Hydrochemical Dynamics and Water Quality Assessment of the Ramsar-Listed Ghodaghodi Lake Complex: Unveiling the Water-Environment Nexus
"> Figure 1
<p>Study area region illustrating Ghodaghodi Lake and its adjacent lakes, including sampling sites: (<b>i</b>) A global map illustrating the study area, marked by a red polygon; (<b>ii</b>) A map of the Kailali District highlighting Ghodaghodi Municipality in yellow and the Ramsar site encompassing the Ghodaghodi Lake complex (GLC) in red; (<b>iii</b>) A map of the GLC-Ramsar site, depicting the locations of Ghodaghodi Lake and its associated lakes, classified into Section ‘A’ and Section ‘B’ with delineations; (<b>iv</b>) Locations of Bichka Chaita, Budhiya Nakhrod, Ramphal, and Sanopokhari Lakes along with their respective sampling sites BC1–BC5, BN1–BN5, R1–R5, and SP1–SP5, and (<b>v</b>) Locations of Ghodaghodi and Ojahuwa Lakes with their corresponding sampling sites G1–G24 and OH1–OH5.</p> "> Figure 2
<p>Land use/land cover map of the study area region illustrating different categories adjacent to sampling points of the lakes.</p> "> Figure 3
<p>Piper diagram for the classification of lake water types in Ghodaghodi and its associated lakes (Ojahuwa, Bichka Chaita, and Sanopokhari) during the pre-monsoon season, featuring three plots: anionic, cationic, and diamond plots.</p> "> Figure 4
<p>Piper diagram for the classification of lake water types in Ghodaghodi and its related lakes (Ojahuwa, Bichka Chaita, Budhiya Nakhrod, Ramphal, and Sanopokhari) during the post-monsoon season, featuring three plots: anionic, cationic, and diamond plots.</p> "> Figure 5
<p>Gibbs diagrams illustrating the fluctuation of the weight ratio of Na<sup>+</sup>/(Na<sup>+</sup> + Ca<sup>2+</sup>) and Cl<sup>−</sup>/(Cl<sup>−</sup> + HCO<sup>3−</sup>) concerning TDS (pre-monsoon) throughout all examined lakes (Ghodaghodi, Ojahuwa, Bichka Chaita, and Sanopokhari).</p> "> Figure 6
<p>Gibbs diagrams illustrating the fluctuation of the weight ratio of Na<sup>+</sup>/(Na<sup>+</sup> + Ca<sup>2+</sup>) and Cl<sup>−</sup>/(Cl<sup>−</sup> + HCO<sup>3−</sup>) concerning TDS (post-monsoon) throughout all examined lakes (Ghodaghodi, Ojahuwa, Bichka Chaita, Budhiya Nakhrod, Ramphal, and Sanopokhari).</p> "> Figure 7
<p>Mixing diagrams illustrating the roles of carbonate, silicate, and evaporates in the hydrochemistry of Ghodaghodi and associated lakes (Ojahuwa, Bichka Chaita, and Sanopokhari) during the pre-monsoon season. (<b>a</b>) represents HCO<sub>3</sub><sup>−</sup>/Na<sup>+</sup> vs Ca<sup>2+</sup>/Na<sup>+</sup> and (<b>b</b>) represents Mg<sup>2+</sup>/Na<sup>+</sup> vs Ca<sup>2+</sup>/Na<sup>+</sup> of mixing diagram.</p> "> Figure 8
<p>Mixing diagrams illustrating the roles of carbonate, silicate, and evaporates in the hydrochemistry of Ghodaghodi and its associated lakes (Ojahuwa, Bichka Chaita, Budhiya Nakhrod, Ramphal, and Sanopokhari) during the post-monsoon season. (<b>a</b>) represents HCO<sub>3</sub><sup>−</sup>/Na<sup>+</sup> vs Ca<sup>2+</sup>/Na<sup>+</sup> and (<b>b</b>) represents Mg<sup>2+</sup>/Na<sup>+</sup> vs Ca<sup>2+</sup>/Na<sup>+</sup> of mixing diagram.</p> "> Figure 9
<p>Wilcox diagram depicting the irrigation water quality based on SAR and EC for Ghodaghodi Lake and three related lakes (Ojahuwa, Bichka Chaita, and Sanopokhari) during the pre-monsoon period.</p> "> Figure 10
<p>Wilcox diagram depicting the irrigation water quality based on SAR and EC for Ghodaghodi Lake and five related lakes (Ojahuwa, Bichka Chaita, Sanopokhari, Budhiya Nakhrod, and Ramphal) during the post-monsoon period.</p> "> Figure 11
<p>Hydrochemical dynamics, sustainable development goals (SDGs) impact, and conservation strategies for Ghodaghodi Lake Complex (GLC).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Field and Laboratory Analysis
2.4. Data Analysis
2.4.1. Statistical Data Analysis
2.4.2. Evaluation of Controlling Mechanisms of Hydrochemistry
- Piper diagram
- Gibbs plot and mixing diagram
2.4.3. Evaluation of Irrigation Suitability
- Electrical Conductivity (EC)
- Sodium Percentage (Na %)
- Sodium Adsorption Ratio (SAR)
- Magnesium Adsorption Ratio (MAR)
- Kelly’s Ratio (KR)
- Permeability Index (PI)
- Cation Ratio of Soil Structural Stability (CROSS)
- Wilcox Diagram.
