A Combined Landslide Displacement Prediction Model Based on Variational Mode Decomposition and Deep Learning Algorithms
<p>Flowchart of the combined prediction model.</p> "> Figure 2
<p>(<b>a</b>) Topographic map of the case study landslide. (<b>b</b>) Location of the study area. (<b>c</b>) Schematic geological cross-section II–II′.</p> "> Figure 3
<p>Monthly rainfall, RWL, and displacement at ZG118 and XD01sites. Letters a–c represent the hydrological years of 2005, 2006, and 2010–2012, respectively.</p> "> Figure 4
<p>Monthly rainfall, RWL, and displacement increments of the characteristic hydrological years. (<b>a</b>) April 2005–April 2006; (<b>b</b>) December 2006–December 2007; (<b>c</b>) October 2010–October 2012.</p> "> Figure 4 Cont.
<p>Monthly rainfall, RWL, and displacement increments of the characteristic hydrological years. (<b>a</b>) April 2005–April 2006; (<b>b</b>) December 2006–December 2007; (<b>c</b>) October 2010–October 2012.</p> "> Figure 5
<p>Cumulative displacement decomposition at ZG118 and XD01.</p> "> Figure 6
<p>Comparison of measured and predicted periodic displacement during the testing period. (<b>a</b>) ZG118; (<b>b</b>) XD01.</p> "> Figure 7
<p>Comparison of measured and predicted random displacement during the testing period. (<b>a</b>) ZG118; (<b>b</b>) XD01.</p> "> Figure 8
<p>Comparison of the measured and predicted cumulative displacement of individual models. (<b>a</b>) ZG118; (<b>b</b>) XD01.</p> "> Figure 9
<p>Comparison of the measured and predicted cumulative displacement of combined model. (<b>a</b>) ZG118; (<b>b</b>) XD01.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Variational Mode Decomposition (VMD)
2.2. Deep Learning Algorithms
2.2.1. Long Short-Term Memory Neural Network (LSTM)
2.2.2. Gated Recurrent Unit Neural Network (GRU)
2.2.3. Convolutional Neural Network (CNN)
2.3. The Proposed Combined Model and Performance Evaluation
2.3.1. Assigning the Cloud Model-Based Combination Weights
- Step 1. Cloud model establishment
- Step 2. Similarity degree computing
- Step 3. Combination weight calculating
- Step 4. Individual prediction combining
2.3.2. The Novel Combined Model
- The cumulative displacement series is decomposed by VMD into stationary components with unique frequency characteristics, including trend, periodic, and random components. Additionally, the influence factor datasets are decomposed into low- and high-frequency sequences by VMD to construct the initial feature vector for prediction.
- LSTM, GRU, and CNN are developed as individual forecasting models, and utilized to predict each displacement component separately. The predicted cumulative displacement is subsequently reconstructed by aggregating the predicted values of each component.
- A cloud model-based combination strategy is employed to dynamically determine the combination weights according to the statistical distribution properties of the forecasted series and to obtain the final displacement.
2.3.3. Triggering Factors of Landslide Displacement
- (1)
- RWL factors: average elevation of RWL during the current month (R1), RWL variation during the previous 1 month (R2), and the previous 2 months (R3).
- (2)
- Seasonal rainfall: cumulative precipitation of the previous 1 month (P1), and the previous 2 months (P2).
- (3)
- State factor: periodic displacement during the previous 1 month (S1_periodic), 2 months (S2_periodic), and 3 months (S3_periodic), and random displacement during the past 1 month (S1_random), 2 months (S2_random), and 3 months (S3_random).
2.3.4. Model Evaluation Metrics
3. Case Study
3.1. Geological Conditions
3.2. Landslide Deformation Characteristics Analysis
4. Results
4.1. Results of Displacement Decomposition
4.2. Results of Trend Displacement Prediction
4.3. Results of Periodic and Random Displacement Prediction
4.3.1. Dominant Triggering Variables Selection
4.3.2. Predicted Periodic and Random Displacement
4.4. Cumulative Displacement Prediction and Evaluation
5. Discussion
5.1. Combined Model Improves Prediction Accuracy
5.2. Reservoir Operation Impacts Landslide Displacement
5.3. Limitations and Future Directions
6. Conclusions
- (1)
- Qualitative and quantitative analyses of displacement evolution and external influence factors reveal that the step-like deformation characteristics are primarily induced by seasonal rainfall and periodic RWL scheduling. The model leverages the VMD technique to effectively extract deformation components corresponding to various frequency characteristics and achieve clearer physical meaning, demonstrating a superior ability to maintain mode separation without mode mixing and better adaptability to non-stationary data. Additionally, the MIC method was successfully used to identify the relevant causal factors for model establishment, further enhancing its physical interpretability.
