Migration and Transformation of Greenhouse Gases in Constructed Wetlands: A Bibliometric Analysis and Trend Forecast
<p>The generation and release of N<sub>2</sub>O in CWs.</p> "> Figure 2
<p>The generation and release of CO<sub>2</sub> and CH<sub>4</sub> in CWs.</p> "> Figure 3
<p>The publication number and citation frequency of research on GHG emissions in CWs per year.</p> "> Figure 4
<p>A representation of national and regional cooperation networks.</p> "> Figure 5
<p>Author cooperation network in the field of GHG emissions in CWs.</p> "> Figure 6
<p>The co-occurrence network analysis of keywords on GHG emissions from CWs.</p> "> Figure 7
<p>A visualization of the keyword cluster analysis on GHG emissions in CWs.</p> "> Figure 8
<p>Timeline view of the keyword clusters on GHG emissions in CWs.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Data Sources
2.2. Analysis Methods
3. Results and Discussion
3.1. The Generation and Release of N2O, CO2, and CH4 in CWs
3.1.1. The Production and Release of N2O
3.1.2. The Production and Release of CO2 and CH4
3.2. Publication Number and Citation Frequency per Year
3.3. Country and Author Analysis
3.4. Keyword Analysis
3.5. Hotspot Analysis
4. Research Limitations and Prospects
- (1)
- The impact of different environmental factors is complex, and comprehensive consideration is needed for factors that affect GHG emissions from CWs, such as operation mode, substrate configuration, plant selection, and carbon source supplementation;
- (2)
- Further in-depth research is needed on the GHG conversion process involving microorganisms within CWs, such as the interaction between multiple N2O production pathways and the mechanism of CH4 anaerobic oxidation;
- (3)
- Genetic technology can be strategically employed to enhance microorganisms that are beneficial for mitigating GHG emissions in CWs;
- (4)
- Intelligent supervision systems, in conjunction with information technology, can be developed to precisely control operating conditions and monitor the effectiveness of CWs.
5. Conclusions
- (1)
- Organic nitrogen is converted to ammonia nitrogen by biological ammoniation and produces N2O through nitrifying-denitrifying microbial nitrogen removal. The resulting product N2O is eventually converted into N2, which is released from CWs. Anammox, a process that directly transforms ammonia nitrogen to nitrogen, represents an attractive route for nitrogen removal.
- (2)
- Organics in the influent of CWs are oxidized and the final product contains CO2. Anaerobic fermentation and CO2 reduction produce CH4. The CO2 and CH4 are emitted through plant aeration tissue transport, bubble diffusion, and other forms. After that, CO2 is fixed by plant photosynthesis.
- (3)
- In the past 30 years, the number of published papers and the citation frequency in the relevant fields show an increasing trend. China and the United States published more papers. The top ten authors contributed to 20.607% of the total 1019, and the cooperation between different author groups needs to be strengthened.
- (4)
- The emerging burst keywords following 2020 are “microbial fuel cell” and “microbial community”, which highlights the current hotspots in research related to GHG emissions from CWs. Beyond the scope of laboratory exploration, the CW-MFC needs to be considered for more practical applications. The deepened understanding of microbial communities helps to precisely regulate the environment of CWs and reduce the GHG emissions of CWs.
