Phosphorus Fluxes from Three Coastal Watersheds under Varied Agriculture Intensities to the Northern Gulf of Mexico
<p>Geographic location of the Calcasieu, Mermentau, and Vermilion Rivers entering the Northern Gulf of Mexico, and the locations of eight sampling sites and United States Geological Survey (USGS) discharge gauging sites. The Vermilion and Mermentau River Basins are agriculture-intensive (i.e., 67% and 61% agricultural land use), while the Calcasieu River Basin is much less agriculture-intensive (i.e., 26%).</p> "> Figure 2
<p>Daily (<b>a</b>–<b>c</b>) and monthly (<b>d</b>–<b>f</b>) discharge and mass fluxes of TP and DIP in the Calcasieu (Site 1), Mermentau, and Vermilion Rivers from April 2014 to February 2016; discharge data at sites 1, 7, and 8 were used to represent the three rivers; Discharge at site 1 was calculated using discharge data at Kinder (USGS 08015500). Discharges at sites 7 and 8 were downloaded from USGS gage stations (USGS 08012150 and USGS 07386980); dashed lines in (<b>a</b>) mark the sampling dates; phosphorus concentrations and discharges at sites 1, 7, and 8 were used to calculate mass fluxes for the Calcasieu, Mermentau, and Vermilion Rivers, respectively; missing data for the Mermentau and Vermilion Rivers are due to availability of phosphorus concentration and discharge data.</p> "> Figure 3
<p>Temporal trends of salinity (<b>a</b>), water temperature (<b>b</b>), dissolved oxygen (DO) concentration (<b>b</b>), pH (<b>c</b>), total suspended solids (TSS) (<b>d</b>), fluorescence (<b>e</b>), and turbidity (<b>f</b>) at six sampling sites along the Calcasieu River from April 2014 to February 2016.</p> "> Figure 4
<p>Concentrations of TP and DIP in the Calcasieu, Mermentau, and Vermilion Rivers from April 2014 to February 2016; The Mermentau and Vermilion Rivers were only sampled from April 2014 to July 2015; Data for the Calcasieu, Mermentau, and Vermilion Rivers in (<b>a</b>) are data for sites 1, 7, and 8; (<b>b</b>) TP concentration in the Calcasieu River; (<b>c</b>) DIP concentration in the Calcasieu River.</p> "> Figure 5
<p>Relationships between TP and salinity in the Calcasieu River entering the Northern Gulf of Mexico in the southern United States. Hollow circles represent actual measurements. Corresponding conservative mixing values are denoted by stars. Lines represent conservative-mixing models (see Equations (2) and (3)). Site 1 was used as the river endmember, and site 6 was used as the marine endmember.</p> "> Figure 6
<p>Relationships between DIP and salinity in the Calcasieu River entering the Northern Gulf of Mexico in the southern United States. Hollow circles represent actual measurements. Corresponding conservative mixing values are denoted by stars. Lines represent conservative-mixing models (see Equations (2) and (3)). Site 1 was used as the river endmember, and site 6 was used as the marine endmember.</p> "> Figure A1
<p>Relationship between measured TP and DIP fluxes and estimated TP and DIP fluxes using regression equations (Equation (1)) for the Calcasieu (Site 1), Mermentau, and Vermilion Rivers from April 2014 to February 2016. (<b>a</b>) Relationship between measured and estimated TP flux in the Calcasieu River; (<b>b</b>) Relationship between measured and estimated TP flux in the Mermentau River; (<b>c</b>) Relationship between measured and estimated TP flux in the Vermilion River; (<b>d</b>) Relationship between measured and estimated DIP flux in the Calcasieu River; (<b>e</b>) Relationship between measured and estimated DIP flux in the Mermentau River; (<b>f</b>) Relationship between measured and estimated DIP flux in the Vermilion River.</p> "> Figure A2