- (2)
- The prediction results demonstrate that the established multifactor CNN, LSTM, and GRU models effectively model the step-like increasing trend in cumulative displacement. On this basis, the cloud-model based combination strategy integrates the advantages of individual models, further improving forecasting accuracy.
- (3)
- The proposed combined model is applied to forecast displacement series at the ZG118 and XD01 sites. Results demonstrate robust forecasting performance, with RMSE, MAPE, and R values of 12.63 mm, 0.46%, and 0.987 at ZG118, and 20.50 mm, 0.52%, and 0.990 at XD01, respectively. Overall, this combined modeling approach achieves accurate and reliable predictions for step-like reservoir landslides, showing potential for broader application in predicting landslide displacement within the TGR area and other landslide-prone regions.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pecoraro, G.; Calvello, M.; Piciullo, L. Monitoring strategies for local landslide early warning systems. Landslides 2019, 16, 213–231. [Google Scholar] [CrossRef]
- Gómez, D.; García, E.F.; Aristizábal, E. Spatial and temporal landslide distributions using global and open landslide databases. Nat. Hazards 2023, 117, 25–55. [Google Scholar] [CrossRef]
- Gupta, K.; Satyam, N. Integrating real-time sensor data for improved hydrogeotechnical modelling in landslide early warning in Western Himalaya. Eng. Geol. 2024, 338, 107630. [Google Scholar] [CrossRef]
- Jia, W.; Wen, T.; Li, D.; Guo, W.; Quan, Z.; Wang, Y.; Huang, D.; Hu, M. Landslide displacement prediction of Shuping landslide combining PSO and LSSVM model. Water 2023, 15, 612. [Google Scholar] [CrossRef]
- Valletta, A.; Carri, A.; Segalini, A. Alert threshold assessment based on equivalent displacements for the identification of potentially critical landslide events. Nat. Hazards 2023, 115, 1549–1570. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, L.; Gardoni, P.; Chen, Y.; Tan, L.; Liu, D.; Du, C.; Li, H. Comparison of hybrid data-driven and physical models for landslide susceptibility mapping at regional scales. Acta Geotech. 2023, 18, 4453–4476. [Google Scholar] [CrossRef]
- Hu, S.; Qiu, H.; Wang, N.; Wang, X.; Ma, S.; Yang, D.; Wei, N.; Liu, Z.; Shen, Y.; Cao, M. Movement process, geomorphological changes, and influencing factors of a reactivated loess landslide on the right bank of the middle of the Yellow River, China. Landslides 2022, 19, 1265–1295. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Huang, J.; Wen, T.; Ma, J.; Zhang, J. A comparative study of different machine learning methods for reservoir landslide displacement prediction. Eng. Geol. 2022, 298, 106544. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Zhang, Y.; Wu, F.; Chen, F.; Wang, W.; Guo, F. Application of GWO-ELM model to prediction of Caojiatuo landslide displacement in the Three Gorge Reservoir Area. Water 2020, 12, 1860. [Google Scholar] [CrossRef]
- Li, P.; Zha, Y.; Shi, L.; Tso, C.-H.M.; Zhang, Y.; Zeng, W. Comparison of the use of a physical-based model with data assimilation and machine learning methods for simulating soil water dynamics. J. Hydrol. 2020, 584, 124692. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, L.; Gui, L.; Du, J.; Yin, K.; Do, H.M. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model. Landslides 2020, 17, 567–583. [Google Scholar] [CrossRef]