- (5)
- Despite relevant studies, there is still a lack of long-term and applied discussion on the role of CWs in promoting GHG emission reduction. The relevant reaction conditions and mechanisms need to be explored, and the possible research directions in the future can be genetic regulation and information technology.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coenen, R.; Sardemann, G. Kyoto: Protocol on climate protection. Atw—Int. Z. Kernenerg. 1998, 43, 243–248. [Google Scholar]
- World Council of Churches. Minute on UNFCCC Conference of the Parties—COP 15 in Copenhagen. Ecum. Rev. 2010, 62, 229–231. [Google Scholar] [CrossRef]
- Falkner, R. The Paris Agreement and the new logic of international climate politics. Int. Aff. 2016, 92, 1107–1125. [Google Scholar] [CrossRef]
- Liu, Q. The 28th United Nations Climate Change Conference (COP28)—30 November–12 December 2023. China CDC Wkly. 2023, 5, 1093. [Google Scholar] [CrossRef]
- Beck, S.; Mahony, M. The IPCC and the new map of science and politics. WIREs Clim. Change 2018, 9, e547. [Google Scholar] [CrossRef]
- Mora, C.; Spirandelli, D.; Franklin, E.C.; Lynham, J.; Kantar, M.B.; Miles, W.; Smith, C.Z.; Freel, K.; Moy, J.; Louis, L.V.; et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Change 2018, 8, 1062–1071. [Google Scholar] [CrossRef]
- Tiwari, T.; Kaur, G.A.; Singh, P.K.; Balayan, S.; Mishra, A.; Tiwari, A. Emerging bio-capture strategies for greenhouse gas reduction: Navigating challenges towards carbon neutrality. Sci. Total Environ. 2024, 929, 172433. [Google Scholar] [CrossRef]
- Stankovic, D. Constructed wetlands for wastewater treatment. Građevinar 2017, 69, 639–652. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Gersberg, R.M.; Keat, T.S. Constructed wetlands in China. Ecol. Eng. 2009, 35, 1367–1378. [Google Scholar] [CrossRef]
- Tao, W.D.; Bays, J.S.; Meyer, D.; Smardon, R.C.; Levy, Z.F. Constructed Wetlands for Treatment of Combined Sewer Overflow in the US: A Review of Design Challenges and Application Status. Water 2014, 6, 3362–3385. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed wetlands for treatment of industrial wastewaters: A review. Ecol. Eng. 2014, 73, 724–751. [Google Scholar] [CrossRef]
- Mander, Ü.; Lohmus, K.; Teiter, S.; Mauring, T.; Nurk, K.; Augustin, J. Gaseous fluxes in the nitrogen and carbon budgets of subsurface flow constructed wetlands. Sci. Total Environ. 2008, 404, 343–353. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, Ü.; Zhang, L.; Anderson, C.J.; Jorgensen, S.E.; Brix, H. Wetlands, carbon, and climate change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Walter, B.P.; Heimann, M.; Matthews, E. Modeling modern methane emissions from natural wetlands 1. Model description and results. J. Geophys. Res. Atmos. 2001, 106, 34189–34206. [Google Scholar] [CrossRef]
- Sha, C.Y.; Wang, M.; Wang, Q.; Lu, J.J. Wetland methane and carbon dioxide emission and affecting factors. Shengtaixue Zazhi 2011, 30, 2072–2079. [Google Scholar]
- Bahram, M.; Espenberg, M.; Pärn, J.; Lehtovirta-Morley, L.; Anslan, S.; Kasak, K.; Koljalg, U.; Liira, J.; Maddison, M.; Moora, M.; et al. Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nat. Commun. 2022, 13, 10. [Google Scholar] [CrossRef]
- Kayranli, B.; Scholz, M.; Mustafa, A.; Hedmark, Å. Carbon Storage and Fluxes within Freshwater Wetlands: A Critical Review. Wetlands 2010, 30, 111–124. [Google Scholar] [CrossRef]