<p>Relationship between measured TP fluxes and estimated TP fluxes using regression equations (Equation (1)) for the Calcasieu (Kinder, (<b>a</b>)), Mermentau (<b>b</b>), and Vermilion (<b>c</b>) Rivers from 2010 to 2017.</p> "> Figure A3
<p>Statistical performance of the rating curves (<a href="#water-10-00816-t001" class="html-table">Table 1</a>) for estimating TP and DIP daily fluxes of the Calcasieu (Site 1), Mermentau, and Vermilion Rivers from April 2014 to February 2016 using data collected from this study.</p> "> Figure A4
<p>Statistical performance of the rating curves (<a href="#water-10-00816-t001" class="html-table">Table 1</a>) for estimating TP daily fluxes of the Calcasieu (Kinder), Mermentau, and Vermilion Rivers from 2010 to 2017 using data collected from LDEQ.</p> "> Figure A5
<p>The relationship between discharge at Kinder (United States Geological Survey (USGS) station number: 08015500) and precipitation at Oberlin (National Oceanic and Atmospheric Administration (NOAA) station number: USC00166938). Each dot in the figure represent a pair of mean discharge and precipitation during a certain year from 1990 to 2017.</p> "> Figure A6
<p>The relationship between discharge and TP concentration for the Calcasieu (<b>a</b>), Mermentau (<b>b</b>), and Vermilion (<b>c</b>) Rivers from 2010 to 2017 using discharge data from USGS and TP concentration data from Louisiana Department of Environmental Quality (LDEQ).</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Calcasieu, Mermentau, and Vermilion Rivers
2.2. Field Measurements and Laboratory Analysis
2.3. Riverine Phosphorus Flux Calculation
2.4. Mixing Analysis
2.5. Statistical Analysis
3. Results
3.1. Hydrology and Ambient Conditions
3.2. Freshwater Phosphorus Concentrations, Fluxes and Yields
3.3. Comparison between TP Loading during 1990–2009 and 2010–2017
3.4. Phosphorus Concentration Change in a Mixing Zone
4. Discussion
4.1. Flow and Rainfall Effects on Phosphorus Fluxes
4.2. Land Use Effects on Phosphorus Fluxes
4.3. Phosphorus in Fresh-Saltwater Mixing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Site | Date | TP | Ca | Mn | Zn |
---|---|---|---|---|---|
mg L−1 | |||||
Site 1 | 16 July 2014 | 84 | 2201 | 91 | 16 |
2 December 2014 | 140 | 18,143 | 96 | 26 | |
22 March 2015 | 244 | 2164 | 174 | 28 | |
20 August 2015 | 88 | 1990 | 166 | 18 | |
Site 2 | 16 July 2014 | 47 | 14,229 | 60 | 10 |
2 December 2014 | 35 | 1521 | 133 | 10 | |
22 March 2015 | 23 | 1724 | 61 | 14 | |
20 August 2015 | 28 | 1920 | 63 | 45 | |
Site 3 | 2 December 2014 | 443 | 121,021 | 248 | 103 |
22 March 2015 | 121 | 7005 | 110 | 23 | |
20 August 2015 | 64 | 18,723 | 93 | 14 | |
Site 4 | 16 July 2014 | 83 | 1226 | 31 | 20 |
2 December 2014 | 71 | 1172 | 53 | 17 | |
22 March 2015 | 80 | 986 | 38 | 10 | |
20 August 2015 | 48 | 806 | 65 | 13 | |
Site 5 | 16 July 2014 | 1366 | 138,547 | 488 | 196 |
2 December 2014 | 233 | 10,380 | 166 | 45 | |
22 March 2015 | 270 | 41,157 | 201 | 50 | |
20 August 2015 | 104 | 1818 | 128 | 26 | |
Site 6 | 16 July 2014 | 385 | 22,017 | 440 | 61 |
2 December 2014 | 332 | 16,627 | 642 | 72 | |
22 March 2015 | 429 | 28,450 | 481 | 69 | |
20 August 2015 | 474 | 10,734 | 350 | 58 |
References
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems—A global problem. Environ. Sci. Pollut. Res. 2003, 10, 126–139. [Google Scholar] [CrossRef]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.W.; Syers, J.K. The fate of phosphorus during pedogenesis. Geoderma 1976, 15, 1–19. [Google Scholar] [CrossRef]
