Review of Emerging and Nonconventional Analytical Techniques for Per- and Polyfluoroalkyl Substances (PFAS): Application for Risk Assessment
"> Figure 1
<p>Reported PFOA detection limits as compared to ambient background concentrations and conventional analytical detection limits. Note: LC-MS/MS method detection limit (MDL) for PFOA based on USEPA method 537.1 (PFOA = 0.00053 ppb (µg/L)) [<a href="#B82-water-17-00303" class="html-bibr">82</a>]; USEPA legally enforceable maximum contaminant levels (MCLs) for PFOA = 0.004 ppb (µg/L), <sup>1</sup> Reported ambient concentration ranges for PFOA for surface and groundwater based on the work of Javis et al. [<a href="#B71-water-17-00303" class="html-bibr">71</a>] and Johnson et al. [<a href="#B76-water-17-00303" class="html-bibr">76</a>]; <sup>2</sup> Reported ambient PFOA concentration ranges for soil and sediment based on the work of Rankin et al. [<a href="#B78-water-17-00303" class="html-bibr">78</a>] and Vedagiri et al. [<a href="#B79-water-17-00303" class="html-bibr">79</a>]. Optical references: [<a href="#B26-water-17-00303" class="html-bibr">26</a>,<a href="#B27-water-17-00303" class="html-bibr">27</a>,<a href="#B30-water-17-00303" class="html-bibr">30</a>,<a href="#B31-water-17-00303" class="html-bibr">31</a>,<a href="#B34-water-17-00303" class="html-bibr">34</a>,<a href="#B35-water-17-00303" class="html-bibr">35</a>,<a href="#B36-water-17-00303" class="html-bibr">36</a>,<a href="#B37-water-17-00303" class="html-bibr">37</a>,<a href="#B38-water-17-00303" class="html-bibr">38</a>,<a href="#B41-water-17-00303" class="html-bibr">41</a>]; electrochemical references: [<a href="#B43-water-17-00303" class="html-bibr">43</a>,<a href="#B45-water-17-00303" class="html-bibr">45</a>,<a href="#B46-water-17-00303" class="html-bibr">46</a>]; nonconventional references: [<a href="#B52-water-17-00303" class="html-bibr">52</a>,<a href="#B53-water-17-00303" class="html-bibr">53</a>].</p> "> Figure 2
<p>Reported PFOS detection limits as compared to ambient background concentrations and conventional analytical detection limits. Note: LC-MS/MS method detection limit (MDL) for PFOS based on USEPA method 537.1 for PFOS = 0.004 ppb (µg/L) [<a href="#B82-water-17-00303" class="html-bibr">82</a>]; USEPA legally enforceable maximum contaminant levels (MCLs) for PFOS = 0.004 ppb (µg/L), <sup>1</sup> Reported ambient concentration ranges for PFOA for surface and groundwater based on the work of Javis et al. [<a href="#B71-water-17-00303" class="html-bibr">71</a>] and Johnson et al. [<a href="#B76-water-17-00303" class="html-bibr">76</a>]; <sup>2</sup> Reported ambient PFOA concentration ranges for soil and sediment based on the work of Rankin et al. [<a href="#B78-water-17-00303" class="html-bibr">78</a>] and Vedagiri et al. [<a href="#B79-water-17-00303" class="html-bibr">79</a>]. Optical references: [<a href="#B25-water-17-00303" class="html-bibr">25</a>,<a href="#B27-water-17-00303" class="html-bibr">27</a>,<a href="#B28-water-17-00303" class="html-bibr">28</a>,<a href="#B30-water-17-00303" class="html-bibr">30</a>,<a href="#B32-water-17-00303" class="html-bibr">32</a>,<a href="#B33-water-17-00303" class="html-bibr">33</a>,<a href="#B34-water-17-00303" class="html-bibr">34</a>,<a href="#B35-water-17-00303" class="html-bibr">35</a>,<a href="#B36-water-17-00303" class="html-bibr">36</a>,<a href="#B37-water-17-00303" class="html-bibr">37</a>,<a href="#B41-water-17-00303" class="html-bibr">41</a>]; electrochemical references: [<a href="#B44-water-17-00303" class="html-bibr">44</a>,<a href="#B45-water-17-00303" class="html-bibr">45</a>,<a href="#B47-water-17-00303" class="html-bibr">47</a>,<a href="#B48-water-17-00303" class="html-bibr">48</a>,<a href="#B50-water-17-00303" class="html-bibr">50</a>]; nonconventional references: [<a href="#B69-water-17-00303" class="html-bibr">69</a>].</p> "> Figure 3