3. Results and Discussion
3.1. General Hydrochemistry and Variation
3.2. Comparison of Pre- and Post-Monsoon Data for Identical Lakes and Inter-Lake Comparison Within the Same Season
3.3. Comparative Assessment of Hydrochemical Facies
3.4. Controlling Mechanisms of Hydrochemistry
3.5. Water Suitability for Irrigation
4. Comparison of the Study Findings with the Literature
5. Impact of the Study Finding on Environmentally Sustainable Development Goals (SDGs)
6. Limitations and Future Research Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 5th ed.; John Wiley Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- George, S.J.; Harper, R.J.; Hobbs, R.J.; Tibbett, M.A. Sustainable agricultural landscape for Australia: A review of interlacing carbon sequestration, biodiversity and salinity management in agroforestry systems. Agric. Ecosyst. Environ. 2012, 163, 28–36. [Google Scholar] [CrossRef]
- Saqr, A.M.; Nasr, M.; Fujii, M.; Yoshimura, C.; Ibrahim, M.G. Monitoring of Agricultural Expansion Using Hybrid Classification Method in Southwestern Fringes of Wadi El-Natrun, Egypt: An Appraisal for Sustainable Development. In Environment and Sustainable Development; Ujikawa, K., Ishiwatari, M., Hullebusch, E.V., Eds.; ACESD 2022. Environmental Science and Engineering; Springer: Singapore, 2023; pp. 349–362. [Google Scholar] [CrossRef]
- Zheng, H.; Cao, S. Threats to China’s Biodiversity by Contradictions Policy. Ambio 2015, 44, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Weng, B.; Yan, D.; Wang, K.; Li, X.; Bi, W.; Li, M.; Cheng, X.; Liu, Y. Wetlands of international importance: Status, threats, and future protection. Int. J. Environ. Res. Public Health 2019, 16, 1818. [Google Scholar] [CrossRef]
- Cantonati, M.; Poikane, S.; Pringle, C.M.; Stevens, L.E.; Turak, E.; Heino, J.; Richardson, J.S.; Bolpagni, R.; Borrini, A.; Cid, N.; et al. Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: Consequences for biodiversity conservation. Water 2020, 12, 260. [Google Scholar] [CrossRef]
- IUCN. A Review of the Status and Threats to Wetlands in Nepal; IUCN: Gland, Switzerland, 2004; p. 80. [Google Scholar]
- Pant, R.R.; Pal, K.B.; Bishwakarma, K.; Thapa, L.B.; Dangol, A.; Dawadi, B.; Poudel, P.; Bhattarai, B.; Joshi, T.R.; Bhatt, Y.R. Application of Multivariate Approaches to the Hydro-chemical Assessment of the Ghodaghodi Lake, Sudurpaschim Province, Nepal. Nepal J. Sci. Technol. 2021, 19, 46–54. [Google Scholar] [CrossRef]
- Shrestha, B.; Shrestha, S.; Shrestha, A.; Khadka, U.R. Ramsar sites in Nepal: Conservation, present scenario, biodiversity value and threats. J. Wetl. Ecol. 2020, 2020, 15. [Google Scholar] [CrossRef]
- Pant, R.R.; Pal, K.B.; Pathak, G.; Bishwakarma, K.; Thapa, L.B.; Dhital, Y.P.; Bhatta, Y.R.; Joshi, G.R.; Rijal, K. Water quality and health risk assessment of trace elements contamination in Ghodaghodi Lake, Sudurpaschim Province, Nepal. Nepal J. Environ. Sci. 2021, 9, 29–40. [Google Scholar] [CrossRef]
- Bhatta, R.; Tuladhar, S.; Gurung, S.; Raut, N. Water quality of Ghodaghodi Lake: A Ramsar site in western Nepal. In Proceedings of the International Conference on Natural Resources, Agriculture and Society in Changing Climate, Kathmandu, Nepal, 17–19 August 2019; pp. 73–84. [Google Scholar]
- Krauze, K.; Wagner, I. An ecohydrological approach for the protection and enhancement of ecosystem services. In Use of Landscape Sciences for the Assessment of Environmental Security; Springer: Berlin/Heidelberg, Germany, 2007; pp. 177–207. [Google Scholar] [CrossRef]
- Lamsal, P.; Atreya, K.; Ghosh, M.K.; Pant, K.P. Effects of population, land cover change, and climatic variability on wetland resource degradation in a Ramsar listed Ghodaghodi Lake Complex, Nepal. Environ. Monit. Assess. 2019, 191, 415. [Google Scholar] [CrossRef]
- Alao, J.O.; Ayejoto, D.A.; Fahad, A.; Mohammed, M.A.A.; Saqr, A.M.; Joy, A.O. Environmental Burden of Waste Generation and Management in Nigeria. In Technical Landfills and Waste Management; Souabi, S., Anouzla, A., Eds.; Springer Water; Springer: Cham, Switzerland, 2024; pp. 27–56. [Google Scholar] [CrossRef]
- Noman, M.; Ullah, I.; Khan, M.A.; Qazi, A.; Farooq, W.; Saqr, A.; Elsheikh, A. Analysis of overcurrent protective relaying as minimum adopted fault protection for small-scale hydropower plants. Int. J. Environ. Sci. Technol. 2024, 21, 4457–4470. [Google Scholar] [CrossRef]
- Lawal, A.; Tijani, M.N.; Snow, D.; D’Alessio, M. Quality and hydrochemical assessment of groundwater in geological transition zones: A case study from N.E. Nigeria. Environ. Sci. Pollut. Res. 2023, 30, 10643–10663. [Google Scholar] [CrossRef]