- Boyle, J.F.; Chiverrell, R.C.; Norton, S.A.; Plater, A.J. A leaky model of long-term soil phosphorus dynamics. Glob. Biogeochem. Cycles 2013, 27, 516–525. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, J.E.; Houlton, B.Z.; van Huysen, T.L. Evidence for progressive phosphorus limitation over long-term ecosystem development: Examination of a biogeochemical paradigm. Plant Soil 2013, 367, 135–147. [Google Scholar] [CrossRef]
- He, S.; Xu, Y.J. Three decadal inputs of nitrogen and phosphorus from four major coastal rivers to the summer hypoxic zone of the northern Gulf of Mexico. Water Air Soil Pollut. 2015, 226, 311. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Turner, R.E.; Sen Gupta, B.K.; Boesch, D.F.; Chapman, P.; Murrell, M.C. Hypoxia in the northern Gulf of Mexico: Does the science support the plan to reduce, mitigate, and control hypoxia? Estuaries Coasts 2007, 30, 753–772. [Google Scholar] [CrossRef]
- Rabalais, N.N.; Díaz, R.J.; Levin, L.A.; Turner, R.E.; Gilbert, D.; Zhang, J. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 2010, 7, 585–619. [Google Scholar] [CrossRef] [Green Version]
- Turner, R.E.; Rabalais, N.N.; Justic, D. Gulf of Mexico hypoxia: Alternate states and a legacy. Environ. Sci. Technol. 2008, 42, 2323–2327. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.E.; Rabalais, N.N. Coastal eutrophication near the Mississippi river delta. Nature 1994, 368, 619–621. [Google Scholar] [CrossRef]
- Turner, R.E.; Rabalais, N.N.; Justić, D. Predicting summer hypoxia in the northern gulf of Mexico: Redux. Mar. Pollut. Bull. 2012, 64, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Goolsby, D.A.; Battaglin, W.A.; Aulenbach, B.T.; Hooper, R.P. Nitrogen input to the Gulf of Mexico. J. Environ. Qual. 2001, 30, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.E.; Rabalais, N.N.; Alexander, R.B.; McIsaac, G.; Howarth, R.W. Characterization of nutrient, organic carbon, and sediment yields and concentrations from the mississippi river into the northern gulf of mexico. Estuaries Coasts 2007, 30, 773–790. [Google Scholar] [CrossRef]
- Xu, Y.J. Transport and retention of nitrogen, phosphorus and carbon in North America’s largest river swamp basin, the Atchafalaya river basin. Water 2013, 5, 379–393. [Google Scholar] [CrossRef]
- Rosen, T.; Xu, Y.J. Riverine sediment inflow to Louisiana Chenier Plain in the Northern Gulf of Mexico. Estuar. Coast. Shelf Sci. 2011, 95, 279–288. [Google Scholar] [CrossRef]
- Bianchi, T.S. Biogeochemistry of Estuaries; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Sharpley, A.N.; Menzel, R.G. The impact of soil and fertilizer phosphorus on the environment. Adv. Agron. 1987, 41, 297–324. [Google Scholar]
- Hooda, P.S.; Moynagh, M.; Svoboda, I.F.; Thurlow, M.; Stewart, M.; Thomson, M.; Anderson, H.A. Soil and land use effects on phosphorus in six streams draining small agricultural catchments in scotland. Soil Use Manag. 1997, 13, 196–204. [Google Scholar] [CrossRef]
- Sonoda, K.; Yeakley, J.A. Relative effects of land use and near-stream chemistry on phosphorus in an urban stream. J. Environ. Qual. 2007, 36, 144–154. [Google Scholar] [CrossRef] [PubMed]
- LDWF. Part VI A—Waterbody Management Plan Series—Calcasieu River, Louisiana. 2012. Available online: http://www.wlf.louisiana.gov/sites/default/files/pdf/document/38698-calcasieu-river/calcasieu_river_mp-a_update_2014.pdf (accessed on 19 June 2018).
- USACE. The Calcasieu Saltwater Barrier. Available online: http://www.mvn.usace.army.mil/Portals/56/docs/PAO/Brochures/CalcasieuSWB.pdf (accessed on 19 June 2018).
