The Impacts of Climate Variability and Land Use Change on Streamflow in the Hailiutu River Basin
<p>The location of the Hailiutu River basin and its digital elevation model with hydrometeorological stations.</p> "> Figure 2
<p>The (<b>a</b>) slope classes and (<b>b</b>) soil types of the Hailiutu River basin.</p> "> Figure 3
<p>The land use patterns of the Hailiutu River basin for the years 1986, 1995, and 2010.</p> "> Figure 4
<p>The flowchart for assessing the impacts of climate variability and land use change (refer to Yin et al. [<a href="#B21-water-10-00814" class="html-bibr">21</a>]). SWAT: Soil Water Assessment Tool.</p> "> Figure 5
<p>Observed and simulated monthly streamflow of the Hailiutu River basin.</p> "> Figure 6
<p>The (<b>a</b>) temporal variation of annual streamflow; (<b>b</b>) precipitation; (<b>c</b>) wind speed; (<b>d</b>) maximum temperature; (<b>e</b>) minimum temperature; and (<b>f</b>) average temperature of the Hailiutu River basin. The dashed lines are the step trends.</p> "> Figure 7
<p>Change variation of (<b>a</b>) mean monthly streamflow; (<b>b</b>) precipitation; (<b>c</b>) wind speed; (<b>d</b>) maximum temperature; (<b>e</b>) minimum temperature; and (<b>f</b>) average temperature of the Hailiutu River basin.</p> "> Figure 8
<p>The variation of land used in the three eras. The values in the brackets are the percentages for each type of land use.</p> "> Figure 9
<p>The evaluation of precipitation from CMADS. (<b>a</b>) A scattered plot of observed precipitation and CMADS precipitation; (<b>b</b>) the duration curve of observed precipitation and CMADS precipitation.</p> "> Figure 10
<p>The comparison of monthly precipitation obtained by different precipitation datasets.</p> "> Figure 11
<p>The spatial distribution of areal precipitation obtained by (<b>a</b>) OBS; (<b>b</b>) CMADS; and (<b>c</b>) OBS+CMADS.</p> "> Figure 12
<p>The box plots for the criteria of NSE (<b>top</b>), R<sup>2</sup> (<b>medium</b>) and PBIAS (<b>bottom</b>) during calibration period (<b>left</b>) and validation period (<b>right</b>). The square symbol and middle line in the box represent the mean value and median value, respectively. Each box ranges from the lower (25th) to upper quartile (75th). PBIAS: percent bias.</p> "> Figure 13
<p>Simulation results of SWAT with (<b>a</b>) OBS; (<b>b</b>) CMADS; (<b>c</b>) OBS+CMADS in the Hailiutu River basin during the period 2008–2014.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methods
2.3.1. Time Series Analysis
2.3.2. Assessing the Impacts of Climate Variability and Land Use Change
2.3.3. SWAT Model and Setup
2.3.4. SWAT Model Calibration and Evaluation
3. Results and Discussion
3.1. The Hydrometeorology Analysis for Annual Time Series
3.2. The Hydrometeorology Analysis for Montly Time Series
3.2.1. The Variation of Climate
3.2.2. The Variation of Land Use
3.3. The Impacts of Climate Variability on the Value of Hydrological Components
3.4. The Impacts of Land Use Change on the Value of Hydrological Components
3.5. Combined Impacts of Climate Variability and Land Use Change on Streamflow
3.6. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068–1072. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Chen, Y.; Xu, Y.; Yin, Y. Impacts of land use change scenarios on storm-runoff generation in Xitiaoxi basin, China. Quat. Int. 2009, 208, 121–128. [Google Scholar] [CrossRef]
