Preparation of Iron-Based Nanozymes and Their Application in Water Environment: A Review
<p>Schematic diagram of the preparation process of (<b>a</b>) Fe-MoS<sub>2</sub> nanozyme [<a href="#B45-water-16-03431" class="html-bibr">45</a>] and (<b>b</b>) MIL-88B (Fe, Ni) nanozyme [<a href="#B51-water-16-03431" class="html-bibr">51</a>].</p> "> Figure 2
<p>Pollutant degradation mechanism diagram of (<b>a</b>) FeCu-NC nanozyme [<a href="#B68-water-16-03431" class="html-bibr">68</a>], (<b>b</b>) Fe<sub>3</sub>O<sub>4</sub>@N-HollCS nanozyme [<a href="#B69-water-16-03431" class="html-bibr">69</a>], (<b>c</b>) FeMn/N-CNTs nanozyme [<a href="#B70-water-16-03431" class="html-bibr">70</a>], and (<b>d</b>) Fe<sub>3</sub>O<sub>4</sub>@CeO<sub>2</sub>/Tb-MOF nanozyme [<a href="#B71-water-16-03431" class="html-bibr">71</a>].</p> "> Figure 3
<p>Pollutant detection mechanism diagram of (<b>a</b>) NH<sub>2</sub>-MIL-101(Fe)@Cu/CeO<sub>2</sub> nanozyme [<a href="#B91-water-16-03431" class="html-bibr">91</a>] and (<b>b</b>) NH<sub>2</sub>-MIL-101(Fe) nanozyme [<a href="#B92-water-16-03431" class="html-bibr">92</a>].</p> ">
Abstract
:1. Introduction
2. Preparation Method of Iron-Based Nanozymes
2.1. Hydrothermal Method
2.2. Solvothermal Method
2.3. Co-Precipitation Method
3. Iron-Based Nanozymes in Pollutant Degradation
3.1. Dye Degradation
3.2. Antibiotics Degradation
3.3. Phenolic Pollutants Degradation
4. Iron-Based Nanozymes in Pollutant Detection
4.1. Toxic Ion Detection
4.2. Antibiotic Detection
4.3. Pesticide Detection
4.4. Phenolic Pollutants Detection
5. Conclusions and Outlooks
- Attention should be paid to pollutant degradation mechanisms other than free radicals. The current discussion on the mechanism of pollutant degradation by iron-based nanozymes mainly focuses on free radicals. However, other factors may also play an important role in the pollutant degradation process, such as the adsorption and diffusion process on the surface of nanozymes, functional groups on the surface of nanozymes, and the structure of the surface of nanozymes. It is suggested that the discussion on the above should be strengthened in the Section on removal mechanisms.
- The toxicity of iron-based nanozymes should be more comprehensively assessed. The current study is lacking in analysing the potential environmental toxicity of iron-based nanozymes. It is recommended that long-term exposure experiments be carried out for the specific application scenario of the aqueous environment to study the toxic effects of iron-based nanozymes on organisms and to understand the long-term effects on their growth, reproduction, behaviour, and physiological functions, for example, to observe the effects of nanozymes on the growth and development, reproductive capacity, and immune system of related indicator organisms, such as Chlorella and fish. In addition, the development of low-toxicity nanozymes is necessary to improve the environmental compatibility of iron-based nanozymes by a range of means, including surface physicochemical property tuning and immobilisation strategies.
- Combined processes for pollutant treatment based on iron-based nanozymes need to be enriched. Current iron-based nanozymes are mostly used for pollutant degradation in the form of a single powder. However, many functions of these nanozymes remain unexplored, and the real water environment is complex and diverse, which is difficult for a single treatment process to cope with. Therefore, there is an urgent need to develop novel nanozyme combination processes for pollutant degradation.