- USACE. The Mermentau Basin Project. 2015. Available online: http://www.mvn.usace.army.mil/Portals/56/docs/PAO/Brochures/mermentau.pdf (accessed on 19 June 2018).
- USEPA. Total Maximum Daily Yield (TMDL) for TSS, Turbidity, and Siltation for the 15 Subsegments in the Vermilion River Basin. 2001. Available online: https://ofmpub.epa.gov/waters10/attains_impaired_waters.show_tmdl_document?p_tmdl_doc_blobs_id=74265 (accessed on 19 June 2018).
- Baker, J.T. Mermentau River Watershed TMDL to Address Dissolved Oxygen and Nutrients Including WLAS for Two Treatment Facilities. 1999. Available online: http://deq.louisiana.gov/assets/docs/Water/TMDL/Mermentau-River.pdf (accessed on 19 June 2018).
- LDEQ. Calcasieu River TMDL for Dissolved Lead-Subsegment 030101, 030102, & 030103. 2001. Available online: https://ofmpub.epa.gov/waters10/attains_impaired_waters.show_tmdl_document?p_tmdl_doc_blobs_id=74503 (accessed on 19 June 2018).
- LDEQ. Vermilion River Watershed Subsegment 060801 & 060802. 2002. Available online: http://nonpoint.deq.louisiana.gov/wqa/links/watershedplan/Vermilion-Teche/Vermilion%20River%20Plan.pdf (accessed on 19 June 2018).
- He, S.; Xu, Y.J. Assessing dissolved carbon transport and transformation along an estuarine river with stable isotope analyses. Estuar. Coast. Shelf Sci. 2017, 197, 93–106. [Google Scholar] [CrossRef]
- He, S.; Xu, Y.J. Freshwater-saltwater mixing effects on dissolved carbon and CO2 outgassing of a coastal river entering the northern gulf of Mexico. Estuaries Coasts 2018, 41, 734–750. [Google Scholar] [CrossRef]
- He, S.; Xu, Y.J. Spatiotemporal distributions of Sr and Ba along an estuarine river with a large salinity gradient to the Gulf of Mexico. Water 2016, 8, 323. [Google Scholar] [CrossRef]
- Fry, B. Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 2002, 25, 264–271. [Google Scholar] [CrossRef]
- Kaldy, J.E.; Cifuentes, L.A.; Brock, D. Using stable isotope analyses to assess carbon dynamics in a shallow subtropical estuary. Estuaries 2005, 28, 86–95. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, T.-H.; Ergün, T. The instability of the pearson correlation coefficient in the presence of coincidental outliers. Financ. Res. Lett. 2015, 13, 243–257. [Google Scholar] [CrossRef]
- Chen, D.; Hu, M.; Guo, Y.; Dahlgren, R.A. Influence of legacy phosphorus, land use, and climate change on anthropogenic phosphorus inputs and riverine export dynamics. Biogeochemistry 2015, 123, 99–116. [Google Scholar] [CrossRef]
- Ryding, S.-O.; Enell, M.; Wennberg, L. Swedish agricultural nonpoint source pollution: A summary of research and findings. Lake Reserv. Manag. 1990, 6, 207–217. [Google Scholar] [CrossRef]