- Salimi, S.; Almuktar, S.; Scholz, M. Impact of climate change on wetland ecosystems: A critical review of experimental wetlands. J. Environ. Manag. 2021, 286, 15. [Google Scholar] [CrossRef]
- Maltais-Landry, G.; Maranger, R.; Brisson, J.; Chazarenc, F. Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands. Environ. Pollut. 2009, 157, 748–754. [Google Scholar] [CrossRef]
- Cao, Q.Q.; Wang, H.; Chen, X.C.; Wang, R.Q.; Liu, J. Composition and distribution of microbial communities in natural river wetlands and corresponding constructed wetlands. Ecol. Eng. 2017, 98, 40–48. [Google Scholar] [CrossRef]
- Maucieri, C.; Barbera, A.C.; Vymazal, J.; Borin, M. A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agric. For. Meteorol. 2017, 236, 175–193. [Google Scholar] [CrossRef]
- Xu, D.; Sun, H.M.; Wang, J.; Wang, N.; Zuo, Y.J.; Mosa, A.A.; Yin, X.Q. Global trends and current advances regarding greenhouse gases in constructed wetlands: A bibliometric-based quantitative review over the last 40 years. Ecol. Eng. 2023, 193, 107018. [Google Scholar] [CrossRef]
- Leung, X.Y.; Sun, J.; Bai, B. Bibliometrics of social media research: A co-citation and co-word analysis. Int. J. Hosp. Manag. 2017, 66, 35–45. [Google Scholar] [CrossRef]
- Chen, C.M. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Newman, M.E.J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar] [CrossRef]
- Shibata, N.; Kajikawa, Y.; Takeda, Y.; Matsushima, K. Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation 2008, 28, 758–775. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes—A graphical aid to the interpretation and validation of cluster-analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Yang, J.X.; Zheng, G.D.; Yang, J.; Wan, X.M.; Song, B.; Cai, W.; Guo, J.M. Phytoaccumulation of heavy metals (Pb, Zn, and Cd) by 10 wetland plant species under different hydrological regimes. Ecol. Eng. 2017, 107, 56–64. [Google Scholar] [CrossRef]
- Amoo, A.E.; Babalola, O.O. Ammonia-oxidizing microorganisms: Key players in the promotion of plant growth. J. Soil Sci. Plant Nutr. 2017, 17, 935–947. [Google Scholar] [CrossRef]
- Liu, Z.J.; Xie, H.J.; Hu, Z.; Zhang, J.; Zhang, J.D.; Sun, H.M.; Lan, W. Role of Ammonia-Oxidizing Archaea in Ammonia Removal of Wetland Under Low-Temperature Condition. Water Air Soil Pollut. 2017, 228, 1–11. [Google Scholar] [CrossRef]
- Purkhold, U.; Pommerening-Röser, A.; Juretschko, S.; Schmid, M.C.; Koops, H.P.; Wagner, M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Appl. Environ. Microbiol. 2000, 66, 5368–5382. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, G.A.F.; Nicholas, D.J. Identification of sources of nitrous-oxide produced by oxidative and reductive processes in Nitrosomonas europaea. Biochem. J. 1972, 126, 1181–1191. [Google Scholar] [CrossRef]
- Stuven, R.; Vollmer, M.; Bock, E. The impact of organic-matter on nitric-oxide formation by Nitrosomonas europaea. Arch. Microbiol. 1992, 158, 439–443. [Google Scholar] [CrossRef]
- Poughon, L.; Dussap, C.G.; Gros, J.B. Energy model and metabolic flux analysis for autotrophic nitrifiers. Biotechnol. Bioeng. 2001, 72, 416–433. [Google Scholar] [CrossRef]
- Wrage, N.; Velthof, G.L.; van Beusichem, M.L.; Oenema, O. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol. Biochem. 2001, 33, 1723–1732. [Google Scholar] [CrossRef]