- The influence of key parameters in typical preparation processes on the performance of iron-based nanozymes needs to be explored. So far, scholars have extensively applied iron-based nanozymes to pollutant degradation and detection. However, less attention has been paid to the effects of preparation processes, such as reaction temperature, stirring time, and reagent ratios, on the pollutant degradation and detection ability of iron-based nanozymes, and the potential mechanisms of iron-based nanozymes’ sizes, structures, and other physicochemical properties on the pollutant degradation and detection have not been fully understood.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sukatis, F.F.; Wee, S.Y.; Aris, A.Z. Potential of biocompatible calcium-based metal-organic frameworks for the removal of endocrine-disrupting compounds in aqueous environments. Water Res. 2022, 218, 118406. [Google Scholar] [CrossRef]
- Li, D.; Zhang, S.; Li, S.; Tang, J.; Hua, T.; Li, F. Mechanism of the application of single-atom catalyst-activated PMS/PDS to the degradation of organic pollutants in water environment: A review. J. Clean. Prod. 2023, 397, 136468. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Natasha; Mosa, A.; El-Naggar, A.; Hossain, F.; Abdelrahman, H.; Niazi, N.K.; Shahid, M.; Zhang, T.; Tsang, Y.F.; et al. Manganese oxide-modified biochar: Production, characterization and applications for the removal of pollutants from aqueous environments—A review. Bioresour. Technol. 2022, 346, 126581. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, U.; Kaur, G.; Rubahn, H.-G.; Kaushik, A.; Chaudhary, G.R.; Mishra, Y.K. Advanced metal oxides nanostructures to recognize and eradicate water pollutants. Prog. Mater. Sci. 2023, 139, 101169. [Google Scholar] [CrossRef]
- Wee, S.Y.; Aris, A.Z. Endocrine disrupting compounds in drinking water supply system and human health risk implication. Environ. Int. 2017, 106, 207–233. [Google Scholar] [CrossRef]
- Ning, R.; Yu, S.; Li, L.; Snyder, S.A.; Li, P.; Liu, Y.; Togbah, C.F.; Gao, N. Micro and nanobubbles-assisted advanced oxidation processes for water decontamination: The importance of interface reactions. Water Res. 2024, 265, 122295. [Google Scholar] [CrossRef]
- Yue, T.; Cao, X.; Liu, Q.; Bai, S.; Zhang, F.; Liu, L. Enhancement on removal of oxytetracycline in aqueous solution by corn stover biochar: Comparison of KOH and KMnO4 modifications. Chem. Eng. Res. Des. 2023, 190, 353–365. [Google Scholar] [CrossRef]
- Ren, H.; Qian, H.; Hou, Q.; Li, W.; Ju, M. Removal of ionic liquid in water environment: A review of fundamentals and applications. Sep. Purif. Technol. 2023, 310, 123112. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, Z.; Liu, H.; Dong, S.; Nghiem, L.D.; Gao, L.; Chaves, A.V.; Zamyadi, A.; Li, X.; Wang, Q. A review on microalgae-mediated biotechnology for removing pharmaceutical contaminants in aqueous environments: Occurrence, fate, and removal mechanism. J. Hazard. Mater. 2023, 443, 130213. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U., Jr.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef]
- Fan, G.; Lin, C.; You, W.; Song, Y.; Cao, X.; Luo, J.; Zou, J.; Hong, Z.; Xu, K.-Q. Cow manure biochar for activation of peroxymonosulfate to degrade 17β-estradiol: Performance and mechanism. J. Mol. Liq. 2024, 408, 125427. [Google Scholar] [CrossRef]