- Ge, Q.; Wang, J.; Liu, C.; Wang, X.; Deng, Y.; Li, J. Integrating feature selection with machine learning for accurate reservoir landslide displacement prediction. Water 2024, 16, 2152. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, H.; Tannant, D.D.; Lin, C.; Xia, D.; Liu, X.; Zhang, Y.; Ma, J. Combined forecasting model with CEEMD-LCSS reconstruction and the ABC-SVR method for landslide displacement prediction. J. Clean. Prod. 2021, 293, 126205. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.; Tang, L.; Gu, X.; Wang, L. Efficient time-variant reliability analysis of Bazimen landslide in the Three Gorges Reservoir Area using XGBoost and LightGBM algorithms. Gondwana Res. 2023, 123, 41–53. [Google Scholar] [CrossRef]
- Du, H.; Song, D.; Chen, Z.; Shu, H.; Guo, Z. Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method. J. Clean. Prod. 2020, 270, 122248. [Google Scholar] [CrossRef]
- Meng, Y.; Qin, Y.; Cai, Z.; Tian, B.; Yuan, C.; Zhang, X.; Zuo, Q. Dynamic forecast model for landslide displacement with step-like deformation by applying GRU with EMD and error correction. Bull. Eng. Geol. Environ. 2023, 82, 211. [Google Scholar] [CrossRef]
- Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides 2019, 16, 677–694. [Google Scholar] [CrossRef]
- Nava, L.; Carraro, E.; Reyes-Carmona, C.; Puliero, S.; Bhuyan, K.; Rosi, A.; Monserrat, O.; Floris, M.; Meena, S.R.; Galve, J.P. Landslide displacement forecasting using deep learning and monitoring data across selected sites. Landslides 2023, 20, 2111–2129. [Google Scholar] [CrossRef]
- Sekhar, C.; Dahiya, R. Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand. Energy 2023, 268, 126660. [Google Scholar] [CrossRef]
- Meng, S.; Shi, Z.; Li, G.; Peng, M.; Liu, L.; Zheng, H.; Zhou, C. A novel deep learning framework for landslide susceptibility assessment using improved deep belief networks with the intelligent optimization algorithm. Comput. Geotech. 2024, 167, 106106. [Google Scholar] [CrossRef]
- Latif, S.D.; Ahmed, A.N. Streamflow prediction utilizing deep learning and machine learning algorithms for sustainable water supply management. Water Resour. Manage. 2023, 37, 3227–3241. [Google Scholar] [CrossRef]
- Song, K.; Yang, H.; Liang, D.; Chen, L.; Jaboyedoff, M. Step-like displacement prediction and failure mechanism analysis of slow-moving reservoir landslide. J. Hydrol. 2024, 628, 130588. [Google Scholar] [CrossRef]
- Barjasteh, A.; Ghafouri, S.H.; Hashemi, M. A hybrid model based on discrete wavelet transform (DWT) and bidirectional recurrent neural networks for wind speed prediction. Eng. Appl. Artif. Intell. 2024, 127, 107340. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Y.; Liu, J.; Cao, Y. Monthly runoff prediction by combined models based on secondary decomposition at the Wulong Hydrological Station in the Yangtze River Basin. Water 2023, 15, 3717. [Google Scholar] [CrossRef]
- Li, X.; Guo, M.; Zhang, R.; Chen, G. A data-driven prediction model for maximum pitting corrosion depth of subsea oil pipelines using SSA-LSTM approach. Ocean Eng. 2022, 261, 112062. [Google Scholar] [CrossRef]
- Xu, S.; Niu, R. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China. Comput. Geosci. 2018, 111, 87–96. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, Y.-P.; Xie, J.; Chen, H.; Si, Y.; Liu, J. A weights combined model for middle and long-term streamflow forecasts and its value to hydropower maximization. J. Hydrol. 2021, 602, 126794. [Google Scholar] [CrossRef]
- Shang, Z.; Chen, Y.; Chen, Y.; Guo, Z.; Yang, Y. Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism. Expert Syst. Appl. 2023, 223, 119878. [Google Scholar] [CrossRef]