- Colliver, B.B.; Stephenson, T. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnol. Adv. 2000, 18, 219–232. [Google Scholar] [CrossRef]
- Bai, J.H.; Wang, X.; Jia, J.; Zhang, G.L.; Wang, Y.Y.; Zhang, S. Denitrification of soil nitrogen in coastal and inland salt marshes with different flooding frequencies. Phys. Chem. Earth 2017, 97, 31–36. [Google Scholar] [CrossRef]
- Wang, Y.L.; Wang, D.B.; Yang, Q.; Zeng, G.M.; Li, X.M. Wastewater Opportunities for Denitrifying Anaerobic Methane Oxidation. Trends Biotechnol. 2017, 35, 799–802. [Google Scholar] [CrossRef]
- Chen, H.; Jin, R.C. Summary of the preservation techniques and the evolution of the anammox bacteria characteristics during preservation. Appl. Microbiol. Biotechnol. 2017, 101, 4349–4362. [Google Scholar] [CrossRef]
- Roulet, N.T.; Lafleur, P.M.; Richard, P.J.H.; Moore, T.R.; Humphreys, E.R.; Bubier, J. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob. Change Biol. 2007, 13, 397–411. [Google Scholar] [CrossRef]
- Picek, T.; Cízková, H.; Dusek, J. Greenhouse gas emissions from a constructed wetland -: Plants as important sources of carbon. Ecol. Eng. 2007, 31, 98–106. [Google Scholar] [CrossRef]
- Lee, Y.J.; Romanek, C.S.; Wiegel, J. Clostridium aciditolerans sp nov., an acid-tolerant spore-forming anaerobic bacterium from constructed wetland sediment. Int. J. Syst. Evol. Microbiol. 2007, 57, 311–315. [Google Scholar] [CrossRef]
- Conrad, R.; Klose, M.; Claus, P. Pathway of CH4 formation in anoxic rice field soil and rice roots determined by 13C-stable isotope fractionation. Chemosphere 2002, 47, 797–806. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Chen, S.L.; Chen, J.F.; Chang, S.; Yi, H.; Huang, D.W.; Xie, S.G.; Guo, Q.W. Aerobic and anaerobic methanotrophic communities in urban landscape wetland. Appl. Microbiol. Biotechnol. 2018, 102, 433–445. [Google Scholar] [CrossRef]
- Haroon, M.F.; Hu, S.H.; Shi, Y.; Imelfort, M.; Keller, J.; Hugenholtz, P.; Yuan, Z.G.; Tyson, G.W. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 2013, 500, 567–570. [Google Scholar] [CrossRef]
- Ettwig, K.F.; Butler, M.K.; Le Paslier, D.; Pelletier, E.; Mangenot, S.; Kuypers, M.M.M.; Schreiber, F.; Dutilh, B.E.; Zedelius, J.; de Beer, D.; et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 2010, 464, 543–548. [Google Scholar] [CrossRef]
- Feng, L.K.; He, S.F.; Yu, H.; Zhang, J.; Guo, Z.Z.; Wei, L.L.; Wu, H.M. A novel plant-girdling study in constructed wetland microcosms: Insight into the role of plants in oxygen and greenhouse gas transport. Chem. Eng. J. 2022, 431, 133911. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, W.Z.; Wang, W.D.; Yin, W.; Liu, H.L.; Ma, X.M.; Zhou, Y.Q.; Lei, P.; Wei, D.Y.; Zhang, L.T.; et al. A review on China's constructed wetlands in recent three decades: Application and practice. J. Environ. Sci. 2021, 104, 53–68. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, X.L.; Wang, W.; Luo, H.B.; Chen, W.; Chen, J. Effects of the bioelectrochemical technique on methane emission and energy recovery in constructed wetlands (CWs) and related biological mechanisms. Environ. Technol. 2023, 44, 540–551. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wu, X.L.; Wang, W.; Chen, J.; Chen, J.; Luo, H.B. Roles of external circuit and rhizosphere location in CH4 emission control in sequencing batch flow constructed wetland-microbial fuel cell. J. Environ. Chem. Eng. 2021, 9, 106583. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, X.L.; Wang, W.; Luo, H.B.; Chen, W.; Ma, D.D.; Mo, Y.; Chen, J.; Li, L. Effects of plant location on methane emission, bioelectricity generation, pollutant removal and related biological processes in microbial fuel cell constructed wetland. J. Water Process Eng. 2021, 43, 102283. [Google Scholar] [CrossRef]