- Boehrer, B.; Schultze, M. Stratification of lakes. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef]
- Boualem, B.; Egbueri, J.C. Graphical, statistical and index-based techniques integrated for identifying the hydrochemical fingerprints and groundwater quality of In Salah, Algerian Sahara. Environ. Geochem. Health 2024, 46, 158. [Google Scholar] [CrossRef] [PubMed]
- Touhari, F.; Meddi, M.; Mehaiguene, M.; Razack, M. Hydrogeochemical assessment of the Upper Cheliff groundwater (North West Algeria). Environ. Earth Sci. 2015, 73, 3043–3061. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Pant, R.R.; Bishwakarma, K.; Pal, K.B.; Thapa, L.B.; Shrestha, R.G.; Karuppannan, S.; Garu, L.; Bista, S.; Singh, V.B. Comparative analysis of hydrochemical variables of two Ramsar-listed lakes in Pokhara Valley, Nepal. Int. J. Energy Water Resour. 2023, 7, 1–13. [Google Scholar] [CrossRef]
- Lamsal, P.; Pant, K.P.; Kumar, L.; Atreya, K. Diversity, Uses, and Threats in the Ghodaghodi Lake Complex, a Ramsar Site in Western Lowland Nepal. ISRN Biodivers. 2014, 2014, 680102. [Google Scholar] [CrossRef]
- Bhandari, R.; Miya, M.S.; Timilsina, S. Status and Diversity of Terrestrial plants in Ghodaghodi Lake Complex, Nepal. Int. J. Appl. Sci. Biotechnol. 2021, 9, 38–44. [Google Scholar] [CrossRef]
- Siwakoti, M.; Karki, J.B. Conservation status of Ramsar sites of Nepal Tarai: An overview. Bot. Orient. J. Plant Sci. 2010, 6, 76–84. [Google Scholar] [CrossRef]
- Lamichhane, S.; Bhattarai, D.; Karki, J.B.; Gautam, A.P.; Pandeya, P.; Tirpathi, S.; Mahat, N. Population status, habitat occupancy and conservation threats to Mugger crocodile (Crocodylus palustris) in Ghodaghodi lake complex, Nepal. Glob. Ecol. Conserv. 2021, 33, e01977. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, WA, USA, 2005. [Google Scholar]
- Zidan, A.; Abdalla, M.; Khalaf, S.; Saqr, A. Kinetic Energy and Momentum Coefficients for Egyptian Irrigation Canals. Bull. Fac. Eng. Mansoura Univ. 2020, 41, 1–16. [Google Scholar] [CrossRef]
- Saqr, A.M.; Nasr, M.; Fujii, M.; Yoshimura, C.; Ibrahim, M.G. Delineating suitable zones for solar-based groundwater exploitation using multi-criteria analysis: A techno-economic assessment for meeting sustainable development goals (SDGs). Groundw. Sustain. Dev. 2024, 25, 101087. [Google Scholar] [CrossRef]
- Muijs, D. Doing Quantitative Research in Education with IBM SPSS Statistics; Sage Publications: Thousand Oaks, CA, USA, 2022; pp. 1–100. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos. Trans. Am. Geophys. Union. 1944, 25, 914–928. [Google Scholar]
- Chalaune, T.B.; Dangol, A.; Sharma, J.; Sharma, C.M. First results on physico-chemical status and bathymetry of lakes in Ramaroshan Wetland, Far-West Nepal. Nepal J. Environ. Sci. 2020, 8, 17–27. [Google Scholar] [CrossRef]
- Khadka, U.R.; Ramanathan, A.L. Major ion composition and seasonal variation in the Lesser Himalayan lake: Case of Begnas Lake of the Pokhara Valley, Nepal. Arab. J. Geosci. 2013, 6, 4191–4206. [Google Scholar] [CrossRef]
- Prasanna, M.V.; Chidambaram, S.; Gireesh, T.V.; Ali, T.V.J. A study on hydrochemical characteristics of surface and sub-surface water in and around Perumal Lake, Cuddalore district, Tamil Nadu, South India. Environ. Earth Sci. 2011, 63, 31–47. [Google Scholar] [CrossRef]
- Pant, R.R.; Zhang, F.; Rehman, F.U.; Wang, G.; Ye, M.; Zeng, C.; Tang, H. Spatiotemporal variations of hydrogeochemistry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Sci. Total Environ. 2018, 622–623, 770–782. [Google Scholar] [CrossRef]
- Acharya, A.; Sharma, M.L.; Bishwakarma, K.; Dahal, P.; Chaudhari, S.K.; Adhikari, B.; Neupane, S.; Pokhrel, B.N.; Pant, R.R. Chemical Characteristics of the Karmanasha River Water and Its Appropriateness for Irrigational Usage. J. Nepal Chem. Soc. 2020, 41, 94–102. [Google Scholar] [CrossRef]
- Zhang, D.; Lu, D.; Yang, B.; Zhang, J.; Ning, Z.; Yu, K. Influence of natural and anthropogenic factors on spatial-temporal hydrochemistry and the susceptibility to nutrient enrichment in a subtropical estuary. Mar. Pollut. Bull. 2019, 146, 945–954. [Google Scholar] [CrossRef]
- Imran, U.; Ullah, A.; Mahar, R.B.; Shaikh, K.; Khokhar, W.A.; Weidhaas, J. An integrated approach for evaluating freshwater ecosystems under the influence of high salinity: A case study of Manchar Lake in Pakistan. Environ. Monit. Assess. 2023, 195, 1340. [Google Scholar] [CrossRef]
- Zaman, M.; Shahid, S.A.; Heng, L. Irrigation Water Quality. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Wilcox, L.V. Classification and Use of Irrigation Waters; US Department of Agriculture: Washington, WA, USA, 1955.