- Matamoros, V.; Gutiérrez, R.; Ferrer, I.; García, J.; Bayona, J.M. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: A pilot-scale study. J. Hazard. Mater. 2015, 288, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yu, R.; Zhao, S.; Cao, X.; Zhang, X.; Bai, S. Heterogeneous Fenton system driven by iron-loaded sludge biochar for sulfamethoxazole-containing wastewater treatment. J. Environ. Manag. 2023, 335, 117576. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Fan, G.; Luo, J.; Zhang, L.; Wu, S.; Yao, Y.; Xu, K.-Q. High-efficiency removal of microcystis aeruginosa using Z-scheme AgBr/NH2-MIL-125(Ti) photocatalyst with superior visible-light absorption: Performance insights and mechanisms. J. Hazard. Mater. 2024, 478, 135461. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Yazdanfar, N.; Ghambarian, M. Combination of solid-phase extraction with dispersive liquid–liquid microextraction followed by GC–MS for determination of pesticide residues from water, milk, honey and fruit juice. Food Chem. 2016, 204, 289–297. [Google Scholar] [CrossRef]
- Salcedo, G.M.; Kupski, L.; Degang, L.; Marube, L.C.; Caldas, S.S.; Primel, E.G. Determination of fifteen phenols in wastewater from petroleum refinery samples using a dispersive liquid—Liquid microextraction and liquid chromatography with a photodiode array detector. Microchem. J. 2019, 146, 722–728. [Google Scholar] [CrossRef]
- Fang, J.; Zhao, H.; Zhang, Y.; Lu, M.; Cai, Z. Atmospheric pressure chemical ionization in gas chromatography-mass spectrometry for the analysis of persistent organic pollutants. Trends Environ. Anal. Chem. 2020, 25, e00076. [Google Scholar] [CrossRef]
- Wang, Q.; Hou, Y.; Lin, M.; Yang, Q. Construction of extracellular peptide laccase-mimic nanozyme for the detection and degradation of phenols pollutants. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 699, 134687. [Google Scholar] [CrossRef]
- Qi, J.; Li, B.; Wang, X.; Fu, L.; Luo, L.; Chen, L. Rotational Paper-Based Microfluidic-Chip Device for Multiplexed and Simultaneous Fluorescence Detection of Phenolic Pollutants Based on a Molecular-Imprinting Technique. Anal. Chem. 2018, 90, 11827–11834. [Google Scholar] [CrossRef]
- Gu, C.; Su, X.; Liu, B.; Zheng, C.; Wang, S.; Tian, Y.; Ma, J.; Wu, L. Recent progress in advanced materials for electrochemical determination of phenolic contaminants. Microchem. J. 2023, 195, 109513. [Google Scholar] [CrossRef]
- Wang, K.; Meng, X.; Yan, X.; Fan, K. Nanozyme-based point-of-care testing: Revolutionizing environmental pollutant detection with high efficiency and low cost. Nano Today 2024, 54, 102145. [Google Scholar] [CrossRef]
- Shen, Y.; Wei, Y.; Gao, X.; Nie, C.; Wang, J.; Wu, Y. Engineering an Enzymatic Cascade Catalytic Smartphone-Based Sensor for Onsite Visual Ratiometric Fluorescence–Colorimetric Dual-Mode Detection of Methyl Mercaptan. Environ. Sci. Technol. 2023, 57, 1680–1691. [Google Scholar] [CrossRef] [PubMed]
- Unnikrishnan, B.; Lien, C.-W.; Chu, H.-W.; Huang, C.-C. A review on metal nanozyme-based sensing of heavy metal ions: Challenges and future perspectives. J. Hazard. Mater. 2021, 401, 123397. [Google Scholar] [CrossRef]
- Winkler, M.; Geier, M.; Hanlon, S.P.; Nidetzky, B.; Glieder, A. Human Enzymes for Organic Synthesis. Angew. Chem. Int. Ed. 2018, 57, 13406–13423. [Google Scholar] [CrossRef] [PubMed]
- Kalaiarasan, E.; Palvannan, T. Removal of phenols from acidic environment by horseradish peroxidase (HRP): Aqueous thermostabilization of HRP by polysaccharide additives. J. Taiwan Inst. Chem. Eng. 2014, 45, 625–634. [Google Scholar] [CrossRef]
- Guan, Z.-B.; Luo, Q.; Wang, H.-R.; Chen, Y.; Liao, X.-R. Bacterial laccases: Promising biological green tools for industrial applications. Cell. Mol. Life Sci. 2018, 75, 3569–3592. [Google Scholar] [CrossRef] [PubMed]
- Reetz, M.T. What are the Limitations of Enzymes in Synthetic Organic Chemistry? Chem. Rec. 2016, 16, 2449–2459. [Google Scholar] [CrossRef]
- Osete-Alcaraz, A.; Bautista-Ortín, A.B.; Ortega-Regules, A.E.; Gómez-Plaza, E. Combined Use of Pectolytic Enzymes and Ultrasounds for Improving the Extraction of Phenolic Compounds During Vinification. Food Bioprocess Technol. 2019, 12, 1330–1339. [Google Scholar] [CrossRef]