- Meng, E.; Huang, S.; Huang, Q.; Fang, W.; Wang, H.; Leng, G.; Wang, L.; Liang, H. A hybrid VMD-SVM model for practical streamflow prediction using an innovative input selection framework. Water Resour. Manag. 2021, 35, 1321–1337. [Google Scholar] [CrossRef]
- Wen, C.; Tian, H.; Zeng, X.; Xia, X.; Hu, X.; Pang, B. Landslide Deformation Analysis and Prediction with a VMD-SA-LSTM Combined Model. Water 2024, 16, 2945. [Google Scholar] [CrossRef]
- Liu, Z.; Jiang, P.; Zhang, L.; Niu, X. A combined forecasting model for time series: Application to short-term wind speed forecasting. Appl. Energy 2020, 259, 114137. [Google Scholar] [CrossRef]
- Duan, J.; Wang, P.; Ma, W.; Fang, S.; Hou, Z. A novel hybrid model based on nonlinear weighted combination for short-term wind power forecasting. Int. J. Electr. Power Energy Syst. 2022, 134, 107452. [Google Scholar] [CrossRef]
- Wang, X.; Hyndman, R.J.; Li, F.; Kang, Y. Forecast combinations: An over 50-year review. Int. J. Forecast. 2023, 39, 1518–1547. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Wang, Q.; Sun, K.; Li, K.-J.; Zhang, Y. Probabilistic harmonic forecasting of the distribution system considering time-varying uncertainties of the distributed energy resources and electrical loads. Appl. Energy 2023, 329, 120298. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 2013, 62, 531–544. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020, 53, 5455–5516. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, Y.P.; Yu, X.; Liu, L.; Gu, H. AI-based ensemble flood forecasts and its implementation in multi-objective robust optimization operation for reservoir flood control. Water Resour. Res. 2024, 60, e2023WR035693. [Google Scholar] [CrossRef]
- Yan, G.; Jia, S.; Ding, J.; Xu, X.; Pang, Y. A time series forecasting based on cloud model similarity measurement. Soft Comput. 2019, 23, 5443–5454. [Google Scholar] [CrossRef]
- Sun, N.; Chen, Z.; Niu, Y.; Yan, G. Similarity measurement between cloud models based on overlap degree. J. Comput. Appl. 2015, 35, 1955. [Google Scholar]
- Du, J.; Yin, K.; Lacasse, S. Displacement prediction in colluvial landslides, three Gorges reservoir, China. Landslides 2013, 10, 203–218. [Google Scholar] [CrossRef]
- Miao, F.; Wu, Y.; Xie, Y.; Li, Y. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model. Landslides 2018, 15, 475–488. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, C.; Huang, B.; Ren, X.; Liu, C.; Hu, B.; Chen, Z. Landslide displacement prediction based on multi-source data fusion and sensitivity states. Eng. Geol. 2020, 271, 105608. [Google Scholar] [CrossRef]
- Reshef, D.N.; Reshef, Y.A.; Finucane, H.K.; Grossman, S.R.; McVean, G.; Turnbaugh, P.J.; Lander, E.S.; Mitzenmacher, M.; Sabeti, P.C. Detecting novel associations in large data sets. Science 2011, 334, 1518–1524. [Google Scholar] [CrossRef]
- Xiang, X.; Xiao, J.; Wen, H.; Li, Z.; Huang, J. Prediction of landslide step-like displacement using factor preprocessing-based hybrid optimized SVR model in the Three Gorges Reservoir, China. Gondwana Res. 2024, 126, 289–304. [Google Scholar] [CrossRef]
- Li, L.; Wu, Y.; Miao, F.; Liao, K.; Zhang, L. Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model. Chin. J. Rock. Mech. Eng. 2018, 37, 1395–1406. [Google Scholar]
- Gao, Y.; Chen, X.; Tu, R.; Chen, G.; Luo, T.; Xue, D. Prediction of landslide displacement based on the combined VMD-stacked LSTM-TAR model. Remote Sens. 2022, 14, 1164. [Google Scholar] [CrossRef]
Evaluation Indices | ZG118 | XD01 | ||||
---|---|---|---|---|---|---|
CNN | LSTM | GRU | CNN | LSTM | GRU | |
RMSE/mm | 15.82 | 6.36 | 9.64 | 20.49 | 8.27 | 5.77 |