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils. Agron. J. 1954, 46, 290. [Google Scholar] [CrossRef]
- Kaddah, M.T. Irrigation with Saline Water. Soil Sci. Soc. Am. J. 1975, 39, 1973. [Google Scholar] [CrossRef]
- Kelley, W.P. Use of saline irrigation water. Soil Sci. 1963, 95, 385–391. [Google Scholar] [CrossRef]
- Rengasamy, P.; Marchuk, A. Cation ratio of soil structural stability (CROSS). Soil Res. 2011, 49, 280–285. [Google Scholar] [CrossRef]
- Oyem, H.H.; Oyem, I.M.; Ezeweali, D. Temperature, pH, Electrical Conductivity, Total Dissolved Solids and Chemical Oxygen Demand of Groundwater in Boji-BojiAgbor/Owa Area and Immediate Suburbs. Res. J. Environ. Sci. 2014, 8, 444–450. [Google Scholar] [CrossRef]
- Liu, H.; Yuan, H.; Wang, S.; Zheng, L.; Liao, M. Spatiotemporal dynamics of water body changes and their influencing factors in the seasonal lakes of the poyang lake region. Water 2021, 13, 1539. [Google Scholar] [CrossRef]
- Bhatta, R.; Gurung, S.; Joshi, R.; Tuladhar, S.; Regmi, D.; Kafle, B.K.; Dahal, B.M.; Raut, N.; Kafle, K.R.; Kayastha, R.; et al. Spatio-Temporal Hydrochemistry of Two Selected Ramsar Sites (Rara and Ghodaghodi) of West Nepal. SSRN Electron. J. 2022, 8, e11243. [Google Scholar] [CrossRef]
- Gurung, S.; Gurung, A.; Sharma, C.M.; Jüttner, I.; Tripathee, L.; Bajracharya, R.M.; Raut, N.; Pradhananga, P.; Sitaula, B.K.; Zhang, Y.; et al. Hydrochemistry of Lake Rara: A high mountain lake in western Nepal. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2018, 23, 87–97. [Google Scholar] [CrossRef]
- Brett, M.T.; Bunn, S.E.; Chandra, S.; Galloway, A.W.E.; Guo, F.; Kainz, M.J.; Kankaala, P.; Lau, D.C.P.; Moulton, T.P.; Power, M.E.; et al. How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshw. Biol. 2017, 62, 833–853. [Google Scholar] [CrossRef]
- Yan, J.; Chen, J.; Zhang, W. Study on the groundwater quality and its influencing factor in Songyuan City, Northeast China, using integrated hydrogeochemical method. Sci. Total Environ. 2021, 773, 144958. [Google Scholar] [CrossRef]
- Akhtar, S.; Equeenuddin, S.M. Spatio-temporal variation of major ion chemistry and nutrient stoichiometry in a tropical monsoonal estuary: Insight into biogeochemical processes. Environ. Earth Sci. 2023, 82, 48. [Google Scholar] [CrossRef]
- Cheng, G.; Li, X.; Zhao, W.; Xu, Z.; Feng, Q.; Xiao, S.; Xiao, H. Integrated study of the water-ecosystem-economy in the Heihe River Basin. Natl. Sci. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef]
- Hoess, R.; Geist, J. Effect of fish pond drainage on turbidity, suspended solids, fine sediment deposition and nutrient concentration in receiving pearl mussel streams. Environ. Pollut. 2021, 274, 116520. [Google Scholar] [CrossRef] [PubMed]
- Lawniczak, A.E.; Zbierska, J.; Nowak, B.; Achtenberg, K.; Grześkowiak, A.; Kanas, K. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ. Monit. Assess. 2016, 188, 172. [Google Scholar] [CrossRef] [PubMed]
- Tripathee, L.; Kang, S.; Sharma, C.M.; Rupakheti, D.; Paudyal, R.; Huang, J.; Sillanpää, M. Preliminary Health Risk Assessment of Potentially Toxic Metals in Surface Water of the Himalayan Rivers, Nepal. Bull. Environ. Contam. Toxicol. 2016, 97, 855–862. [Google Scholar] [CrossRef]