- Zandieh, M.; Liu, J. Nanozymes: Definition, Activity, and Mechanisms. Adv. Mater. 2024, 36, e2211041. [Google Scholar] [CrossRef]
- Tang, G.; He, J.; Liu, J.; Yan, X.; Fan, K. Nanozyme for tumor therapy: Surface modification matters. Exploration 2021, 1, 75–89. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, W.; Jiao, L.; Tang, Y.; Chen, Y.; Gu, W.; Zhu, C. Defect engineering in nanozymes. Mater. Today 2022, 52, 327–347. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Bamrah, A.; Bhardwaj, S.K.; Deep, A.; Khatri, M.; Brown, R.J.C.; Bhardwaj, N.; Kim, K.-H. Recent advances in the application of noble metal nanoparticles in colorimetric sensors for lead ions. Environ. Sci. Nano 2021, 8, 863–889. [Google Scholar] [CrossRef]
- Xu, X.; Wu, S.; Guo, D.; Niu, X. Construction of a recyclable oxidase-mimicking Fe3O4@MnOx-based colorimetric sensor array for quantifying and identifying chlorophenols. Anal. Chim. Acta 2020, 1107, 203–212. [Google Scholar] [CrossRef]
- Wang, F.; Chen, L.; Liu, D.; Ma, W.; Dramou, P.; He, H. Nanozymes based on metal-organic frameworks: Construction and prospects. TrAC Trends Anal. Chem. 2020, 133, 116080. [Google Scholar] [CrossRef]
- Jouyban, A.; Amini, R. Layered double hydroxides as an efficient nanozyme for analytical applications. Microchem. J. 2021, 164, 105970. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.; Hou, Y.; Wang, X.; Xue, C.; Li, W.; Cai, K.; Zhao, Y.; Luo, Z. State-of-the-art iron-based nanozymes for biocatalytic tumor therapy. Nanoscale Horiz. 2020, 5, 202–217. [Google Scholar] [CrossRef]
- Fu, R.; Ma, Z.; Zhao, H.; Jin, H.; Tang, Y.; He, T.; Ding, Y.; Zhang, J.; Ye, D. Research Progress in Iron-Based Nanozymes: Catalytic Mechanisms, Classification, and Biomedical Applications. Anal. Chem. 2023, 95, 10844–10858. [Google Scholar] [CrossRef]
- Sutrisno, L.; Hu, Y.; Hou, Y.; Cai, K.; Li, M.; Luo, Z. Progress of Iron-Based Nanozymes for Antitumor Therapy. Front. Chem. 2020, 8, 680. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Li, Y.; Gu, N. Iron-Based Nanozymes in Disease Diagnosis and Treatment. ChemBioChem 2020, 21, 2722–2732. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Z.; Huang, Y.; Pan, X.; Wu, C. Updates on the applications of iron-based nanoplatforms in tumor theranostics. Int. J. Pharm. 2020, 589, 119815. [Google Scholar] [CrossRef] [PubMed]
- Ghazzy, A.; Nsairat, H.; Said, R.; Sibai, O.A.; AbuRuman, A.; Shraim, A.S.; Al Hunaiti, A. Magnetic iron oxide-based nanozymes: From synthesis to application. Nanoscale Adv. 2024, 6, 1611–1642. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Mahdi, E.M.; Peng, Y.; Qian, Y.; Zhang, B.; Yan, N.; Yuan, D.; Tan, J.-C.; Zhao, D. Kinetically controlled synthesis of two-dimensional Zr/Hf metal–organic framework nanosheets via a modulated hydrothermal approach. J. Mater. Chem. A 2017, 5, 8954–8963. [Google Scholar] [CrossRef]
- Lin, L.; Chen, D.; Lu, C.; Wang, X. Fluorescence and colorimetric dual-signal determination of Fe3+ and glutathione with MoSe2@Fe nanozyme. Microchem. J. 2022, 177, 107283. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, L.; Chu, S.; Zhang, S.; Chen, X.; Du, Z.; Gong, Y.; Wang, H. Controllable doping of Fe atoms into MoS2 nanosheets towards peroxidase-like nanozyme with enhanced catalysis for colorimetric analysis of glucose. Appl. Surf. Sci. 2022, 583, 152496. [Google Scholar] [CrossRef]