<p>Conceptual integration of emerging technologies within risk assessment processes. Examples of ecological risk analysis framework (<b>A</b>), tiered framework for screening chemical and advanced materials (<b>B</b>); and proposed hybrid relationship between emerging and standardized approaches for PFAS analysis for risk-based processes (<b>C</b>). Note: panel (<b>A</b>) based on the USEPA ecological risk framework [<a href="#B17-water-17-00303" class="html-bibr">17</a>,<a href="#B18-water-17-00303" class="html-bibr">18</a>]; panel (<b>B</b>) based on Moore et al.’s [<a href="#B86-water-17-00303" class="html-bibr">86</a>] tiered process flowchart to improve assessment, monitoring and adaptive management of emerging contaminants.</p> ">
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Optical-Based Methods
3.1.1. Colorimetric Porphyrin-Based Detector
3.1.2. Paper-Based Colorimetric Sensors
3.1.3. Water-Soluble Fluorescence Probes
3.1.4. Fluorescence of Amplifying Fluorescent Polymers/Conjugated Polymers
3.1.5. Fluorescent Imprint-and-Report Sensor
3.1.6. Oil Interfacial/Amphiphilic Approaches
3.1.7. Bacterial Biosensor
3.1.8. Ligand Binding
3.1.9. Aptamer-Based
3.1.10. Dual DNA Oligonucleotide and Lysozyme Fiber Biosensors
3.1.11. Portable Surface-Enhanced Raman Spectroscopy Sensors with Graphene + Silver Nanoparticles on a Kapton Film
Method | Media | Analyte, LOD (ppb) | Selectivity Evaluated | Relative Cost | Reference |
---|---|---|---|---|---|
Optical/colorimetric porphyrin-based detector | Soil, water, organic solvent | PFOA, 3000 | No | Low | [26] |
Optical/colorimetric paper-based sensor | Deionized water | PFOS, 10,000 | Yes | Very Low | [25] |
Fluorescence with cationic siloxane and erythosine B | Not reported | PFOS, ~1350 | Yes; ions (NO2, NO3, F, Cl, S2O3; SO4) | Low | [28] |
Fluorescence with perylene diimide | Buffered water | PFOS, 14 | Yes—ions (e.g., Na, K Ca, Cl) and other PFASs (e.g., PFOA, PFBS) | Low | [32] |
Fluorescence with porphyrin | Buffered MilliQ water | PFOS, 3.3 | Yes—cations including Cu, Mn, Fe, Cr, Mg, Zn, Ba, Cd, Pb, Hg, Al, Ni and surfactants. stream water samples, water containing blended fish tissue | Low | [33] |
Fluorescence with conjugated polymer | MilliQ, deionized, and well water | PFOA, 0.08 PFOS, 0.35 PFBA, NA | Yes | Low | [34] |
Fluorescence with conjugated polymer | Buffered water | PFOA, 2.53 PFOS, 7.2 | Yes—surfactants, PFAS analogues, anions (Cl, I, and others) and cations (Ca, Fe, and others) | Low | [35] |
Fluorescence imprint-and-report with dithiol dynamic combinatorial libraries | Spiked tap water | PFOA, 8.3 PFOS, 10 PFHxA, 6.3 GenX, 6.6 PfPeA, 5.3 PFHpA, 7.3 | Yes—fully distinguished among mixtures of six PFASs evaluated | Medium | [36] |
Fluorescence with biphasic oil–water droplets | Water, formation of Janus droplets using surfactants, PFASs, and oil mixtures | PFOA, 4.5 PFOS, 2.5 | Yes | Low | [27] |
Fluorescence synthetic bacterial biosensor | Drinking, river, and wastewater | PFOA, 0.01 PFOS, 0.01 | Yes—field water samples, cross reactivity across PCBs, PAHs, pesticides | Medium, >24 h response time | [30] |
Fluorescence genetically modified bacterium | Culture medium | PFOS, NA | No | Low | [29] |
Fluorescence ligand-binding, human liver fatty-acid-binding protein | Buffered water, creek water | PFOA, 112 PFOS, 345 PFHxS, 1090 | Yes | Low | [37,38] |
Fluorescence aptamer-based | Wastewater effluent | PFOA, 70.4 | Yes | Medium | [31] |
Fluorescence dual DNA and lysozyme fiber biosensors | Tap water and serum | PFDoA, 98.2 PFDA, 648 PFTeDA, 57.1 | Yes—short-chain PFASs (e.g., PFOA and PFHxS) and long-chain surfactants (e.g., sodium dodecyl sulfate and lauric acid) | Low | [39] |
Aerosol jet printed surface-enhanced Raman substrates (SERS) | Buffered water (Basic; pH = 9) | PFOA, 0.07 PFOS, 0.0005 | No | Medium | [41] |
3.2. Electrochemical-Based Methods
3.2.1. Gold Nanostar Molecularly Imprinted Polymer
3.2.2. Co-Doped Carbon Nanoarchitectures Molecularly Imprinted Polymer
3.2.3. Molecularly Imprinted Polymers: Oxygen as a Redox Probe
3.2.4. Bare Platinum Electrode
3.2.5. Platinum Sensor with Selective Perfluorinated Anion Exchange Ionomer Coating
3.2.6. Ionized PFAS Detection at Interfaces Between Immiscible Solutions
3.2.7. Ion-Transfer Electroanalytical Detection
3.2.8. Nano-Electrochemistry with Silver Nanoparticles
3.2.9. Altering Fluorinated Self-Assembled Monolayers