- Sajikumar, N.; Remya, R.S. Impact of land cover and land use change on runoff characteristics. J. Environ. Manag. 2015, 161, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, W.; Whitaker, S.; Crosson, W.; Wilson, C. Assessing the Impact of Land-Use Land-Cover Change on Stream Water and Sediment Yields at a Watershed Level Using SWAT. Open J. Mod. Hydrol. 2015, 5, 68. [Google Scholar] [CrossRef]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, W.; Zhang, X.; Zheng, F. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Z.; Huang, H.; Wu, S.; Liu, G. Land Use and Climate Changes and Their Impacts on Runoff in the Yarlung Zangbo River Basin, China. Land Degrad. Dev. 2014, 25, 203–215. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Moran-Tejeda, E.; Zabalza, J.; Lorenzo-Lacruz, J.; García-Ruiz, J.M. Impact of climate evolution and land use changes on water yield in the Ebro basin. Hydrol. Earth Syst. Sci. 2011, 15, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Li, L.J.; Zhang, L.; Wang, H.; Wang, J.; Yang, J.W.; Jiang, D.J.; Li, J.Y.; Qin, D.Y. Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China. Hydrol. Process. 2007, 21, 3485–3491. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Rui, H.; Zuo, T.; Li, Q.; Zheng, D.; Chen, A.; Xu, Y.; Xu, C.-Y. Hydrological Simulation by SWAT Model with Fixed and Varied Parameterization Approaches Under Land Use Change. Water Resour. Manag. 2013, 27, 2823–2838. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Zuo, D.; Xu, Z.; Yao, W.; Jin, S.; Xiao, P.; Ran, D. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Sci. Total Environ. 2016, 544, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-Y.; Park, M.-J.; Joh, H.-K.; Shin, H.-J.; Kwon, H.-J.; Srinivasan, R.; Kim, S.-J. Assessment of MIROC3.2 HiRes Climate and CLUE-s Land Use Change Impacts on Watershed Hydrology Using SWAT. Trans. ASABE 2011, 54, 1713–1724. [Google Scholar] [CrossRef]
- Khoi, D.N.; Suetsugi, T. The responses of hydrological processes and sediment yield to land-use and climate change in the Be River Catchment, Vietnam. Hydrol. Process. 2014, 28, 640–652. [Google Scholar] [CrossRef]
- Tu, J. Combined impact of climate and land use changes on streamflow and water quality in eastern Massachusetts, USA. J. Hydrol. 2009, 379, 268–283. [Google Scholar] [CrossRef]
- Ashagre, B.B. SWAT to Identify Watershed Management Options: Anjeni Watershed, Blue Nile Basin, Ethiopia. Master’s Thesis, Cornell University, New York, NY, USA, 2009. [Google Scholar]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Bieger, K.; Hörmann, G.; Fohrer, N. The impact of land use change in the Xiangxi Catchment (China) on water balance and sediment transport. Reg. Environ. Chang. 2015, 15, 485–498. [Google Scholar] [CrossRef]
- Rahman, K.; da Silva, A.G.; Tejeda, E.M.; Gobiet, A.; Beniston, M.; Lehmann, A. An independent and combined effect analysis of land use and climate change in the upper Rhone River watershed, Switzerland. Appl. Geogr. 2015, 63, 264–272. [Google Scholar] [CrossRef]
- Yin, Z.; Feng, Q.; Yang, L.; Wen, X.; Si, J.; Zou, S. Long Term Quantification of Climate and Land Cover Change Impacts on Streamflow in an Alpine River Catchment, Northwestern China. Sustainability 2017, 9, 1278. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.; Choi, C.; Park, S. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Sci. Total Environ. 2013, 452–453, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Zhang, C.; Fu, G.; Wang, B.; Bao, Z.; Zheng, H. Assessments of Impacts of Climate Change and Human Activities on Runoff with SWAT for the Huifa River Basin, Northeast China. Water Resour. Manag. 2012, 26, 2199–2217. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Li, B. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China. Theor. Appl. Climatol. 2013, 111, 537–545. [Google Scholar] [CrossRef]