MAE/mm | 15.69 | 5.95 | 9.25 | 19.56 | 6.98 | 4.56 |
R | 0.999 | 0.999 | 0.999 | 0.998 | 0.997 | 0.998 |
Triggering Factors | ZG118 | XD01 | ||||||
---|---|---|---|---|---|---|---|---|
Periodic Displacement | MIC | Random Displacement | MIC | Periodic Displacement | MIC | Random Displacement | MIC | |
Rainfall factors | LF of P1 | 0.330 | HF of P1 | 0.162 | LF of P1 | 0.200 | HF of P1 | 0.213 |
LF of P2 | 0.179 | HF of P2 | 0.199 | LF of P2 | 0.330 | HF of P2 | 0.219 | |
RWL factors | LF of R1 | 0.258 | HF of R1 | 0.217 | LF of R1 | 0.317 | HF of R1 | 0.226 |
LF of R2 | 0.467 | HF of R2 | 0.219 | LF of R2 | 0.367 | HF of R2 | 0.262 | |
LF of R3 | 0.570 | HF of R3 | 0.193 | LF of R3 | 0.438 | HF of R3 | 0.153 | |
Evolution state factors | S1_periodic | 0.613 | S1_random | 0.201 | S1_periodic | 0.695 | S1_random | 0.375 |
S2_periodic | 0.281 | S2_random | 0.252 | S2_periodic | 0.324 | S2_random | 0.220 | |
S3_periodic | 0.137 | S3_random | 0.347 | S3_periodic | 0.184 | S3_random | 0.471 |
Monitoring Sites | Individual Models | Periodic Displacement | Random Displacement | ||||
---|---|---|---|---|---|---|---|
RMSE/mm | MAE/mm | R | RMSE/mm | MAE/mm | R | ||
ZG118 | CNN | 11.39 | 10.75 | 0.877 | 6.77 | 5.37 | 0.710 |
LSTM | 5.89 | 4.42 | 0.971 | 6.16 | 4.89 | 0.736 | |
GRU | 6.61 | 4.71 | 0.942 | 5.76 | 4.70 | 0.759 | |
XD01 | CNN | 20.58 | 16.25 | 0.906 | 11.51 | 8.85 | 0.842 |
LSTM | 8.61 | 7.03 | 0.986 | 11.55 | 8.96 | 0.744 | |
GRU | 10.45 | 8.91 | 0.982 | 12.05 | 8.57 | 0.744 |
Sites | Segment | Actual Displacement (Ex, En, He) | Predicted Displacement (Ex, En, He) | ||
---|---|---|---|---|---|
CNN | LSTM | GRU | |||
ZG118 | 1 | (15.39, 25.44, 1.14) | (13.86, 22.70, 6.29) | (15.16, 20.53, 0.02) | (15.43, 21.68, 1.01) |
2 | (2.97, 9.83, 8.28) | (2.12, 12.08, 6.29) | (3.11, 8.19, 5.42) | (3.13, 9.45, 4.65) | |
3 | (18.54, 26.32, 22.29) | (18.84, 23.33, 14.85) | (17.36, 21.78, 8.51) | (17.38, 18.60, 11.30) | |
XD01 | 1 | (22.07, 37.12, 7.90) | (24.65, 34.66, 13.48) | (19.31, 35.66, 9.36) | (21.19, 39.12, 10.76) |
2 | (11.12, 26.94, 20.07) | (6.77, 23.37, 14.13) | (12.24, 34.89, 4.22) | (9.79, 35.19, 2.43) | |
3 | (21.88, 42.84, 15.20) | (24.55, 34.30, 16.36) | (23.03, 45.67, 21.20) | (20.98, 42.77, 19.18) |
Monitoring Sites | Evaluation Indices | Individual Models | Combined Model | ||
---|---|---|---|---|---|
CNN | LSTM | GRU | |||
ZG118 | RMSE/mm | 20.08 | 10.08 | 12.86 | 12.63 |
MAPE/% | 0.75 | 0.35 | 0.52 | 0.46 | |
R | 0.968 | 0.985 | 0.983 | 0.987 | |
XD01 | RMSE/mm | 28.47 | 18.48 | 21.51 | 20.50 |
MAPE/% | 0.69 | 0.48 | 0.52 | 0.52 | |
R | 0.983 | 0.988 | 0.985 | 0.990 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Guo, Y.; Huang, K.; Yan, L. A Combined Landslide Displacement Prediction Model Based on Variational Mode Decomposition and Deep Learning Algorithms. Water 2024, 16, 3503. https://doi.org/10.3390/w16233503
Sun M, Guo Y, Huang K, Yan L. A Combined Landslide Displacement Prediction Model Based on Variational Mode Decomposition and Deep Learning Algorithms. Water. 2024; 16(23):3503. https://doi.org/10.3390/w16233503
Chicago/Turabian StyleSun, Mengcheng, Yuxue Guo, Ke Huang, and Long Yan. 2024. "A Combined Landslide Displacement Prediction Model Based on Variational Mode Decomposition and Deep Learning Algorithms" Water 16, no. 23: 3503. https://doi.org/10.3390/w16233503
APA StyleSun, M., Guo, Y., Huang, K., & Yan, L. (2024). A Combined Landslide Displacement Prediction Model Based on Variational Mode Decomposition and Deep Learning Algorithms. Water, 16(23), 3503. https://doi.org/10.3390/w16233503