- Ahmad, H.A.; Hassan, R.O. Newly synthesized Fe-doped CDs for colorimetric and fluorometric nanozyme-based levodopa sensing. Luminescence 2023, 38, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, S.; Li, Y.; Liu, J. Facile Synthesis of Iron and Nitrogen Co-Doped Carbon Dot Nanozyme as Highly Efficient Peroxidase Mimics for Visualized Detection of Metabolites. Molecules 2023, 28, 6064. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; He, C.; Wang, S.; Jiang, H.; Li, J.; Li, L. Recyclable ferromagnetic chitosan nanozyme for decomposing phenol. Carbohydr. Polym. 2018, 198, 348–353. [Google Scholar] [CrossRef]
- He, N.; Zhu, X.; Liu, F.; Yu, R.; Xue, Z.; Liu, X. Rational design of FeS2-encapsulated covalent organic frameworks as stable and reusable nanozyme for dual-signal detection glutathione in cell lysates. Chem. Eng. J. 2022, 445, 136543. [Google Scholar] [CrossRef]
- Huang, Y.; Ding, Z.; Li, Y.; Xi, F.; Liu, J. Magnetic Nanozyme Based on Loading Nitrogen-Doped Carbon Dots on Mesoporous Fe3O4 Nanoparticles for the Colorimetric Detection of Glucose. Molecules 2023, 28, 4573. [Google Scholar] [CrossRef]
- Sun, M.; Pu, K.; Hao, X.; Liu, T.; Lu, Z.; Su, G.; Wu, C.; Wang, Y.; Cai, S.; Zhao, X.; et al. Reasonable construction of a bimetallic organic framework MIL-88B (Fe, Ni) nanoenzyme based on deep learning assisted doxycycline hydrochloride and methyloxytetracycline hydrochloride. J. Mater. Chem. C 2024, 12, 221–231. [Google Scholar] [CrossRef]
- Amini, R.; Rahimpour, E.; Jouyban, A. An optical sensing platform based on hexacyanoferrate intercalated layered double hydroxide nanozyme for determination of chromium in water. Anal. Chim. Acta 2020, 1117, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wang, Y.; Zhao, M. Target-directed functionalized ferrous phosphate-carbon dots fluorescent nanostructures as peroxidase mimetics for cancer cell detection and ROS-mediated therapy. Sensors Actuators B Chem. 2019, 297, 126739. [Google Scholar] [CrossRef]
- Liu, H.; Ding, Y.-N.; Yang, B.; Liu, Z.; Zhang, X.; Liu, Q. Iron Doped CuSn(OH)6 Microspheres as a Peroxidase-Mimicking Artificial Enzyme for H2O2 Colorimetric Detection. ACS Sustain. Chem. Eng. 2018, 6, 14383–14393. [Google Scholar] [CrossRef]
- Xiao, M.; Li, N.; Lv, S. Iron oxide magnetic nanoparticles exhibiting zymolyase-like lytic activity. Chem. Eng. J. 2020, 394, 125000. [Google Scholar] [CrossRef]
- Zhang, S.; Geng, W.; He, X.; Tu, J.; Ma, M.; Duan, L.; Zhang, Q. Humidity sensing performance of mesoporous CoO(OH) synthesized via one-pot hydrothermal method. Sensors Actuators B Chem. 2019, 280, 46–53. [Google Scholar] [CrossRef]
- Chai, K.; Xu, S. Synthesis and mechanism of a new environment-friendly flame retardant (anhydrous magnesium carbonate) by hydrothermal method. Adv. Powder Technol. 2022, 33, 103776. [Google Scholar] [CrossRef]
- Meng, L.-Y.; Wang, B.; Ma, M.-G.; Lin, K.-L. The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Mater. Today Chem. 2016, 1–2, 63–83. [Google Scholar] [CrossRef]
- Fu, Q.; Wei, C.; Wang, M. Transition-Metal-Based Nanozymes: Synthesis, Mechanisms of Therapeutic Action, and Applications in Cancer Treatment. ACS Nano 2024, 18, 12049–12095. [Google Scholar] [CrossRef]
- Kong, J.; Zhou, F. Preparation and Application of Carbon Dots Nanozymes. Antioxidants 2024, 13, 535. [Google Scholar] [CrossRef]
- Ono, K.; Kimura, K.; Kato, T.; Hayashi, K.; Rajapakse, R.M.; Shimomura, M. Epitaxial growth of a homogeneous anatase TiO2 thin film on LaAlO3 (0 0 1) using a solvothermal method with anticorrosive ligands. Chem. Eng. J. 2023, 451, 138893. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Wang, B.; Li, W.; Che, P. A comparative study on the thermoelectric properties of CoSb3 prepared by hydrothermal and solvothermal route. J. Alloy. Compd. 2019, 772, 770–774. [Google Scholar] [CrossRef]