- Miao, C.; Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Duan, Q. Evaluation of the PERSIANN-CDR Daily Rainfall Estimates in Capturing the Behavior of Extreme Precipitation Events over China. J. Hydrometeorol. 2015, 16, 1387–1396. [Google Scholar] [CrossRef]
- Stisen, S.; Sandholt, I. Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modelling. Hydrol. Process. 2010, 24, 879–891. [Google Scholar] [CrossRef]
- Su, F.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La Plata Basin. J. Hydrometeorol. 2008, 9, 622–640. [Google Scholar] [CrossRef]
- Liu, J.; Shanguan, D.; Liu, S.; Ding, Y. Evaluation and Hydrological Simulation of CMADS and CFSR Reanalysis Datasets in the Qinghai-Tibet Plateau. Water 2018, 10, 513. [Google Scholar] [CrossRef]
- Vu, T.T.; Li, L.; Jun, K.S. Evaluation of Multi-Satellite Precipitation Products for Streamflow Simulations: A Case Study for the Han River Basin in the Korean Peninsula, East Asia. Water 2018, 10, 642. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, Y.; Qiu, L.; Sun, Y.; Sun, L.; Li, Q.; Niu, J.; Wang, G. Parameter Uncertainty Analysis of the SWAT Model in a Mountain-Loess Transitional Watershed on the Chinese Loess Plateau. Water 2018, 10, 690. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, J.; Yang, M.; Lei, X.; Guo, B.; Yang, L.; Zeng, Z.; Qu, J. Application of SWAT Model with CMADS Data to Estimate Hydrological Elements and Parameter Uncertainty Based on SUFI-2 Algorithm in the Lijiang River Basin, China. Water 2018, 10, 742. [Google Scholar] [CrossRef]
- Zhou, Y.; Wenninger, J.; Yang, Z.; Yin, L.; Huang, J.; Hou, L.; Wang, X.; Zhang, D.; Uhlenbrook, S. Groundwater–surface water interactions, vegetation dependencies and implications for water resources management in the semi-arid Hailiutu River catchment, China—A synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 2435–2447. [Google Scholar] [CrossRef]
- Gao, T.; Wang, H. Trends in precipitation extremes over the Yellow River basin in North China: Changing properties and causes. Hydrol. Process. 2017, 31, 2412–2428. [Google Scholar] [CrossRef]
- Jiang, P.; Yu, Z.; Gautam, M.R.; Acharya, K. The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States. Water Resour. Manag. 2016, 30, 4807–4821. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Q.; Singh, V.P.; Shi, P.; Sun, P. Hydrological effects of cropland and climatic changes in arid and semi-arid river basins: A case study from the Yellow River basin, China. J. Hydrol. 2017, 549, 547–557. [Google Scholar] [CrossRef]
- Li, B.; Li, C.; Liu, J.; Zhang, Q.; Duan, L. Decreased Streamflow in the Yellow River Basin, China: Climate Change or Human-Induced? Water 2017, 9, 116. [Google Scholar] [CrossRef]
- Wang, S.; Yan, Y.; Yan, M.; Zhao, X. Quantitative estimation of the impact of precipitation and human activities on runoff change of the Huangfuchuan River Basin. J. Geogr. Sci. 2012, 22, 906–918. [Google Scholar] [CrossRef]
- Hou, L.; Zhou, Y.; Bao, H.; Wenninger, J. Simulation of maize (Zea mays L.) water use with the HYDRUS-1D model in the semi-arid Hailiutu River catchment, Northwest China. Hydrol. Sci. J. 2017, 62, 93–103. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Y.; Wenninger, J.; Uhlenbrook, S. A multi-method approach to quantify groundwater/surface water-interactions in the semi-arid Hailiutu River basin, northwest China. Hydrogeol. J. 2014, 22, 527–541. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Y.; Wenninger, J.; Uhlenbrook, S.; Wang, X.; Wan, L. Groundwater and surface-water interactions and impacts of human activities in the Hailiutu catchment, northwest China. Hydrogeol. J. 2017, 25, 1341–1355. [Google Scholar] [CrossRef]