Method | Media | Analyte, LOD (ppb) | Selectivity Evaluated | Relative Cost | Reference |
---|---|---|---|---|---|
Gold nanostar molecularly imprinted polymer | Tap water | PFOS, 0.0075 | Yes | Low | [44] |
Co-doped carbon nanoarchitectures molecularly imprinted polymer | Tap water, wastewater, landfill leachate | PFOS, 1.2 | Yes, competing analytes in wastewater (Cl, sulfate, humic acid) | Low to medium | [48] |
Molecularly imprinted polymers: oxygen as a redox probe | River water | PFOS, 0.0017 | Yes, Cl and humic acid | Low to medium | [47] |
Bare platinum electrode | 0.1 M phosphate-buffered solution | PFOS, NA 1 | No | Low | [42] |
Platinum sensor with selective perfluorinated anion exchange ionomer coating | Buffered deionized water and drinking water | PFOA, 6.21 | Yes | Low | [43] |
Ionized PFAS detection at interfaces between immiscible solutions | Water | PFOA, 20.7 PFOS, 20 PFBS, 9.0 PFHxS, 8.0 | Yes | Low | [45] |
Ion-transfer electroanalytical detection | Drinking and laboratory tap water | PFOA, 0.497 | Yes, ions Cl, SO4 | Low to medium | [46] |
Nano-electrochemistry with silver nanoparticles | Water | PFOS, 0.04 | Yes | Low to medium | [50] |
Altering fluorinated self-assembled monolayers | Water | PFOA, NA 2 PFOS, NA 2 PFHxS, NA 2 HFPO-DA, NA 2 PFPA, NA 2 | Yes, but poor selectivity among PFASs | Low to medium | [49] |
3.3. Nonconventional Methods
3.3.1. Hydrogel-Swelling-Enabled PFAS Detection
3.3.2. PFOA Sensing Through Flow Rate Analysis
3.3.3. Thermal Detection of PFASs Using Molecular Imprinting
3.3.4. Fluorine Nuclear Magnetic Resonance (NMR)
3.3.5. Metal–Organic Framework (MOF) Paired with Deep Eutectic Solvents
4. Discussion
4.1. Comparisons Among Emerging PFAS-Sensing Technologies
4.2. Application to Risk-Based Assessments
4.3. Knowledge Gaps and Recommendations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gluge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef] [PubMed]
- Kurwadkar, S.; Dane, J.; Kanel, S.R.; Nadagouda, M.N.; Cawdrey, R.W.; Ambade, B.; Struckhoff, G.C.; Wilkin, R. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci. Total Environ. 2022, 809, 151003. [Google Scholar] [CrossRef]
- Sims, J.L.; Stroski, K.M.; Kim, S.; Killeen, G.; Ehalt, R.; Simcik, M.F.; Brooks, B.W. Global occurrence and probabilistic environmental health hazard assessment of per- and polyfluoroalkyl substances (PFASs) in groundwater and surface waters. Sci. Total Environ. 2022, 816, 151535. [Google Scholar] [CrossRef] [PubMed]
- Cousins, I.T.; Johansson, J.H.; Salter, M.E.; Sha, B.; Scheringer, M. Outside the Safe Operating Space of a New Planetary Boundary for Per- and Polyfluoroalkyl Substances (PFAS). Environ. Sci. Technol. 2022, 56, 11172–11179. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Johir, M.A.H.; McLaughlan, R.; Nguyen, L.N.; Xu, B.; Nghiem, L.D. Per- and polyfluoroalkyl substances in soil and sediments: Occurrence, fate, remediation and future outlook. Sci. Total Environ. 2020, 748, 141251. [Google Scholar] [CrossRef] [PubMed]
- Giesy, J.P.; Kannan, K. Global Distribution of Perfluorooctane Sulfonate in Wildlife. Environ. Sci. Technol. 2001, 35, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, E.M.; Hu, X.C.; Dassuncao, C.; Tokranov, A.K.; Wagner, C.C.; Allen, J.G. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Guan, R.; Zhu, N.; Hao, J.; Peng, H.; He, A.; Zhao, C.; Wang, Y.; Jiang, G. A critical review on the bioaccumulation, transportation, and elimination of per- and polyfluoroalkyl substances in human beings. Crit. Rev. Environ. Sci. Technol. 2024, 54, 95–116. [Google Scholar] [CrossRef]
- Wee, S.Y.; Aris, A.Z. Revisiting the “forever chemicals”, PFOA and PFOS exposure in drinking water. NPJ Clean Water 2023, 6, 57. [Google Scholar] [CrossRef]
- Thompson, D.; Zolfigol, N.; Xia, Z.; Lei, Y. Recent progress in per- and polyfluoroalkyl substances (PFAS) sensing: A critical mini-review. Sens. Actuators Rep. 2024, 7, 100189. [Google Scholar] [CrossRef]
- USEPA. Regional Screening Levels (RSLs)—What’s New; USEPA: Washington, DC, USA. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-whats-new (accessed on 20 September 2024).