- Alexander, R.B.; Smith, R.A.; Schwarz, G.E.; Boyer, E.W.; Nolan, J.V.; Brakebill, J.W. Differences in phosphorus and nitrogen delivery to the gulf of Mexico from the Mississippi River Basin. Environ. Sci. Technol. 2008, 42, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Groppo, J.D.; Lins, S.R.M.; Camargo, P.B.; Assad, E.D.; Pinto, H.S.; Martins, S.C.; Salgado, P.R.; Evangelista, B.; Vasconcellos, E.; Sano, E.E.; et al. Changes in soil carbon, nitrogen, and phosphorus due to land-use changes in Brazil. Biogeosciences 2015, 12, 4765–4780. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Chen, L.; Hong, Q.; Qiu, J.; Xie, H.; Liu, R. Assessment of nitrogen and phosphorus loads and causal factors from different land use and soil types in the three gorges reservoir area. Sci. Total Environ. 2013, 454–455, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Messiga, A.J.; Ziadi, N.; Bélanger, G.; Morel, C. Soil nutrients and other major properties in grassland fertilized with nitrogen and phosphorus. Soil Sci. Soc. Am. J. 2013, 77, 643–652. [Google Scholar] [CrossRef]
- Hodgkiss, I.J.; Ho, K.C. Are changes in N:P ratios in coastal waters the key to increased red tide blooms? Hydrobiologia 1997, 352, 141–147. [Google Scholar] [CrossRef]
- Leong, D.N.S.; Donner, S.D.; Hassan, M.A.; Gabor, R.; Drummond, J.D. Sensitivity of stoichiometric ratios in the Mississippi River to hydrologic variability. J. Geophys. Res. Biogeosci. 2014, 119, 1049–1062. [Google Scholar] [CrossRef] [Green Version]
- Froelich, P.N. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnol. Oceanogr. 1988, 33, 649–668. [Google Scholar] [CrossRef]
- Meng, J.; Yu, Z.; Yao, Q.; Bianchi, T.S.; Paytan, A.; Zhao, B.; Pan, H.; Yao, P. Distribution, mixing behavior, and transformation of dissolved inorganic phosphorus and suspended particulate phosphorus along a salinity gradient in the Changjiang Estuary. Mar. Chem. 2015, 168, 124–134. [Google Scholar] [CrossRef]
- Van Raaphorst, W.; Kloosterhuis, H.T. Phosphate sorption in superficial intertidal sediments. Mar. Chem. 1994, 48, 1–16. [Google Scholar] [CrossRef]
- Hobbie, J.E.; Copeland, B.J.; Harrison, W.G. Sources and Fate of Nutrients of the Pamlico River Estuary, North Carolina; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Evans, D.J.; Johnes, P.J.; Lawrence, D.S. Physico-chemical controls on phosphorus cycling in two lowland streams. Part 2—The sediment phase. Sci. Total Environ. 2004, 329, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Pomeroy, L.R.; Smith, E.E.; Grant, C.M. The exchange of phosphate between estuarine water and sediments. Limnol. Oceanogr. 1965, 10, 167–172. [Google Scholar] [CrossRef]
- Fox, L.E. A model for inorganic control of phosphate concentrations in river waters. Geochim. Cosmochim. Acta 1989, 53, 417–428. [Google Scholar] [CrossRef]
- Conley, D.J.; Smith, W.M.; Cornwell, J.C.; Fisher, T.R. Transformation of particle-bound phosphorus at the land-sea interface. Estuar. Coast. Shelf Sci. 1995, 40, 161–176. [Google Scholar] [CrossRef]