- Xu, Z.X.; Takeuchi, K.; Ishidaira, H.; Zhang, X.W. Sustainability Analysis for Yellow River Water Resources Using the System Dynamics Approach. Water Resour. Manag. 2002, 16, 239–261. [Google Scholar] [CrossRef]
- Huo, Z.; Feng, S.; Kang, S.; Li, W.; Chen, S. Effect of climate changes and water-related human activities on annual stream flows of the Shiyang river basin in arid north-west China. Hydrol. Process. 2008, 22, 3155–3167. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhao, J.; Rustomji, P.; Hairsine, P. Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Yang, Z.; Zhang, D.; Jin, X.; Zhang, J. Inter-catchment comparison of flow regime between the Hailiutu and Huangfuchuan rivers in the semi-arid Erdos Plateau, Northwest China. Hydrol. Sci. J. 2015, 60, 688–705. [Google Scholar] [CrossRef]
- Chen, Y.; Guan, Y.; Shao, G.; Zhang, D. Investigating Trends in Streamflow and Precipitation in Huangfuchuan Basin with Wavelet Analysis and the Mann-Kendall Test. Water 2016, 8, 77. [Google Scholar] [CrossRef]
- Huang, J.; Hou, G.; Li, H.; Yin, L.; Lu, H.; Zhang, J.; Dong, J. Estimating subdaily evapotranspiration rates using the corrected diurnal water-table fluctuations in a shallow groundwater table area. In Proceedings of the 2011 International Symposium on Water Resource and Environmental Protection, Xi’an, China, 20–22 May 2011; Volume 4, pp. 3093–3099. [Google Scholar]
- Wang, X.-S.; Zhou, Y. Shift of annual water balance in the Budyko space for a catchment with groundwater dependent evapotranspiration. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 11613–11650. [Google Scholar] [CrossRef]
- Yin, L.; Zhou, Y.; Huang, J.; Wenninger, J.; Hou, G.; Zhang, E.; Wang, X.; Dong, J.; Zhang, J.; Uhlenbrook, S. Dynamics of willow tree (Salix matsudana) water use and its response to environmental factors in the semi-arid Hailiutu River catchment, Northwest China. Environ. Earth Sci. 2014, 71, 4997–5006. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Y.; Wenninger, J.; Uhlenbrook, S.; Wan, L. Simulation of Groundwater-Surface Water Interactions under Different Land Use Scenarios in the Bulang Catchment, Northwest China. Water 2015, 7, 5959–5985. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.Y. China Meteorological Assimilation Driving Datasets for the SWAT Model, version 1.0.; Cold and Arid Regions Science Data Center at Lanzhou: Lanzhou, China, 2016. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H. Significance of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS) of East Asia. Water 2017, 9, 765. [Google Scholar] [CrossRef]
- Meng, X.; Long, A.; Wu, Y.; Yin, G.; Wang, H.; Ji, X. Simulation and spatiotemporal pattern of air temperature and precipitation in Eastern Central Asia using RegCM. Sci. Rep. 2018, 8, 3639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.; Wang, H.; Lei, X.; Cai, S.; Wu, H.; Ji, X.; Wang, J. Hydrological modeling in the Manas River Basin using soil and water assessment tool driven by CMADS. Teh. Vjesn. 2017, 24, 525–534. [Google Scholar]
- Meng, X.; Wang, H.; Wu, Y.; Long, A.; Wang, J.; Shi, C.; Ji, X. Investigating spatiotemporal changes of the land-surface processes in Xinjiang using high-resolution CLM3. 5 and CLDAS: Soil temperature. Sci. Rep. 2017, 7, 13286. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, H.; Cai, S.; Zhang, X.; Leng, G.; Lei, X.; Shi, C.; Liu, S.; Shang, Y. The China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS) Application in China: A Case Study in Heihe River Basin. Preprints 2017. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Wang, C. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Sang, Y.-F.; Wang, Z.; Liu, C. Comparison of the MK test and EMD method for trend identification in hydrological time series. J. Hydrol. 2014, 510, 293–298. [Google Scholar] [CrossRef]