- BCLP. PFAS Drinking Water Standards: State-by-State Regulations; BCLP: Saint Louis, MO, USA. Available online: https://www.bclplaw.com/en-US/events-insights-news/pfas-drinking-water-standards-state-by-state-regulations.html (accessed on 20 September 2024).
- NCDEQ. Water Quality PFAS Standards for North Carolina; NCDEQ: Raleigh, NC, USA. Available online: https://www.deq.nc.gov/news/key-issues/emerging-compounds/water-quality-pfas-standards-north-carolina (accessed on 20 September 2024).
- BCLP. PFAS in soil: State regulations. In BCLP Emerging; BCLP: Saint Louis, MO, USA. Available online: https://www.bclplaw.com/en-US/events-insights-news/pfas-in-soil-state-regulations.html (accessed on 20 September 2024).
- DOD. Prioritization of Department of Defense Cleanup Actions to Implement the Federal Drinking Water Standards for per-and Polyfluoroalkyl Substances Under the Defense Environmental Restoration Program; DOD: Arlington County, VA, USA. Available online: https://www.acq.osd.mil/eie/eer/ecc/pfas/docs/policies/epa-mcl-implementation-memo.pdf (accessed on 8 September 2024).
- USEPA. Framework for Ecological Risk Assessment; USEPA: Washington, DC, USA, 1992. [Google Scholar]
- USEPA. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessment; USEPA: Washington, DC, USA, 1997. [Google Scholar]
- Shoemaker, J.; Tettenhorst, D. Method 537.1: Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS); USEPA: Washington, DC, USA, 2018. [Google Scholar]
- USEPA. Method 533: Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry; USEPA: Washington, DC, USA, 2019. [Google Scholar]
- USEPA. Draft Method 1633: Analysis of Per- and Polyfluoroalkyl Substances(PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS; USEPA: Washington, DC, USA, 2021. [Google Scholar]
- Ankley, G.T.; Cureton, P.; Hoke, R.A.; Houde, M.; Kumar, A.; Kurias, J.; Lanno, R.; McCarthy, C.; Newsted, J.; Salice, C.J.; et al. Assessing the Ecological Risks of Per- and Polyfluoroalkyl Substances: Current State-of-the Science and a Proposed Path Forward. Environ. Toxicol. Chem. 2021, 40, 564–605. [Google Scholar] [CrossRef] [PubMed]
- Nahar, K.; Zulkarnain, N.A.; Niven, R.K. A Review of Analytical Methods and Technologies for Monitoring Per- and Polyfluoroalkyl Substances (PFAS) in Water. Water 2023, 15, 3577. [Google Scholar] [CrossRef]
- Rehman, A.U.; Crimi, M.; Andreescu, S. Current and emerging analytical techniques for the determination of PFAS in environmental samples. Trends Environ. Anal. Chem. 2023, 37, e00198. [Google Scholar] [CrossRef]
- Menger, R.F.; Beck, J.J.; Borch, T.; Henry, C.S. Colorimetric Paper-Based Analytical Device for Perfluorooctanesulfonate Detection. ACS EST Water 2022, 2, 565–572. [Google Scholar] [CrossRef]
- Taylor, C.M.; Ellingsen, T.A.; Breadmore, M.C.; Kilah, N.L. Porphyrin-based colorimetric sensing of perfluorooctanoic acid as proof of concept for perfluoroalkyl substance detection. Chem. Commun. 2021, 57, 11649–11652. [Google Scholar] [CrossRef]
- Trinh, V.; Malloy, C.S.; Durkin, T.J.; Gadh, A.; Savagatrup, S. Detection of PFAS and Fluorinated Surfactants Using Differential Behaviors at Interfaces of Complex Droplets. ACS Sens. 2022, 7, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Gou, Z.; Wang, A.; Zhang, X.; Zuo, Y.; Lin, W. Multi-head cationic siloxane based “turn on” fluorescent system for selective detection of perfluorooctanoic sulfonate (PFOS). Sens. Actuators B Chem. 2022, 367, 132017. [Google Scholar] [CrossRef]
- Young, N.A.; Lambert, R.L.; Buch, A.M.; Dahl, C.L.; Harris, J.D.; Barnhart, M.D.; Sitko, J.C.; Jordan Steel, J. A Synthetic Biology Approach Using Engineered Bacteria to Detect Perfluoroalkyl Substance (PFAS) Contamination in Water. Mil. Med. 2021, 186, 801–807. [Google Scholar] [CrossRef]
- Sunantha, G.; Vasudevan, N. A method for detecting perfluorooctanoic acid and perfluorooctane sulfonate in water samples using genetically engineered bacterial biosensor. Sci. Total Environ. 2021, 759, 143544. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Yang, K.-A.; Choi, Y.; Choe, J.K. Novel ssDNA aptamer-based fluorescence sensor for perfluorooctanoic acid detection in water. Environ. Int. 2022, 158, 107000. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liao, M.; Xiao, K.; Zhuang, K.; Zheng, W.; Yao, Z. A water-soluble fluorescence probe based on perylene diimide for rapid and selective detection of perfluorooctane sulfonate in 100% aqueous media. Sens. Actuators B Chem. 2022, 350, 130851. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, H. Detection of PFOS and copper(ii) ions based on complexation induced fluorescence quenching of porphyrin molecules. Anal. Methods 2014, 6, 2379–2383. [Google Scholar] [CrossRef]
