 78, 334–342. [Google Scholar] [CrossRef]
- Nikolenko, O.; Jurado, A.; Borges, A.V.; Knӧller, K.; Brouyѐre, S. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review. Sci. Total Environ. 2018, 621, 1415–1432. [Google Scholar] [CrossRef]
- Kendall, C.; Elliott, E.M.; Wankel, S.D. Tracing anthropogenic inputs of nitrogen to ecosystems. In Stable Isotopes in Ecology and Environmental Science, 2nd ed.; Michener, R.H., Lajtha, K., Eds.; Blackwell Publishing: Oxford, UK, 2007; pp. 375–449. [Google Scholar] [CrossRef]
- Matiatos, I. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Sci. Total Environ. 2016, 541, 802–814. [Google Scholar] [CrossRef]
- Berg, M.; Trang, P.T.; Stengel, C.; Buschmann, J.; Viet, P.H.; Van Dan, N.; Giger, W.; Stüben, D. Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, riverbank deposits, and excessive groundwater abstraction. Chem. Geol. 2008, 249, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Statistic of Indramayu Regency. Indramayu Regency in Figures; BPS: Indramayu, Indonesia, 2019; 300p. (In Indonesian) [Google Scholar]
- Tjia, H.D.; Asikin, S.; Atmadja, R.S. Coastal accretion in western Indonesia. Bull. Natl. Inst. Geol. Min. Bdg. 1968, 1, 15–45. [Google Scholar]
- Hehannusa, P.E.; Hadiwisastra, S.; Djuhanah, S. Sedimentation of new Delta Cimanuk Sedimentasi Delta Baru Cimanuk. Geol. Indones. 1975, 3, 12–35. (In Indonesian) [Google Scholar]
- Kloosterman, F.H. Groundwater Flow Systems in the Northern Coastal Lowlands of West-and Central Java, Indonesia. Ph.D. Thesis, Vrije Universiteit, Amsterdam, The Netherlands, 1989. [Google Scholar]
- Yuanita, N.; Tingsanchali, T. Development of a river delta: A case study of Cimanuk river mouth, Indonesia. Hydrol. Process 2008, 22, 3785–3801. [Google Scholar] [CrossRef]
- Achdan, A.; Sudana, D. Geological Map of the Indramayu Quadrangle; Geological Research and Development Centre: Bandung, Indonesia, 1992. [Google Scholar]
- Maria, R.; Rusydi, A.F.; Lestiana, H.; Wibawa, S. Hydrogeology and Groundwater Reserves in Indramayu. Ris. Geol. Pertamb. 2018, 28, 181–192. (In Indonesian) [Google Scholar]
- Rusydi, A.F.; Saito, M.; Ioka, S.; Maria, R.; Onodera, S.I. Estimation of ammonium sources in Indonesian coastal alluvial groundwater using Cl− and GIS. Int. J. Geomate. 2019, 17, 53–58. [Google Scholar] [CrossRef]
- Koba, K.; Inagaki, K.; Sasaki, Y.; Takebayashi, Y.; Yoh, M. Nitrogen isotopic analysis of dissolved inorganic and organic nitrogen in soil extracts. Earth Life Isot. 2010, 17–36. [Google Scholar]
- Evans, R.D. Soil nitrogen isotope composition. In Stable Isotopes in Ecology and Environmental Science, 2nd ed.; Michener, R.H., Lajtha, K., Eds.; Blackwell Publishing: Oxford, UK, 2007; pp. 83–98. [Google Scholar] [CrossRef]
- Giblin, A.E.; Tobias, C.R.; Song, B.; Weston, N.; Banta, G.T.; Rivera-Monroy, V.H. The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography 2013, 26, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Postawa, A.; Hayes, C.; Criscuoli, A.; Macedonio, F.; Angelakis, A.N.; Rose, J.B.; Maier, A.; McAvoy, D.C. Best Practice Guide on the Control of Iron and Manganese in Water Supply; IWA publishing: London, UK, 2013. [Google Scholar]
- Caschetto, M.; Robertson, W.; Petitta, M.; Aravena, R. Partial nitrification enhances natural attenuation of nitrogen in a septic system plume. Sci. Total Environ. 2018, 625, 801–808. [Google Scholar] [CrossRef]