- Das, A.K.; Shrivastava, N.P. Ecology of Sarni reservoir (M.P.) in the context of fisheries. Pollut. Res. 2003, 22, 533–539. [Google Scholar]
- Saqr, A.M.; Nasr, M.; Fujii, M.; Yoshimura, C.; Ibrahim, M.G. Optimal Solution for Increasing Groundwater Pumping by Integrating MODFLOW-USG and Particle Swarm Optimization Algorithm: A Case Study of Wadi El-Natrun, Egypt. In Proceedings of the 2022 12th International Conference on Environment Science and Engineering (ICESE 2022); Environmental Science and Engineering; Springer: Singapore, 2023; pp. 59–73. [Google Scholar] [CrossRef]
- Glibert, P.M. Eutrophication, harmful algae and biodiversity—Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 2017, 124, 591–606. [Google Scholar] [CrossRef]
Lake | Season | Statistics | WT | pH | Free CO2 | EC | TDS | Tur | DO |
---|---|---|---|---|---|---|---|---|---|
Ghodaghodi | PRM | M | 28.89 | 6.98 | 26.86 | 251.17 | 143.14 | 10.58 | 5.12 |
SD | 5.05 | 1.35 | 16.68 | 156.34 | 105.91 | 7.93 | 1.05 | ||
POM | M | 19.96 | 6.98 | 14.32 | 156.11 | 78.9 | 6.33 | 5.1 | |
SD | 1.41 | 1.35 | 7.60 | 78.05 | 39.84 | 2.61 | 1.49 | ||
Ojahuwa | PRM | M | 31.48 | 7.36 | 15.40 | 344.04 | 193.98 | 22.68 | 5.22 |
SD | 0.69 | 0.31 | 6.41 | 9.13 | 5.42 | 2.48 | 0.38 | ||
POM | M | 19.80 | 7.48 | 12.76 | 344.04 | 196.37 | 20.80 | 7.10 | |
SD | 3.25 | 0.26 | 10.25 | 10.51 | 119.20 | 6.78 | 2.04 | ||
Bichka Chaita | PRM | M | 31.32 | 8.31 | 12.76 | 264.46 | 156.35 | 15.05 | 6.28 |
SD | 1.78 | 0.57 | 4.77 | 8.90 | 6.68 | 9.46 | 1.37 | ||
POM | M | 16.26 | 7.65 | 8.36 | 248.96 | 137.06 | 12.35 | 8.34 | |
SD | 0.18 | 0.05 | 1.84 | 11.43 | 15.32 | 0.67 | 0.48 | ||
Sanopokhari | PRM | M | 27.66 | 8.20 | 13.64 | 173.00 | 100.71 | 43.58 | 5.60 |
SD | 0.49 | 0.42 | 3.94 | 7.97 | 6.65 | 16.40 | 0.52 | ||
POM | M | 15.90 | 7.74 | 6.16 | 279.40 | 149.23 | 6.30 | 8.60 | |
SD | 0.30 | 0.05 | 0.98 | 13.96 | 8.67 | 0.76 | 0.43 | ||
Budhiya Nakhrod | POM | M | 16.98 | 7.72 | 17.60 | 323.80 | 167.27 | 10.39 | 8.01 |
SD | 0.13 | 0.22 | 3.48 | 16.63 | 11.32 | 6.19 | 0.57 | ||
Ramphal | POM | M | 16.60 | 7.60 | 12.76 | 331.60 | 176.23 | 6.59 | 7.26 |
SD | 0.10 | 0.07 | 5.48 | 107.16 | 49.91 | 0.52 | 0.61 | ||
Whole lakes | PRM | M | 29.38 | 7.35 | 21.89 | 250.30 | 145.91 | 16.93 | 5.34 |
SD | 4.18 | 1.21 | 14.76 | 130.62 | 85.99 | 14.15 | 1.03 | ||
Whole lakes | POM | M | 18.50 | 7.64 | 12.90 | 224.07 | 117.24 | 8.86 | 6.51 |
SD | 2.22 | 0.25 | 7.10 | 95.35 | 51.06 | 5.58 | 1.91 |
Lake | Season | Statistics | TH | Ca2+ | Mg2+ | K+ | Na+ | NH4+ | Cl− | Fe2+ | NO3− | SO42− | HCO3− | PO43− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ghodaghodi | PRM | M | 59.58 | 17.07 | 4.13 | 4.16 | 8.4 | 0.1 | 9.93 | 0.58 | 5.23 | 0.91 | 85.04 | 0.43 |
SD | 10.63 | 3.32 | 1.73 | 2.06 | 2.14 | 0.07 | 5.60 | 0.37 | 5.17 | 0.49 | 23.01 | 0.23 | ||
POM | M | 99.07 | 26.62 | 7.94 | 1.77 | 5.19 | 0.1 | 12.7 | 0.31 | 4.78 | 0.64 | 99.27 | 0.2 | |