- Concellon, A.; Castro-Esteban, J.; Swager, T.M. Ultratrace PFAS Detection Using Amplifying Fluorescent Polymers. J. Am. Chem. Soc. 2023, 145, 11420–11430. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hussain, S.; Tang, Y.; Chen, X.; Zhang, S.; Wang, Y.; Zhang, P.; Gao, R.; Wang, S.; Hao, Y. Two-in-one platform based on conjugated polymer for ultrasensitive ratiometric detection and efficient removal of perfluoroalkyl substances from environmental water. Sci. Total Environ. 2023, 860, 160467. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.E.; Waters, M.L. Detection and differentiation of per- and polyfluoroalkyl substances (PFAS) in water using a fluorescent imprint-and-report sensor array. Chem. Sci. 2023, 14, 928–936. [Google Scholar] [CrossRef]
- Mann, M.M.; Tang, J.D.; Berger, B.W. Engineering human liver fatty acid binding protein for detection of poly- and perfluoroalkyl substances. Biotechnol. Bioeng. 2022, 119, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.M.; Berger, B.W. A genetically-encoded biosensor for direct detection of perfluorooctanoic acid. Sci. Rep. 2023, 13, 15186. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yang, B.; Peng, L.; Wu, J.; Hao, H.; Lou, S. Target-triggered double fluorescent biosensors for rapid and sensitive detection of long-chain perfluorinated compounds using DNA probe and lysozyme fiber. Sci. Total Environ. 2023, 860, 160496. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Dai, J.; Wang, C.; Zhou, H.; Li, J.; Ni, G.; Zhang, M.; Huang, Y. Ag Nanoparticle/Au@Ag Nanorod Sandwich Structures for SERS-Based Detection of Perfluoroalkyl Substances. ACS Appl. Nano Mater. 2023, 6, 13974–13983. [Google Scholar] [CrossRef]
- McDonnell, C.; Albarghouthi, F.M.; Selhorst, R.; Kelley-Loughnane, N.; Franklin, A.D.; Rao, R. Aerosol Jet Printed Surface-Enhanced Raman Substrates: Application for High-Sensitivity Detection of Perfluoroalkyl Substances. ACS Omega 2023, 8, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, P.; Yao, Y.; Li, Y.C. Understanding PFOS Adsorption on a Pt Electrode for Electrochemical Sensing Applications. ChemElectroChem 2023, 10, e202201006. [Google Scholar] [CrossRef]
- Sahu, S.P.; Kole, S.; Arges, C.G.; Gartia, M.R. Rapid and Direct Perfluorooctanoic Acid Sensing with Selective Ionomer Coatings on Screen-Printed Electrodes under Environmentally Relevant Concentrations. ACS Omega 2022, 7, 5001–5007. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Zhu, D.Z.; Gan, H.; Yao, Z.; Luo, J.; Yu, S.; Kurup, P. An ultra-sensitive molecularly imprinted polymer (MIP) and gold nanostars (AuNS) modified voltammetric sensor for facile detection of perfluorooctance sulfonate (PFOS) in drinking water. Sens. Actuators B Chem. 2022, 352, 131055. [Google Scholar] [CrossRef]
- Islam, G.J.; Arrigan, D.W.M. Voltammetric Selectivity in Detection of Ionized Perfluoroalkyl Substances at Micro-Interfaces between Immiscible Electrolyte Solutions. ACS Sens. 2022, 7, 2960–2967. [Google Scholar] [CrossRef]
- Lamichhane, H.B.; Arrigan, D.W.M. Ion-transfer electroanalytical detection of perfluorooctanoic acid at a liquid–liquid micro-interface array. Sens. Diagn. 2023, 2, 938–947. [Google Scholar] [CrossRef]
- Clark, R.B.; Dick, J.E. Electrochemical Sensing of Perfluorooctanesulfonate (PFOS) Using Ambient Oxygen in River Water. ACS Sens. 2020, 5, 3591–3598. [Google Scholar] [CrossRef] [PubMed]
- Pierpaoli, M.; Szopinska, M.; Olejnik, A.; Ryl, J.; Fudala-Ksiazek, S.; Luczkiewicz, A.; Bogdanowicz, R. Engineering boron and nitrogen codoped carbon nanoarchitectures to tailor molecularly imprinted polymers for PFOS determination. J. Hazard. Mater. 2023, 458, 131873. [Google Scholar] [CrossRef]