- Liu, S.T.; Xue, H.P.; Wang, Y.; Wang, Z.; Feng, X.J.; Pyo, S.H. Effects of bioelectricity generation processes on methane emission and bacterial community in wetland and carbon fate analysis. Bioresour. Bioprocess. 2022, 9, 69. [Google Scholar] [CrossRef]
- Zhu, H.; Niu, T.T.; Shutes, B.; Wang, X.Y.; He, C.G.; Hou, S.N. Integration of MFC reduces CH4, N2O and NH3 emissions in batch-fed wetland systems. Water Res. 2022, 226, 119226. [Google Scholar] [CrossRef]
- Liu, S.T.; Xue, H.P.; Wang, M.X.; Feng, X.J.; Lee, H.S. The role of microbial electrogenesis in regulating methane and nitrous oxide emissions from constructed wetland-microbial fuel cell. Int. J. Hydrog. Energy 2022, 47, 27279–27292. [Google Scholar] [CrossRef]
- Baddar, Z.E.; Xu, X.Y. Evaluation of changes in the microbial community structure in the sediments of a constructed wetland over the years. Arch. Microbiol. 2022, 204, 552. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Qin, C.L.; Xie, H.J.; Wang, W.X.; Zhang, J.; Hu, Z.; Liang, S. Comprehensive evaluation of manganese oxides and iron oxides as metal substrate materials for constructed wetlands from the perspective of water quality and greenhouse effect. Ecotoxicol. Environ. Saf. 2021, 221, 112451. [Google Scholar] [CrossRef]
- Ji, B.H.; Chen, J.Q.; Li, W.; Mei, J.; Yang, Y.; Chang, J.J. Greenhouse gas emissions from constructed wetlands are mitigated by biochar substrates and distinctly affected by tidal flow and intermittent aeration modes. Environ. Pollut. 2021, 271, 116328. [Google Scholar] [CrossRef]
- Gu, X.S.; Chen, D.Y.; Wu, F.; Tang, L.; He, S.B.; Zhou, W.L. Function of aquatic plants on nitrogen removal and greenhouse gas emission in enhanced denitrification constructed wetlands: Iris pseudacorus for example. J. Clean. Prod. 2022, 330, 129842. [Google Scholar] [CrossRef]
- Liang, Z.H.; Hao, Q.J.; Hu, M.L.; Zhang, G.S.; Chen, K.Q.; Ma, R.Z.; Luo, S.X.; Gou, Y.X.; He, Y.J.; Chen, F.H.; et al. Application of alkali-heated corncobs enhanced nitrogen removal and microbial diversity in constructed wetlands for treating low C/N ratio wastewater. Environ. Sci. Pollut. Res. 2023, 30, 117624–117636. [Google Scholar] [CrossRef] [PubMed]
Country and Region | Frequency | Centrality | Country and Region | Frequency | Centrality |
---|---|---|---|---|---|
China | 453 | 0.28 | Estonia | 31 | 0.01 |
USA | 172 | 0.34 | Italy | 29 | 0.17 |
Canada | 57 | 0.02 | France | 27 | 0.11 |
Spain | 50 | 0.11 | Denmark | 26 | 0.02 |
Germany | 47 | 0.08 | Japan | 25 | 0 |
India | 41 | 0.02 | Netherlands | 24 | 0.04 |
England | 36 | 0.04 | Sweden | 21 | 0.08 |
Australia | 34 | 0.05 | Brazil | 18 | 0.05 |
Authors | Record Count | % of 1019 | Authors | Record Count | % of 1019 |
---|---|---|---|---|---|
Zhang J | 29 | 2.846% | Chen W | 17 | 7.164% |
Mander Ü | 28 | 2.748% | Luo HB | 17 | 7.066% |
Chang J | 25 | 2.453% | Zhang K | 17 | 6.084% |
Ge Y | 24 | 2.355% | He SB | 15 | 4.907% |
Wu HM | 23 | 2.257% | Hu Z | 15 | 2.846% |