SD | 24.11 | 7.93 | 1.93 | 0.93 | 0.89 | 0.07 | 7.17 | 0.11 | 3.26 | 0.27 | 54.37 | 0.07 | ||
Ojahuwa | PRM | M | 97.20 | 25.28 | 8.30 | 0.75 | 5.52 | 0.02 | 14.48 | 0.48 | 2.13 | 0.52 | 145.80 | 0.33 |
SD | 5.40 | 2.23 | 0.49 | 0.37 | 2.69 | 0.02 | 8.72 | 0.11 | 0.12 | 0.07 | 37.80 | 0.16 | ||
POM | M | 177.60 | 46.72 | 14.84 | 2.40 | 9.58 | 0.08 | 17.32 | 0.71 | 3.37 | 1.84 | 164.40 | 0.07 | |
SD | 37.40 | 10.18 | 3.06 | 0.31 | 7.03 | 0.01 | 15.01 | 0.47 | 0.44 | 0.79 | 131.66 | 0.00 | ||
Bichka Chaita | PRM | M | 76.00 | 20.96 | 5.76 | 0.45 | 5.86 | 0.07 | 4.83 | 0.30 | 1.88 | 0.57 | 147.00 | 0.19 |
SD | 5.10 | 1.91 | 1.11 | 0.01 | 0.05 | 0.00 | 1.62 | 0.07 | 0.19 | 0.02 | 22.93 | 0.06 | ||
POM | M | 136.40 | 35.52 | 11.61 | 2.52 | 7.82 | 0.06 | 4.83 | 0.26 | 2.86 | 0.30 | 115.60 | 0.13 | |
SD | 12.84 | 4.85 | 0.53 | 0.33 | 0.62 | 0.00 | 1.62 | 0.05 | 0.35 | 0.07 | 15.69 | 0.04 | ||
Sanopokhari | PRM | M | 80.00 | 22.24 | 5.95 | 0.60 | 2.89 | 0.20 | 5.40 | 1.93 | 1.94 | 2.38 | 93.00 | 0.23 |
SD | 6.78 | 2.49 | 0.80 | 0.52 | 1.78 | 0.01 | 1.19 | 0.22 | 0.24 | 0.41 | 26.38 | 0.02 | ||
POM | M | 174.00 | 53.12 | 10.05 | 1.82 | 7.66 | 0.08 | 14.20 | 0.31 | 3.26 | 0.33 | 124.00 | 0.19 | |
SD | 7.87 | 1.34 | 1.12 | 1.15 | 1.95 | 0.00 | 4.49 | 0.06 | 0.40 | 0.02 | 4.12 | 0.08 | ||
Budhiya Nakhrod | POM | M | 118.00 | 32.00 | 9.27 | 2.04 | 9.22 | 0.06 | 16.76 | 0.47 | 3.01 | 0.63 | 34.00 | 0.10 |
SD | 5.10 | 1.26 | 1.14 | 0.15 | 1.62 | 0.01 | 2.73 | 0.06 | 0.16 | 0.04 | 4.18 | 0.01 | ||
Ramphal | POM | M | 172.00 | 46.40 | 13.66 | 0.91 | 4.68 | 0.05 | 8.24 | 0.23 | 3.05 | 0.40 | 151.00 | 0.07 |
SD | 55.28 | 12.29 | 6.03 | 0.15 | 1.97 | 0.00 | 2.11 | 0.04 | 0.67 | 0.11 | 57.76 | 0.01 | ||
Whole lakes | PRM | M | 69.13 | 19.28 | 5.11 | 2.79 | 7.00 | 0.10 | 9.28 | 0.70 | 3.98 | 1.00 | 101.74 | 0.36 |
SD | 16.19 | 4.19 | 2.03 | 2.39 | 2.79 | 0.07 | 5.98 | 0.57 | 4.33 | 0.69 | 36.26 | 0.21 | ||
Whole lakes | POM | M | 127.91 | 34.85 | 9.95 | 1.86 | 6.52 | 0.08 | 12.48 | 0.35 | 3.93 | 0.67 | 106.67 | 0.15 |
SD | 42.26 | 12.32 | 3.48 | 0.85 | 2.94 | 0.03 | 7.68 | 0.21 | 2.43 | 0.52 | 57.64 | 0.08 |
Ghodaghodi | Ojahuwa | Sanopokhari | Bichka Chaita | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
t-test | md | p-Value | t-test | md | p-Value | t-test | md | p-Value | t-test | md | p-Value |
DO | 0.017 | 0.960 | WT | 11.680 | 0.002 | WT | 11.76 | <0.001 | pH | 0.666 | 0.049 |
M-WU test | W | p-Value | pH | −0.122 | 0.236 | TDS | −48.52 | 0.001 | WT | 15.060 | <0.001 |
pH | 237.5 | 0.302 | EC | 81.240 | 0.007 | Tur | 37.28 | 0.006 | Free CO2 | 4.400 | 0.034 |
WT | 568 | <0.001 | Tur | 1.884 | 0.608 | DO | −2.99 | 0.001 | EC | 15.500 | 0.038 |
Free CO2 | 477.5 | <0.001 | Mg2+ | −6.539 | 0.008 | TH | −94.00 | <0.001 | TDS | 19.283 | 0.019 |
EC | 397 | 0.025 | K+ | −1.650 | 0.001 | Ca2+ | −30.88 | <0.001 | Tur | 2.700 | 0.554 |
TDS | 431.5 | 0.003 | NH4+ | −0.056 | 0.008 | K+ | −1.22 | 0.065 | DO | −2.058 | 0.015 |
Tur | 365.5 | 0.112 | NO3− | −1.243 | 0.001 | Na+ | −4.77 | 0.002 | TH | −60.400 | 0.001 |
TH | 0 | <0.001 | PO43− | 0.261 | 0.023 | NH4+ | 0.12 | <0.001 | Ca2+ | −14.560 | 0.004 |