- Moro, G.; Dongmo Foumthuim, C.J.; Spinaci, M.; Martini, E.; Cimino, D.; Balliana, E.; Lieberzeit, P.; Romano, F.; Giacometti, A.; Campos, R.; et al. How perfluoroalkyl substances modify fluorinated self-assembled monolayer architectures: An electrochemical and computational study. Anal. Chim. Acta. 2022, 1204, 339740. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Andreescu, D.; Hassan, M.H.; Ye, J.; Andreescu, S. Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles. Angew. Chem. Int. Ed. 2022, 61, e202209164. [Google Scholar] [CrossRef] [PubMed]
- Savage, D.T.; Hilt, Z.J.; Dziubla, T.D. Assessing the perfluoroalkyl acid-induced swelling of Förster resonance energy transfer-capable poly(N-isopropylacrylamide) microgels. Analyst 2021, 146, 3599–3607. [Google Scholar] [CrossRef] [PubMed]
- Breshears, L.E.; Mata-Robles, S.; Tang, Y.; Baker, J.C.; Reynolds, K.A.; Yoon, J.Y. Rapid, sensitive detection of PFOA with smartphone-based flow rate analysis utilizing competitive molecular interactions during capillary action. J. Hazard. Mater. 2023, 446, 130699. [Google Scholar] [CrossRef] [PubMed]
- Tabar, F.A.; Lowdon, J.W.; Caldara, M.; Cleij, T.J.; Wagner, P.; Diliën, H.; Eersels, K.; van Grinsven, B. Thermal determination of perfluoroalkyl substances in environmental samples employing a molecularly imprinted polyacrylamide as a receptor layer. Environ. Technol. Innov. 2023, 29, 103021. [Google Scholar] [CrossRef]
- Gauthier, J.R.; Mabury, S.A. Noise-Reduced Quantitative Fluorine NMR Spectroscopy Reveals the Presence of Additional Per- and Polyfluorinated Alkyl Substances in Environmental and Biological Samples When Compared with Routine Mass Spectrometry Methods. Anal. Chem. 2022, 94, 3278–3286. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Fan, C.; Yin, Y.; Shan, Y.; Cao, X. Cooperative hydrogen- and halogen-bonding interaction promoted deep eutectic solvent-functionalized magnetic metal-organic framework for perfluoroalkyl iodides detection in edible oils. Food Control 2023, 148, 109625. [Google Scholar] [CrossRef]
- Caroleo, F.; Magna, G.; Naitana, M.L.; Di Zazzo, L.; Martini, R.; Pizzoli, F.; Muduganti, M.; Lvova, L.; Mandoj, F.; Nardis, S.; et al. Advances in Optical Sensors for Persistent Organic Pollutant Environmental Monitoring. Sensors 2022, 22, 2649. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Zhu, C.; Yue, Z.; Hao, Y.; Gao, R.; Wei, J. Rational design of signal amplifying fluorescent conjugated polymers for environmental monitoring applications: Recent advances and perspectives. Coord. Chem. Rev. 2024, 499, 215480. [Google Scholar] [CrossRef]
- Corbett, P.T.; Leclaire, J.; Vial, L.; West, K.R.; Wietor, J.-L.; Sanders, J.K.M.; Otto, S. Dynamic Combinatorial Chemistry. Chem. Rev. 2006, 106, 3652–3711. [Google Scholar] [CrossRef] [PubMed]
- Brusseau, M.L.; Van Glubt, S. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces. Water Res. 2019, 161, 17–26. [Google Scholar] [CrossRef]
- Su, L.; Jia, W.; Hou, C.; Lei, Y. Microbial biosensors: A review. Biosens. Bioelectron. 2011, 26, 1788–1799. [Google Scholar] [CrossRef] [PubMed]
- Etchegoin, P.G.; Le Ru, E.C. Basic Electromagnetic Theory of SERS. In Surface Enhanced Raman Spectroscopy; Wiley: Hoboken, NJ, USA, 2010; pp. 1–37. [Google Scholar]
- Li-Lin, T.; Shawn, P. Inkjet-printed Surface-Enhanced Raman Scattering (SERS) sensors for field applications. Proc. SPIE 2023, 12516, 125160A. [Google Scholar]
- Fisher, C.; Skolrood, L.N.; Li, K.; Joshi, P.C.; Aytug, T. Aerosol-Jet Printed Sensors for Environmental, Safety, and Health Monitoring: A Review. Adv. Mater. Technol. 2023, 8, 2300030. [Google Scholar] [CrossRef]
- Karimian, N.; Stortini, A.M.; Moretto, L.M.; Costantino, C.; Bogialli, S.; Ugo, P. Electrochemosensor for Trace Analysis of Perfluorooctanesulfonate in Water Based on a Molecularly Imprinted Poly(o-phenylenediamine) Polymer. ACS Sens. 2018, 3, 1291–1298. [Google Scholar] [CrossRef] [PubMed]
- Glasscott, M.W.; Vannoy, K.J.; Kazemi, R.; Verber, M.D.; Dick, J.E. μ-MIP: Molecularly Imprinted Polymer-Modified Microelectrodes for the Ultrasensitive Quantification of GenX (HFPO-DA) in River Water. Environ. Sci. Technol. Lett. 2020, 7, 489–495. [Google Scholar] [CrossRef]
- Garada, M.B.; Kabagambe, B.; Kim, Y.; Amemiya, S. Ion-transfer voltammetry of perfluoroalkanesulfonates and perfluoroalkanecarboxylates: Picomolar detection limit and high lipophilicity. Anal. Chem. 2014, 86, 11230–11237. [Google Scholar] [CrossRef] [PubMed]