- Evans, D.J.; Johnes, P.J. Physico-chemical controls on phosphorus cycling in two lowland streams. Part 1—The water column. Sci. Total Environ. 2004, 329, 145–163. [Google Scholar] [CrossRef] [PubMed]
- Conley, D.J.; Humborg, C.; Rahm, L.; Savchuk, O.P.; Wulff, F. Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environ. Sci. Technol. 2002, 36, 5315–5320. [Google Scholar] [CrossRef] [PubMed]
- Young, K.; Morse, G.K.; Scrimshaw, M.D.; Kinniburgh, J.H.; MacLeod, C.L.; Lester, J.N. The relation between phosphorus and eutrophication in the Thames catchment, UK. Sci. Total Environ. 1999, 228, 157–183. [Google Scholar] [CrossRef]
Data Source | River | Phosphorus | b0 ± SE | b1 ± SE | R2 | RMSE | p Value | n |
---|---|---|---|---|---|---|---|---|
This Study (April 2014–February 2016) | Calcasieu (Site 1) | TP | −3.12 ± 0.61 | 1.20 ± 0.15 | 0.80 | 0.62 | <0.0001 | 17 |
DIP | −3.61 ± 0.40 | 0.89 ± 0.10 | 0.83 | 0.41 | <0.0001 | 17 | ||
Mermentau | TP | −1.64 ± 0.39 | 1.04 ± 0.11 | 0.91 | 0.43 | <0.0001 | 11 | |
DIP | −2.16 ± 0.35 | 0.94 ± 0.10 | 0.91 | 0.38 | <0.0001 | 11 | ||
Vermilion | TP | −2.06 ± 0.53 | 1.35 ± 0.16 | 0.90 | 0.19 | <0.0001 | 10 | |
DIP | −3.00 ± 1.00 | 1.46 ± 0.31 | 0.74 | 0.36 | 0.0014 | 10 | ||
LDEQ (2010–2017) | Calcasieu (Kinder) | TP | −1.71 ± 0.56 | 0.93 ± 0.15 | 0.76 | 0.55 | <0.0001 | 14 |
Mermentau | TP | −1.51 ± 0.12 | 1.00 ± 0.03 | 0.95 | 0.39 | <0.0001 | 53 | |
Vermilion | TP | −1.77 ± 0.21 | 1.20 ± 0.06 | 0.84 | 0.31 | <0.0001 | 78 |
River | Site | Temp (°C) | Salinity | pH | DO (mg L−1) | TSS (mg L−1) | Fluo (RFU) | Turb (NTU) |
---|---|---|---|---|---|---|---|---|
Calcasieu | Site 1 | 22 ± 7 | 0.03 ± 0.01 a | 6.2 ± 0.5 a | 6 ± 2 a,c | 18 ± 7 a | 40 ± 20 a,b | 40 ± 20 a |
Site 2 | 22 ± 7 | 0.1 ± 0.1 a | 6.1 ± 0.6 a | 5 ± 3 a,c | 20 ± 10 a | 40 ± 10 a,b | 30 ± 20 a | |
Site 3 | 21 ± 7 | 2 ± 2 a | 6.4 ± 0.5 a,b | 5 ± 3 a,c | 20 ± 20 a | 30 ± 8 a | 20 ± 10 a | |
Site 4 | 23 ± 7 | 4 ± 3 a | 6.7 ± 0.5 b,e | 5 ± 2 a,c | 14 ± 7 a | 30 ± 10 a | 20 ± 10 a | |
Site 5 | 23 ± 6 | 12 ± 6 b | 7.5 ± 0.5 c | 7 ± 3 a,c | 40 ± 30 a,b | 30 ± 20 a | 30 ± 30 a | |
Site 6 | 23 ± 6 | 19 ± 6 c | 8.1 ± 0.4 d | 7 ± 2 a,b | 70 ± 40 c | 40 ± 20 a,b | 40 ± 30 a | |
Mermentau | Site 7 | 23 ± 7 | 0.09 ± 0.04 a | 7.6 ± 0.6 c | 4 ± 3 c | 21 ± 8 a | 80 ± 40 c | 70 ± 50 b |
Vermilion | Site 8 | 24 ± 7 | 0.09 ± 0.03 a | 7.0 ± 0.4 e | 4 ± 2 c | 60 ± 50 b,c | 60 ± 20 b | 70 ± 40 b |
Parameters | TP | DIP | Salinity | pH | Temp | DO | TSS | Q | GH | Fluo | Turbidity |
---|---|---|---|---|---|---|---|---|---|---|---|
TP | 1.00 | ||||||||||
DIP | 1.00 | ||||||||||
Salinity | 0.35 | 1.00 | |||||||||
pH | 0.41 | 0.86 | 1.00 | ||||||||
Temp | 0.33 | 0.48 | 1.00 | ||||||||
DO | −0.34 | −0.30 | 0.30 | −0.76 | 1.00 | ||||||
TSS | 0.27 | 0.50 | 0.42 | 1.00 | |||||||
Q | 0.30 | −0.35 | 1.00 | ||||||||