- Belete, M.D. The impact of sedimentation and climate variability on the hydrological status of Lake Hawassa, South Ethiopia. Ph.D. Thesis, Universitäts- und Landesbibliothek Bonn, Bonn, Germany, 2013. [Google Scholar]
- Rodionov, S.N. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 2004, 31, L09204. [Google Scholar] [CrossRef]
- Gong, X.; Liu, Z.; Gao, H.; Yang, H.; Wang, H. Regime Shifts in the Huanghe Freshwater Discharge During the Past Fifty Years. In Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009; pp. 1–3. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation, version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Panagopoulos, Y.; Gassman, P.W.; Jha, M.K.; Kling, C.L.; Campbell, T.; Srinivasan, R.; White, M.; Arnold, J.G. A refined regional modeling approach for the Corn Belt–Experiences and recommendations for large-scale integrated modeling. J. Hydrol. 2015, 524, 348–366. [Google Scholar] [CrossRef]
- Qi, J.; Li, S.; Jamieson, R.; Hebb, D.; Xing, Z.; Meng, F.-R. Modifying SWAT with an energy balance module to simulate snowmelt for maritime regions. Environ. Model. Softw. 2017, 93, 146–160. [Google Scholar] [CrossRef]
- Shirmohammadi, A.; Chu, T.W. Evaluation of the swat model’s hydrology component in the piedmont physiographic region of Maryland. Trans. ASAE 2004, 47, 1057–1073. [Google Scholar]
- Amatya, D.M.; Jha, M.; Edwards, A.E.; Williams, T.M.; Hitchcock, D.R. SWAT-based streamflow and embayment modeling of karst-affected Chapel branch watershed, South Carolina. Trans. ASABE 2011, 54, 1311–1323. [Google Scholar] [CrossRef]
- Cheng, L.; Xu, Z.X.; Luo, R. SWAT application in arid and semi-arid region: A case study in the Kuye River Basin. Geogr. Res. 2009, 28, 65–73. [Google Scholar]
- Abbaspour, K.C.; Johnson, C.A.; van Genuchten, M.T. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure. Vadose Zone J. 2004, 3, 1340. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans ASABE 2015, 58, 1763–1785. [Google Scholar]
- Zhang, S.; Fan, W.; Li, Y.; Yi, Y. The influence of changes in land use and landscape patterns on soil erosion in a watershed. Sci. Total Environ. 2017, 574, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wang, S.; Bai, X.; Luo, G.; Xu, Y. Trade-offs among ecosystem services in a typical Karst watershed, SW China. Sci. Total Environ. 2016, 566–567, 1297–1308. [Google Scholar] [CrossRef] [PubMed]
- Hessel, R.; Messing, I.; Liding, C.; Ritsema, C.; Stolte, J. Soil erosion simulations of land use scenarios for a small Loess Plateau catchment. CATENA 2003, 54, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zhou, Y.; Wenninger, J.; Uhlenbrook, S. The causes of flow regime shifts in the semi-arid Hailiutu River, Northwest China. Hydrol. Earth Syst. Sci. 2011, 8, 5999–6030. [Google Scholar] [CrossRef]
- Yin, L.; Hu, G.; Huang, J.; Wen, D.; Dong, J.; Wang, X.; Li, H. Groundwater-recharge estimation in the Ordos Plateau, China: Comparison of methods. Hydrogeol. J. 2011, 19, 1563–1575. [Google Scholar] [CrossRef]
Data Layer | Description of Data Layer | Data Sources |
---|---|---|
Topographic | 30 × 30 m resolution digital elevation model (DEM) applied to calculate slopes and slope lengths | Geospatial Data Cloud of China |
Soil map/layer | 1 × 1 km resolution map; soil layer attributes for each soil layer | Environmental and Ecological Science Data Center for West China |
Land use | 30 × 30 m resolution map of 1986, 1995, and 2010 | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences |
Daily meteorological data | Daily wind speed, minimum and maximum temperature and relative humidity from 1970 to 2014 | China Meteorological Sharing Service System. |
Daily rainfall and monthly streamflow | Daily precipitation in/around watershed; monthly streamflow for the outlet of watershed | Yellow River Conservancy Commission |
CMADS V1.0 | Assimilation driving datasets applied to better reflect the spatial distribution of precipitation and meteorology | http://www.cmads.org |
Parameter | Description | Initial Range | Calibrated Range | Best Value |
---|---|---|---|---|
v_alpha_bf_u | Recession factor for upper aquifer | 0.3 to 0.8 | 0.406 to 0.412 | 0.408 |
v_gw_delay_u | Delay factor for upper aquifer | 1 to 10 | 1.075 to 1.084 | 1.081 |
v_alpha_bf_m | Recession factor for middle aquifer | 0.005 to 0.1 | 0.069 to 0.076 | 0.07 |
v_gw_delay_m | Delay factor for middle aquifer | 30 to 350 | 248 to 295 | 283 |
v_alpha_bf_l | Recession factor for lower aquifer | 0.001 to 0.05 | 0.033 to 0.036 | 0.035 |
v_gw_delay_l | Delay factor for lower aquifer | 250 to 500 | 452 to 458 | 452 |
v_rchdp_mld | Percolation factor from upper aquifer | 0.92 to 1 | 0.967 to 0.971 | 0.969 |
v_rchrg_ld | Percolation factor from middle aquifer | 0.6 to 0.95 | 0.935 to 0.946 | 0.937 |
v_rchrg_d | Percolation factor from lower aquifer | 0.1 to 0.4 | 0.296 to 0.368 | 0.347 |
v_gw_revap | Revap | 0.02 to 0.2 | 0.063 to 0.066 | 0.064 |
r_CN2 | SCS curve number for soil condition II | −0.5 to 0.5 | −0.135 to −0.12 | −0.129 |
v_esco | Soil evaporation fraction | 0.1 to 0.8 | 0.55 to 0.58 | 0.564 |
a_awc | Available water capacity of soil layer | −0.04 to 0.1 | −0.04 to −0.036 | −0.038 |
r_sol_k | Saturated hydraulic conductivity | −0.9 to 0.1 | −0.677 to −0.664 | −0.676 |
Periods | p-Factor | r-Factor | NSE | R2 | PBIAS | |
---|---|---|---|---|---|---|
Criterion | ||||||
Calibration period | 0.93 | 0.76 | 0.78 | 0.80 | −0.43 | |
Validation period | 0.8 | 0.59 | 0.70 | 0.79 | −0.30 |
Test Statistic Z | Threshold of Different Confidence Levels | Tendency | Significant | |||
---|---|---|---|---|---|---|
0.01 | 0.05 | 0.1 | ||||
Annual streamflow | −3.69 | 2.58 | 1.96 | 1.64 | Downward | *** |
Annual precipitation | 1.41 | 2.58 | 1.96 | 1.64 | Upward | - |
Annual wind speed | −5.57 | 2.58 | 1.96 | 1.64 | Downward | *** |
Annual maximum temperature | 2.52 | 2.58 | 1.96 | 1.64 | Upward | ** |
Annual minimum temperature | 5.13 | 2.58 | 1.96 | 1.64 | Upward | *** |
Annual average temperature | 4.50 | 2.58 | 1.96 | 1.64 | Upward | *** |
Sub-Periods | 1970–1985 (C0) | 1986–2000 (C1) | 2001–2014 (C2) | |
---|---|---|---|---|
Land Use Patterns | ||||
1986 | S0 | S1 | S2 | |
1995 | S3 | S5 | ||
2010 | S4 | S6 |
Agricultural Land | Forest Land | Shrub and Grass Land | Water Body | Urban Land | Sand Land | Total | ||
---|---|---|---|---|---|---|---|---|
1986 | ||||||||
2010 | Agricultural land | 55 | 0.5 | 41.6 | 0.1 | 0.7 | 22.3 | 120.2 |
Forest land | 3.6 | 4 | 26.2 | 0.1 | 0 | 17.4 | 51.3 | |
Shrub and grass land | 53.4 | 6.5 | 1091.2 | 0.9 | 0.4 | 644.6 | 1797 | |
Water body | 0.1 | 0 | 0.2 | 2.2 | 0 | 0.8 | 3.3 | |
Urban land | 4.7 | 0 | 9.2 | 0 | 3.6 | 1.6 | 19.1 | |
Sand land | 1.7 | 0.5 | 95.1 | 0.2 | 0 | 384.1 | 481.6 | |
Total | 118.5 | 11.5 | 1263.5 | 3.5 | 4.7 | 1070.8 |
S0 | S1 | S2 | S1–S0 | S2–S0 | |
---|---|---|---|---|---|
Surface flow | 0.07 | 0.05 | 0.52 | −0.02(−25.00%) | 0.45(642.85%) |
Lateral flow | 1.37 | 1.07 | 1.71 | −0.3(−34.50%) | 0.34(24.82%) |
Baseflow | 38.16 | 36.03 | 38.08 | −2.13(−12.42%) | −0.087(−0.21%) |
Evapotranspiration | 246.83 | 234.53 | 292.36 | −12.3(−19.89%) | 45.53 (18.45%) |