- Viada, B.N.; Yudi, L.M.; Arrigan, D.W.M. Detection of perfluorooctane sulfonate by ion-transfer stripping voltammetry at an array of microinterfaces between two immiscible electrolyte solutions. Analyst 2020, 145, 5776–5786. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Wang, S.; Zhou, Z.; Ma, Y.; Ma, X.; Cai, Y. Sensitive colorimetric visualization of perfluorinated compounds using poly(ethylene glycol) and perfluorinated thiols modified gold nanoparticles. Anal. Chem. 2014, 86, 4170–4177. [Google Scholar] [CrossRef]
- Savage, D.T.; Briot, N.J.; Hilt, J.Z.; Dziubla, T.D. On the swelling behavior of poly(-Isopropylacrylamide) hydrogels exposed to perfluoroalkyl acids. J. Polym. Sci. 2021, 59, 289–299. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Per- and Polyfluoroalkyl Substances (PFAS) Final PFAS National Primary Drinking Water Regulation; USEPA: Washington, DC, USA, 2024. [Google Scholar]
- Jarvis, A.L.; Justice, J.R.; Elias, M.C.; Schnitker, B.; Gallagher, K. Perfluorooctane Sulfonate in US Ambient Surface Waters: A Review of Occurrence in Aquatic Environments and Comparison to Global Concentrations. Environ. Toxicol. Chem. 2021, 40, 2425–2442. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Aquatic Life Criteria—Perfluorooctane Sulfonate (PFOS); USEPA: Washington, DC, USA. Available online: https://www.epa.gov/wqc/aquatic-life-criteria-perfluorooctane-sulfonate-pfos (accessed on 15 October 2024).
- Codling, G.; Sturchio, N.C.; Rockne, K.J.; Li, A.; Peng, H.; Tse, T.J.; Jones, P.D.; Giesy, J.P. Spatial and temporal trends in poly- and per-fluorinated compounds in the Laurentian Great Lakes Erie, Ontario and St. Clair. Environ. Pollut. 2018, 237, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Pfotenhauer, D.; Sellers, E.; Olson, M.; Praedel, K.; Shafer, M. PFAS concentrations and deposition in precipitation: An intensive 5-month study at National Atmospheric Deposition Program—National trends sites (NADP-NTN) across Wisconsin, USA. Atmos. Environ. 2022, 291, 119368. [Google Scholar] [CrossRef]
- Paige, T.; De Silva, T.; Buddhadasa, S.; Prasad, S.; Nugegoda, D.; Pettigrove, V. Background concentrations and spatial distribution of PFAS in surface waters and sediments of the greater Melbourne area, Australia. Chemosphere 2024, 349, 140791. [Google Scholar] [CrossRef]
- Johnson, G.R.; Brusseau, M.L.; Carroll, K.C.; Tick, G.R.; Duncan, C.M. Global distributions, source-type dependencies, and concentration ranges of per- and polyfluoroalkyl substances in groundwater. Sci. Total Environ. 2022, 841, 156602. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS); USEPA: Washington, DC, USA, 2016. [Google Scholar]
- Rankin, K.; Mabury, S.A.; Jenkins, T.M.; Washington, J.W. A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence. Chemosphere 2016, 161, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Vedagiri, U.K.; Anderson, R.H.; Loso, H.M.; Schwach, C.M. Ambient levels of PFOS and PFOA in multiple environmental media. Remediat. J. 2018, 28, 9–51. [Google Scholar] [CrossRef]
- Barbo, N.; Stoiber, T.; Naidenko, O.V.; Andrews, D.Q. Locally caught freshwater fish across the United States are likely a significant source of exposure to PFOS and other perfluorinated compounds. Environ. Res. 2023, 220, 115165. [Google Scholar] [CrossRef]
- Ruffle, B.; Archer, C.; Vosnakis, K.; Butler, J.D.; Davis, C.W.; Goldsworthy, B.; Parkman, R.; Key, T.A. US and international per- and polyfluoroalkyl substances surface water quality criteria: A review of the status, challenges, and implications for use in chemical management and risk assessment. Integr. Environ. Assess. Manag. 2024, 20, 36–58. [Google Scholar] [CrossRef]
- USEPA. Drinking Water HealthAdvisory forPerfluorooctanoic Acid(PFOA); USEPA: Washington, DC, USA, 2016. [Google Scholar]
- Conder, J.; Zodrow, J.; Arblaster, J.; Kelly, B.; Gobas, F.; Suski, J.; Osborn, E.; Frenchmeyer, M.; Divine, C.; Leeson, A. Strategic resources for assessing PFAS ecological risks at AFFF sites. Integr Environ. Assess. Manag. 2021, 17, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Zodrow, J.; Vedagiri, U.; Sorell, T.; McIntosh, L.; Larson, E.; Hall, L.; Dourson, M.; Dell, L.; Cox, D.; Barfoot, K.; et al. PFAS Experts Symposium 2: PFAS Toxicology and Risk Assessment in 2021—Contemporary issues in human and ecological risk assessment of PFAS. Remediat. J. 2022, 32, 29–44. [Google Scholar] [CrossRef]