GH | 0.36 | 1.00 | |||||||||
Fluo | 0.64 | 0.46 | 0.47 | 1.00 | |||||||
Turbidity | 0.57 | 0.57 | 0.54 | 0.88 | 1.00 |
River | Site | TP (mg L−1) | DIP (mg L−1) | DIP:TP | DOC:TP | DOC:DIP | Si:TP | Si:DIP |
---|---|---|---|---|---|---|---|---|
Calcasieu | Site 1 | 0.11 ± 0.06 a | 0.02 ± 0.01 a | 0.2 ± 0.2 a | 400 ± 300 | 2000 ± 1000 a | 100 ± 80 | 500 ± 200 a |
Site 2 | 0.10 ± 0.05 a | 0.02 ± 0.01 a | 0.3 ± 0.2 a | 400 ± 300 | 2000 ± 1000 a | 100 ± 60 | 400 ± 200 a | |
Site 3 | 0.10 ± 0.05 a | 0.03 ± 0.02 a | 0.3 ± 0.3 a,b | 400 ± 300 | 1300 ± 900 a,b | 80 ± 50 | 300 ± 300 a,b | |
Site 4 | 0.11 ± 0.05 a | 0.04 ± 0.02 a | 0.3 ± 0.3 a,b | 400 ± 300 | 1200 ± 800 a,b | 70 ± 50 | 200 ± 200 b,c | |
Site 5 | 0.10 ± 0.06 a | 0.05 ± 0.02 a | 0.3 ± 0.2 a,b | 400 ± 700 | 500 ± 300 b,c | 70 ± 60 | 100 ± 100 b,c | |
Site 6 | 0.11 ± 0.07 a | 0.04 ± 0.01 a | 0.3 ± 0.3 a,b | 300 ± 500 | 400 ± 200 b,c | 80 ± 70 | 200 ± 100 b,c | |
Mermentau | Site 7 | 0.3 ± 0.1 b | 0.11 ± 0.05 b | 0.4 ± 0.2 a,b | 200 ± 200 | 300 ± 100 b,c | 60 ± 50 | 130 ± 90 b,c |
Vermilion | Site 8 | 0.40 ± 0.08 c | 0.22 ± 0.09 c | 0.5 ± 0.2 b | 60 ± 20 | 110 ± 40 c | 30 ± 20 | 70 ± 50 c |
River | Year | Discharge (m3 s−1) | TP Concentration (mg L−1) | TP Flux (t day−1) |
---|---|---|---|---|
Calcasieu (Kinder) | 1990–2009 | 72 ± 126 a | 0.079 ± 0.050 a | 0.51 ± 1.05 a |
2010–2017 | 43 ± 90 b | 0.16 ± 0.11 b | 0.48 ± 0.88 a | |
Mermentau | 1990–2009 | 86 ± 105 a | 0.25 ± 0.13 a | 1.87 ± 2.41 a |
2010–2017 | 91 ± 134 a | 0.24 ± 0.090 a | 1.78 ± 2.62 a | |
Vermilion | 1990–2009 | 32 ± 32 a | 0.35 ± 0.12 a | 1.02 ± 1.18 a |
2010–2017 | 41 ± 37 b | 0.36 ± 0.13 a | 1.34 ± 1.58 b |
Nutrient | Environmental Parameters | Final Equation | R2 | F Value | p |
---|---|---|---|---|---|
TP | Temperature | 33.63 | <0.0001 | ||
Turbidity | 68.71 | <0.0001 | |||
T + Turb | 0.50 | 46.41 | <0.0001 | ||
DIP | pH | 40.17 | <0.0001 | ||
DO | 24.87 | <0.0001 | |||
Gage Height | 24.80 | <0.0001 | |||
pH + DO + GH | 0.47 | 22.06 | <0.0001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Xu, Y.J. Phosphorus Fluxes from Three Coastal Watersheds under Varied Agriculture Intensities to the Northern Gulf of Mexico. Water 2018, 10, 816. https://doi.org/10.3390/w10060816
He S, Xu YJ. Phosphorus Fluxes from Three Coastal Watersheds under Varied Agriculture Intensities to the Northern Gulf of Mexico. Water. 2018; 10(6):816. https://doi.org/10.3390/w10060816
Chicago/Turabian StyleHe, Songjie, and Y. Jun Xu. 2018. "Phosphorus Fluxes from Three Coastal Watersheds under Varied Agriculture Intensities to the Northern Gulf of Mexico" Water 10, no. 6: 816. https://doi.org/10.3390/w10060816
APA StyleHe, S., & Xu, Y. J. (2018). Phosphorus Fluxes from Three Coastal Watersheds under Varied Agriculture Intensities to the Northern Gulf of Mexico. Water, 10(6), 816. https://doi.org/10.3390/w10060816