Scenarios | Climate | Land Use | Streamflow (mm/Year) | Observed Change | Simulated Change | |||
---|---|---|---|---|---|---|---|---|
Observed | Simulated | mm/Year | % | mm/Year | % | |||
S0 | 1970–1985 | 1986 | 34.83 | 35.09 | - | - | - | |
S1 | 1986–2000 | 1986 | - | 32.94 | - | - | −2.15 | −6.13 |
S2 | 2001–2014 | 1986 | - | 36.78 | - | - | 1.69 | 4.82 |
S3 | 1970–1985 | 1995 | - | 34.86 | - | - | −0.23 | −0.66 |
S4 | 1970–1985 | 2010 | - | 34.41 | - | - | −0.68 | −1.94 |
S5 | 1986–2000 | 1995 | 25.90 | 32.61 | −2.48 | −25.63 | −2.45 | −7.07 |
S6 | 2001–2014 | 2010 | 30.79 | 35.93 | −0.84 | −11.60 | 0.84 | 2.39 |
Scenarios | Agricultural Land | Forest Land | Shrub and Grass Land | Urban Land | Sandy Land | Total | |
---|---|---|---|---|---|---|---|
S0 | Surface flow | 0.035 | - | 0.02 | 0.011 | 0.000 | 0.066 |
Lateral flow | 0.184 | - | 0.606 | 0.002 | 0.573 | 1.365 | |
Baseflow | 1.778 | - | 19.433 | 0.005 | 16.955 | 38.171 | |
Evapotranspiration | 21.913 | - | 122.558 | 0.042 | 102.312 | 246.825 | |
S3 | Surface flow | 0.04 | - | 0.03 | 0.15 | 0.000 | 0.22 |
Lateral flow | 0.192 | - | 0.659 | 0.002 | 0.508 | 1.361 | |
Baseflow | 1.863 | - | 20.397 | 0.025 | 15.283 | 37.568 | |
Evapotranspiration | 23.688 | - | 132.637 | 0.712 | 90.945 | 247.982 | |
S4 | Surface flow | 0.039 | 0.001 | 0.121 | 0.268 | 0.000 | 0.429 |
Lateral flow | 0.171 | 0.023 | 0.879 | 0.003 | 0.277 | 1.353 | |
Baseflow | 1.688 | 0.799 | 26.522 | 0.129 | 7.693 | 36.831 | |
Evapotranspiration | 21.596 | 5.982 | 172.306 | 1.519 | 45.931 | 247.334 |
Parameter | Initial Range | Calibrated Range | Best Value |
---|---|---|---|
v_alpha_bf_u | 0.3 to 0.8 | 0.584 to 0.652 | 0.619 |
v_gw_delay_u | 1 to 10 | 1.525 to 2.088 | 1.651 |
v_alpha_bf_m | 0.005 to 0.1 | 0.032 to 0.053 | 0.041 |
v_gw_delay_m | 30 to 350 | 212 to 259 | 245 |
v_alpha_bf_l | 0.001 to 0.05 | 0.023 to 0.032 | 0.027 |
v_gw_delay_l | 250 to 500 | 405 to 500 | 492 |
v_rchdp_mld | 0.92 to 1 | 0.988 to 0.992 | 0.989 |
v_rchrg_ld | 0.6 to 0.95 | 0.915 to 0.956 | 0.937 |
v_rchrg_d | 0.1 to 0.4 | 0.146 to 0.310 | 0.212 |
v_gw_revap | 0.02 to 0.2 | 0.108 to 0.131 | 0.109 |
r_CN2 | −0.5 to 0.5 | −0.237 to −0.191 | −0.211 |
v_esco | 0.1 to 0.8 | 0.530 to 0.691 | 0.589 |
a_awc | −0.04 to 0.1 | −0.024 to −0.016 | −0.022 |
r_sol_k | −0.9 to 0.1 | −0.876 to −0.739 | −0.744 |
Criterion | Calibration Period | Validation Period | ||||
---|---|---|---|---|---|---|
OBS | CMADS | OBS+CMADS | OBS | CMADS | OBS+CMADS | |
p-factor | 0.9 | 0.75 | 0.92 | 0.86 | 0.58 | 0.89 |
r-factor | 0.87 | 0.51 | 0.94 | 1.43 | 1.14 | 1.34 |
NSE | 0.80 | 0.73 | 0.83 | 0.45 | 0.46 | 0.55 |
R2 | 0.83 | 0.74 | 0.83 | 0.63 | 0.50 | 0.65 |
PBIAS | 1.02 | 2.66 | −1.72 | −0.24 | 2.88 | −2.78 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, G.; Guan, Y.; Zhang, D.; Yu, B.; Zhu, J. The Impacts of Climate Variability and Land Use Change on Streamflow in the Hailiutu River Basin. Water 2018, 10, 814. https://doi.org/10.3390/w10060814
Shao G, Guan Y, Zhang D, Yu B, Zhu J. The Impacts of Climate Variability and Land Use Change on Streamflow in the Hailiutu River Basin. Water. 2018; 10(6):814. https://doi.org/10.3390/w10060814
Chicago/Turabian StyleShao, Guangwen, Yiqing Guan, Danrong Zhang, Baikui Yu, and Jie Zhu. 2018. "The Impacts of Climate Variability and Land Use Change on Streamflow in the Hailiutu River Basin" Water 10, no. 6: 814. https://doi.org/10.3390/w10060814
APA StyleShao, G., Guan, Y., Zhang, D., Yu, B., & Zhu, J. (2018). The Impacts of Climate Variability and Land Use Change on Streamflow in the Hailiutu River Basin. Water, 10(6), 814. https://doi.org/10.3390/w10060814