No. | Keywords | Frequency | Centrality | No. | Keywords | Frequency | Centrality |
---|---|---|---|---|---|---|---|
1 | constructed wetlands | 379 | 0.37 | 13 | carbon dioxide | 66 | 0.05 |
2 | constructed wetland | 253 | 0.32 | 14 | nutrient removal | 62 | 0.04 |
3 | waste water treatment | 199 | 0.11 | 15 | wastewater treatment | 61 | 0.1 |
4 | removal | 186 | 0.23 | 16 | methane emissions | 60 | 0.1 |
5 | performance | 182 | 0.14 | 17 | community | 57 | 0.06 |
6 | nitrogen removal | 158 | 0.12 | 18 | nitrogen | 54 | 0 |
7 | denitrification | 150 | 0.15 | 19 | carbon | 49 | 0.03 |
8 | nitrous oxide | 145 | 0.18 | 20 | nitrate removal | 47 | 0.06 |
9 | waste water | 138 | 0.21 | 21 | organic matter | 40 | 0.02 |
10 | greenhouse gas emissions | 132 | 0.08 | 22 | CH4 | 39 | 0.01 |
11 | soil | 70 | 0.08 | 23 | phragmites australis | 39 | 0.08 |
12 | microbial community | 68 | 0.04 | 24 | nitrification | 38 | 0.01 |
No | Keywords | Year | Strength | Begin | End | 1994–2023 | |
---|---|---|---|---|---|---|---|
1 | constructed wetlands | 1998 | 5.03 | 1998 | 2003 | ||
2 | removal | 2003 | 9.38 | 2003 | 2011 | ||
3 | oxidation | 2003 | 4.92 | 2003 | 2007 | ||
4 | nitrous oxide | 2002 | 5.72 | 2005 | 2011 | ||
5 | soil | 1999 | 5.4 | 2005 | 2011 | ||
6 | phragmites australis | 2000 | 7.74 | 2007 | 2016 | ||
7 | CH4 | 2009 | 11.08 | 2009 | 2016 | ||
8 | N2O | 2000 | 10.39 | 2009 | 2017 | ||
9 | greenhouse gases | 1995 | 5.15 | 2011 | 2015 | ||
10 | diversity | 2011 | 4.77 | 2011 | 2016 | ||
11 | methane emissions | 1995 | 6.68 | 2012 | 2017 | ||
12 | constructed wetland | 1997 | 6.47 | 2012 | 2013 | ||
13 | flow | 2013 | 5.28 | 2013 | 2017 | ||
14 | nitrogen | 2004 | 5.13 | 2015 | 2016 | ||
15 | flow constructed wetlands | 2017 | 7.01 | 2017 | 2020 | ||
16 | nitrous oxide emissions | 2014 | 5.93 | 2017 | 2018 | ||
17 | intermittent aeration | 2018 | 7.85 | 2018 | 2020 | ||
18 | flow constructed wetland | 2018 | 5.97 | 2018 | 2021 | ||
19 | organics | 2018 | 5.27 | 2018 | 2019 | ||
20 | horizontal subsurface flow | 2019 | 6.39 | 2019 | 2020 | ||
21 | N2O emission | 2013 | 5.78 | 2019 | 2020 | ||
22 | N2O emissions | 2013 | 5.47 | 2019 | 2020 | ||
23 | greenhouse gas | 2020 | 7.69 | 2020 | 2023 | ||
24 | microbial fuel cell | 2021 | 6.12 | 2021 | 2023 | ||
25 | microbial community | 2017 | 5.67 | 2021 | 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, R.; Dong, J.; Kang, Y.; Xie, H.; Wu, H.; Hu, Z.; Guo, Z. Migration and Transformation of Greenhouse Gases in Constructed Wetlands: A Bibliometric Analysis and Trend Forecast. Water 2025, 17, 412. https://doi.org/10.3390/w17030412
Qi R, Dong J, Kang Y, Xie H, Wu H, Hu Z, Guo Z. Migration and Transformation of Greenhouse Gases in Constructed Wetlands: A Bibliometric Analysis and Trend Forecast. Water. 2025; 17(3):412. https://doi.org/10.3390/w17030412
Chicago/Turabian StyleQi, Ruiyao, Jiahao Dong, Yan Kang, Huijun Xie, Haiming Wu, Zhen Hu, and Zizhang Guo. 2025. "Migration and Transformation of Greenhouse Gases in Constructed Wetlands: A Bibliometric Analysis and Trend Forecast" Water 17, no. 3: 412. https://doi.org/10.3390/w17030412
APA StyleQi, R., Dong, J., Kang, Y., Xie, H., Wu, H., Hu, Z., & Guo, Z. (2025). Migration and Transformation of Greenhouse Gases in Constructed Wetlands: A Bibliometric Analysis and Trend Forecast. Water, 17(3), 412. https://doi.org/10.3390/w17030412