Ca2+ | 14 | <0.001 | M-W U test | W | p-Value | Cl− | −8.80 | 0.008 | Mg2+ | −5.856 | 0.001 |
Mg2+ | 39.5 | <0.001 | Free CO2 | 19 | 0.203 | Fe2+ | 1.61 | <0.001 | K+ | −2.072 | <0.001 |
K+ | 481.5 | <0.001 | TDS | 25 | 0.012 | NO3− | −1.32 | 0.006 | Cl− | 0.000 | 1.000 |
Na+ | 524 | <0.001 | DO | 5 | 0.144 | SO42− | 2.05 | <0.001 | Fe2+ | 0.044 | 0.401 |
NH4+ | 263 | <0.001 | TH | 0 | 0.012 | HCO3− | −31.00 | 0.060 | NO3− | −0.982 | 0.006 |
Cl− | 200.5 | <0.001 | Ca2+ | 0 | 0.012 | PO43− | 0.04 | 0.253 | SO42− | 0.269 | 0.001 |
Fe2+ | 441.5 | 0.002 | Na+ | 5.5 | 0.173 | M-W U test | W | p-Value | PO43− | 0.064 | 0.014 |
NO3− | 286 | 0.975 | Cl− | 12 | 1.000 | pH | 20 | 0.138 | M-W U test | W | p-Value |
SO42− | 422 | 0.006 | Fe2+ | 8 | 0.403 | Free CO2 | 25 | 0.009 | Na+ | 0 | 0.011 |
HCO3− | 240.5 | 0.330 | SO42− | 0 | 0.012 | EC | 0 | 0.012 | NH4+ | 25 | 0.011 |
PO43− | 506.5 | <0.001 | HCO3− | 16 | 0.531 | Mg2+ | 0 | 0.010 | HCO3− | 23 | 0.037 |
Pre-Monsoon | Post-Monsoon | ||||||
---|---|---|---|---|---|---|---|
ANOVA Test | df | f-Value | p-Value | ANOVA Test | df | f-Value | p-Value |
DO | 3 | 2.032 | 0.127 | WT | 5 | 14.34 | <0.001 |
TH | 27 | <0.001 | Tur | 17.2 | <0.001 | ||
Ca2+ | 13.28 | <0.001 | K+ | 2.808 | <0.001 | ||
K-W test | df | chi-squared | p-value | K-W test | df | chi-squared | p-value |
pH | 3 | 11.66 | 0.009 | pH | 5 | 7.73 | 0.172 |
WT | 3.23 | 0.358 | Free CO2 | 23.85 | <0.001 | ||
Free CO2 | 11.19 | 0.011 | EC | 30.27 | <0.001 | ||
EC | 8.39 | 0.039 | TDS | 29.14 | <0.001 | ||
TDS | 8.16 | 0.043 | DO | 32.95 | <0.001 | ||
Tur | 17.03 | 0.001 | TH | 34.00 | <0.001 | ||
Mg2+ | 18.32 | <0.001 | Ca2+ | 30.75 | <0.001 | ||
K+ | 15.55 | 0.001 | Mg2+ | 29.89 | <0.001 | ||
Na+ | 18.29 | <0.001 | Na+ | 25.38 | <0.001 | ||
NH4+ | 19.65 | <0.001 | NH4+ | 33.62 | <0.001 | ||
Cl− | 11.30 | 0.010 | Cl− | 25.48 | <0.001 | ||
Fe2+ | 16.09 | 0.001 | Fe2+ | 22.03 | 0.001 | ||
NO3− | 10.64 | 0.014 | NO3− | 3.66 | 0.599 | ||
SO42− | 21.54 | <0.001 | SO42− | 29.07 | <0.001 | ||
HCO3− | 17.34 | 0.001 | HCO3− | 28.14 | <0.001 | ||
PO43− | 12.34 | 0.006 | PO43− | 33.83 | <0.001 |
Box | Types [32] | Pre-Monsoon (%) | Post-Monsoon (%) |
---|---|---|---|
1 | Ca2+-HCO3− | 95.83 (All Lakes) | 95.83 (All Lakes) |
2 | Ca2+-Cl− | Nill | Nill |
3 | Mixed type Ca2+-Mg2+-Cl− | 4.17 (Ghodaghodi) | 4.17 (Bichka Chaita) |
4 | Mixed type Ca2+-Na+-HCO3− | Nill | Nill |
5 | Na+-Cl− | Nill | Nill |
6 | Na+-HCO3− | Nill | Nill |
Lake | Season | SAR: M ± SD (WQ) | Na%: M ± SD (WQ) | MAR: M ± SD (WQ) | KR: M ± SD (WQ) | PI: M ± SD (WQ) | Cross: M ± SD (WQ) |
---|---|---|---|---|---|---|---|
Ghodaghodi | PRM | 0.68 ± 0.16 (E) | 28.47 ± 6.53 (G) | 28.46 ± 9.4 (S) | 0.32 ± 0.08 (S) | 101.48 ± 18.05 (S) | 0.44 ± 0.11 (E) |
POM | 0.33 ± 0.07 (E) | 12.66 ± 3.89 (E) | 33.65 ± 5.21 (S) | 0.12 ± 0.04 (S) | 68.12 ± 8.15 (G) | 0.21 ± 0.05 (E) | |
Ojahuwa | PRM | 0.35 ± 0.17 (E) | 11.68 ± 4.21 (E) | 35.47 ± 2.68 (S) | 0.12 ± 0.06 (S) | 81.96 ± 12.26 (S) | 0.21 ± 0.10 (E) |
POM | 0.43 ± 0.25 (E) | 11.23 ± 3.62 (E) | 34.69 ± 1.90 (S) | 0.11 ± 0.05 (S) | 47.66 ± 4.13 (G) | 0.27 ± 0.14 (E) | |