- Menger, R.F.; Funk, E.; Henry, C.S.; Borch, T. Sensors for detecting per- and polyfluoroalkyl substances (PFAS): A critical review of development challenges, current sensors, and commercialization obstacles. Chem. Eng. J. 2021, 417, 129133. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.W.; Ruffle, B.; McQueen, A.; Thakali, S.; Edwards, D. Frameworks for screening and risk management of chemicals and advanced materials: A critical review. Integr. Environ. Assess. Manag. 2023, 19, 1192–1206. [Google Scholar] [CrossRef] [PubMed]
Detection Mechanism | Description | Technique | Materials/Approach | Reference |
---|---|---|---|---|
Optical-based methods | These methods rely on the interaction of PFAS molecules with specialized substances or surfaces that enhance optical signals and quantify target analyte through either a chemical reaction or a mechanism. | Colorimetric | Atomic copper-carbon nitride; paper-based devices using methylene green; porphyrin-based detector; optical emission of biphasic oil–water droplets | [25,26,27] |
Fluorescence | Bacterial gene expression; fluorescein-modified aptamer; cationic siloxane and erythosine B; perylene dimide; conjugated polymer; imprint-and-report; ligand-binding; aptamer-based; dual DNA and lysozyme fiber biosensors | [28,29,30,31,32,33,34,35,36,37,38,39] | ||
Surface-enhanced Raman spectroscopy (SERS) | Nanoparticle–nanorod sandwich structure; aerosol jet printing silver nanoparticles and graphene inks on Kapton films | [40,41] | ||
Electrochemical-based | Emerging electrochemical-based analytical approaches for PFAS detection focus on exploiting interactions of PFAS molecules with modified electrodes. PFASs are generally electrochemically inert and do not transfer electrons in normal environmental pH conditions. Therefore, novel approaches have been developed to block signals, which results in a quantifiable reaction proportional to the concentration. | Electrochemical impedance spectroscopy (EIS) | Bare platinum electrode; modified electrode with selective perfluorinated anion exchange ionomer | [42,43] |
Cyclic voltammetry (CV), differential pulse voltammetry (DPV) | Gold nanostars (AuNS) on glassy carbon electrodes (GCE); micropipette-based interfaces between two immiscible electrolyte solutions | [44,45,46] | ||
Molecularly imprinted polymers (MIPs) paired with EIS or DPV | MIP-based carbon electrode | [47,48] | ||
Self-assembled monolayers (SAMs) paired with voltammetry | SAMs using bonding between gold substrates and thiol groups | [49] | ||
Single particle collision electrochemistry (SPCE) | nano-electrochemistry with silver nanoparticles | [50] | ||
Nonconventional | Novel technologies applying methods of detection outside of electrochemical or optical methods of detection. | Hydrogen swelling | Microgel structure change | [51] |
Flow rate analysis | Lateral flow immunoassay (LFIA) | [52] | ||
Thermal detection | MIP paired with heat transfer method (HTM) | [53] | ||
Nuclear magnetic resonance (NMR) | Fluorine NMR spectroscopy | [54] | ||
Metal–organic framework (MOF) paired with deep eutectic solvents | Deep eutectic solvents paired with magnetic solid-phase extraction system immobilized on a MOF | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McQueen, A.; Kimble, A.; Krupa, P.; Longwell, A.; Calomeni-Eck, A.; Moore, D. Review of Emerging and Nonconventional Analytical Techniques for Per- and Polyfluoroalkyl Substances (PFAS): Application for Risk Assessment. Water 2025, 17, 303. https://doi.org/10.3390/w17030303
McQueen A, Kimble A, Krupa P, Longwell A, Calomeni-Eck A, Moore D. Review of Emerging and Nonconventional Analytical Techniques for Per- and Polyfluoroalkyl Substances (PFAS): Application for Risk Assessment. Water. 2025; 17(3):303. https://doi.org/10.3390/w17030303
Chicago/Turabian StyleMcQueen, Andrew, Ashley Kimble, Paige Krupa, Anna Longwell, Alyssa Calomeni-Eck, and David Moore. 2025. "Review of Emerging and Nonconventional Analytical Techniques for Per- and Polyfluoroalkyl Substances (PFAS): Application for Risk Assessment" Water 17, no. 3: 303. https://doi.org/10.3390/w17030303
APA StyleMcQueen, A., Kimble, A., Krupa, P., Longwell, A., Calomeni-Eck, A., & Moore, D. (2025). Review of Emerging and Nonconventional Analytical Techniques for Per- and Polyfluoroalkyl Substances (PFAS): Application for Risk Assessment. Water, 17(3), 303. https://doi.org/10.3390/w17030303