- Kringel, R.; Rechenburg, A.; Kuitcha, D.; Fouépé, A.; Bellenberg, S.; Kengne, I.M.; Fomo, M.A. Mass balance of nitrogen and potassium in urban groundwater in Central Africa, Yaounde/Cameroon. Sci. Total Environ. 2016, 547, 382–395. [Google Scholar] [CrossRef] [Green Version]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Seitzinger, S.P.; Gardner, W.S.; Spratt, A.K. The effect of salinity on ammonium sorption in aquatic sediments: Implications for benthic nutrient recycling. Estuaries 1991, 14, 167–174. [Google Scholar] [CrossRef]
Sample | Aquifer | Location | NH4+−N | δ15NNH4 | Total Coliform | E. coli |
---|---|---|---|---|---|---|
m | mg/L | ‰ | (No./100 mL) | |||
DH01 | 25 | Upper coastal aquifer | 0.2 | UD | NM | NM |
DH02 | 16 | 3.15 | 9.2 | 1100 | 150 | |
DH03 | 2 | 0.71 | 4.7 | 1100 | 210 | |
DH07 | 3 | 2.48 | 16.1 | 2400 | 2400 | |
DH08 | 4 | 1.87 | 3.7 | 2400 | 210 | |
DH09 | 8 | 1.58 | 3.6 | 210 | 210 | |
DH12 | 12 | 0.32 | UD | NM | NM | |
DH13 | 16 | 0.18 | UD | NM | NM | |
DH14 | 5 | 2.33 | 9.5 | NM | NM | |
DH16 | 5 | 3.19 | 9.5 | 2400 | 1100 | |
DH17 | 10 | 0.07 | UD | NM | NM | |
DH18 | 5 | 0.53 | UD | NM | NM | |
DH19 | 6 | 0.42 | 7.5 | 2400 | 2400 | |
DH23 | 15 | 1.64 | 1.6 | 1100 | 0 | |
DH26 | 5 | 0.77 | 8.7 | 2400 | 3 | |
DH27 | 10 | 1.62 | −2.9 | 2400 | 210 | |
DH29 | 5 | 0.97 | 3.5 | 2400 | 1100 | |
DH30 | 5 | 1.69 | 5 | 2400 | 2400 | |
Minimum | 0.42 | −2.9 | 210 | - | ||
Maximum | 3.19 | 16.1 | 2400 | 2400 | ||
Average | 1.64 | 6.1 | 1892 | 866 | ||
DH05 | 30 | Lower coastal aquifer | 12.97 | 2.9 | 2400 | 0 |
DH06 | 20 | 2.35 | 4.0 | NM | NM | |
DH10 | 20 | 10.88 | 3.8 | NM | NM | |
DH11 | 100 | 4.21 | 1.8 | 20 | 0 | |
DH15 | 80 | 2.79 | 1.9 | 7 | 0 | |
DH22 | 20 | 3.19 | 2.4 | 1100 | 0 | |
DH24 | 25 | 5.66 | 3.7 | 0 | 0 | |
DH25 | 20 | 8.26 | 2.3 | 2400 | 0 | |
DH28 | 20 | 11.81 | 2.2 | NM | NM | |
DH31 | 5 | 7.95 | 4.8 | 2400 | 0 | |
Minimum | 2.35 | 1.8 | 0 | 0 | ||
Maximum | 14.60 | 4.8 | 2400 | 0 | ||
Average | 7.7 | 3.0 | 1190 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusydi, A.F.; Onodera, S.-I.; Saito, M.; Hyodo, F.; Maeda, M.; Sugianti, K.; Wibawa, S. Potential Sources of Ammonium-Nitrogen in the Coastal Groundwater Determined from a Combined Analysis of Nitrogen Isotope, Biological and Geological Parameters, and Land Use. Water 2021, 13, 25. https://doi.org/10.3390/w13010025
Rusydi AF, Onodera S-I, Saito M, Hyodo F, Maeda M, Sugianti K, Wibawa S. Potential Sources of Ammonium-Nitrogen in the Coastal Groundwater Determined from a Combined Analysis of Nitrogen Isotope, Biological and Geological Parameters, and Land Use. Water. 2021; 13(1):25. https://doi.org/10.3390/w13010025
Chicago/Turabian StyleRusydi, Anna Fadliah, Shin-Ichi Onodera, Mitsuyo Saito, Fujio Hyodo, Morihiro Maeda, Khori Sugianti, and Sunarya Wibawa. 2021. "Potential Sources of Ammonium-Nitrogen in the Coastal Groundwater Determined from a Combined Analysis of Nitrogen Isotope, Biological and Geological Parameters, and Land Use" Water 13, no. 1: 25. https://doi.org/10.3390/w13010025
APA StyleRusydi, A. F., Onodera, S.-I., Saito, M., Hyodo, F., Maeda, M., Sugianti, K., & Wibawa, S. (2021). Potential Sources of Ammonium-Nitrogen in the Coastal Groundwater Determined from a Combined Analysis of Nitrogen Isotope, Biological and Geological Parameters, and Land Use. Water, 13(1), 25. https://doi.org/10.3390/w13010025