Bichka Chaita | PRM | 0.42 ± 0.05 (E) | 15.05 ± 0.76 (E) | 31.38 ± 5.34 (S) | 0.17 ± 0.01 (S) | 102.35 ± 3.64 (S) | 0.24 ± 0.01 (E) |
POM | 0.42 ± 0.04 (E) | 13.08 ± 1.55 (E) | 35.52 ± 3.3 (S) | 0.13 ± 0.02 (S) | 56.79 ± 8.13 (G) | 0.26 ± 0.03 (E) | |
Sanopokhari | PRM | 0.2 ± 0.12 (E) | 8.05 ± 3.99 (E) | 30.95 ± 4.00 (S) | 0.08 ± 0.05 (S) | 79.49 ± 12.07 (S) | 0.12 ± 0.07 (E) |
POM | 0.36 ± 0.09 (E) | 9.86 ± 2.25 (E) | 23.95 ± 1.56 (S) | 0.10 ± 0.02 (S) | 46.6 ± 2.35 (G) | 0.21 ± 0.05 (E) | |
Budhiya Nakhrod | PRM | - | - | - | - | - | - |
POM | 0.53 ± 0.10 (E) | 16.24 ± 2.61 (E) | 32.54 ± 3.12 (S) | 0.17 ± 0.04 (S) | 41.84 ± 4.05 (G) | 0.32 ± 0.05 (E) | |
Ramphal | PRM | - | - | - | - | - | - |
POM | 0.22 ± 0.10 (E) | 6.48 ± 2.90 (E) | 32.22 ± 3.08 (S) | 0.06 ± 0.03 (S) | 50.11 ± 7.06 (G) | 0.14 ± 0.06 (E) |
Study Area | Major Findings | Comparison to Our Study | Recommendations | Reference |
---|---|---|---|---|
Ghodaghodi Lake | Water was slightly alkaline, low in ionic strength, and primarily influenced by rock weathering and anthropogenic activities. | Similar TH, Cl− values. | Nitrate concentrations required careful monitoring due to rising human activities. | [10] |
Ghodaghodi Lake | Water was suitable for irrigation and aquaculture. | Similar pH values were observed in Ghodaghodi Lake. | Continuous monitoring was required to ensure the sustainability of using the lake’s water for irrigation and aquaculture. | [11] |
Ghodaghodi Lake and Rara Lake | Both lakes were dominated by carbonate weathering with higher Na+ and Cl− post-monsoon, suggesting marine transport. | Matches in seasonal variation in Tur of Ghodaghodi Lake water. | There is a need for continuous assessment of hydrochemical dynamics to ensure the sustainability of these Ramsar wetlands. | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paudel, G.; Pant, R.R.; Joshi, T.R.; Saqr, A.M.; Đurin, B.; Cetl, V.; Kamble, P.N.; Bishwakarma, K. Hydrochemical Dynamics and Water Quality Assessment of the Ramsar-Listed Ghodaghodi Lake Complex: Unveiling the Water-Environment Nexus. Water 2024, 16, 3373. https://doi.org/10.3390/w16233373
Paudel G, Pant RR, Joshi TR, Saqr AM, Đurin B, Cetl V, Kamble PN, Bishwakarma K. Hydrochemical Dynamics and Water Quality Assessment of the Ramsar-Listed Ghodaghodi Lake Complex: Unveiling the Water-Environment Nexus. Water. 2024; 16(23):3373. https://doi.org/10.3390/w16233373
Chicago/Turabian StylePaudel, Ganga, Ramesh Raj Pant, Tark Raj Joshi, Ahmed M. Saqr, Bojan Đurin, Vlado Cetl, Pramod N. Kamble, and Kiran Bishwakarma. 2024. "Hydrochemical Dynamics and Water Quality Assessment of the Ramsar-Listed Ghodaghodi Lake Complex: Unveiling the Water-Environment Nexus" Water 16, no. 23: 3373. https://doi.org/10.3390/w16233373
APA StylePaudel, G., Pant, R. R., Joshi, T. R., Saqr, A. M., Đurin, B., Cetl, V., Kamble, P. N., & Bishwakarma, K. (2024). Hydrochemical Dynamics and Water Quality Assessment of the Ramsar-Listed Ghodaghodi Lake Complex: Unveiling the Water-Environment Nexus. Water, 16(23), 3373. https://doi.org/10.3390/w16233373