- Arora, A.; Oswal, P.; Datta, A.; Kumar, A. Complexes of metals with organotellurium compounds and nanosized metal tellurides for catalysis, electrocatalysis and photocatalysis. Co-ord. Chem. Rev. 2022, 459, 214406. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, T. Research progress in preparation and application of spinel-type metallic oxides (M ≥ 2). J. Alloy. Compd. 2023, 962, 171117. [Google Scholar] [CrossRef]
- Selvaraj, R.; Pai, S.; Vinayagam, R.; Varadavenkatesan, T.; Kumar, P.S.; Duc, P.A.; Rangasamy, G. A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. Chemosphere 2022, 308, 136331. [Google Scholar] [CrossRef]
- Rangel, W.M.; Santa, R.A.A.B.; Riella, H.G. A facile method for synthesis of nanostructured copper (II) oxide by coprecipitation. J. Mater. Res. Technol. 2020, 9, 994–1004. [Google Scholar] [CrossRef]
- Diao, Q.; Chen, X.; Tang, Z.; Li, S.; Tian, Q.; Bu, Z.; Liu, H.; Liu, J.; Niu, X. Nanozymes: Powerful catalytic materials for environmental pollutant detection and degradation. Environ. Sci. Nano 2024, 11, 766–796. [Google Scholar] [CrossRef]
- Xie, X.; Zhao, Y.; Fan, Y.; Jiang, L.; Liu, W.; Yang, X. Multifunctional Fe/Cu Dual-Single Atom Nanozymes with Enhanced Peroxidase Activity for Isoniazid Detection and Levofloxacin Degradation. Langmuir 2024, 40, 12671–12680. [Google Scholar] [CrossRef]
- Zheng, Y.; Liao, D.; Xie, B.; Sun, J.; Sun, J.; Tong, Z.; Zhou, G. Tuning the heterostructure improves the catalytic activity of recyclable nanozymes for efficient absorption and degradation of norfloxacin-contaminated water. Sep. Purif. Technol. 2024, 338, 126576. [Google Scholar] [CrossRef]
- Lv, X.; Shu, A.; Shu, L.; Liu, H.; Liu, Y.; Cui, K.; Tang, Y.; Chen, X. Electron cycling mechanism in Fe/Mn DSAzyme accelerates BPA degradation and nanoenzyme regeneration. J. Hazard. Mater. 2024, 476, 135228. [Google Scholar] [CrossRef]
- Liao, X.; Li, B.; Wang, L.; Chen, Y. Boric acid functionalized Fe3O4@CeO2/Tb-MOF as a luminescent nanozyme for fluorescence detection and degradation of caffeic acid. Biosens. Bioelectron. 2024, 264, 116637. [Google Scholar] [CrossRef] [PubMed]
- Rathi, B.S.; Kumar, P.S. Sustainable approach on the biodegradation of azo dyes: A short review. Curr. Opin. Green Sustain. Chem. 2022, 33, 100578. [Google Scholar] [CrossRef]
- Varjani, S.; Rakholiya, P.; Ng, H.Y.; You, S.; Teixeira, J.A. Microbial degradation of dyes: An overview. Bioresour. Technol. 2020, 314, 123728. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Panigrahi, A.; Sarma, T.K. Counter Anion-Directed Growth of Iron Oxide Nanorods in a Polyol Medium with Efficient Peroxidase-Mimicking Activity for Degradation of Dyes in Contaminated Water. ACS Omega 2019, 4, 13153–13164. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wu, W.; Zhu, X.; Li, M.; Zhao, J.; Dong, S. Atomically dispersed hierarchically ordered porous Fe-N-C single-atom nanozymes for dyes degradation. Nano Res. 2023, 16, 10840–10847. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Feng, M.; Deng, D.; Xie, X.; Deng, C.; Khattak, K.N.; Yang, X. Dual-active-site Fe/Cu single-atom nanozymes with multifunctional specific peroxidase-like properties for S2− detection and dye degradation. Chin. Chem. Lett. 2022, 34, 107969. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, X.; Li, S.; Tan, J.; Xu, C.; Huang, Y. MOF-derived Co3O4@Co-Fe oxide double-shelled nanocages as multi-functional specific peroxidase-like nanozyme catalysts for chemo/biosensing and dye degradation. Chem. Eng. J. 2020, 395, 125130. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Tan, Y.; Liu, X.; Fu, L.; Qing, W. Ag-Fe3O4 nanozyme with peroxidase-like activity for colorimetric detection of sulfide ions and dye degradation. J. Environ. Chem. Eng. 2023, 11, 109150. [Google Scholar] [CrossRef]
- Jangi, S.R.H.; Davoudli, H.K.; Delshad, Y.; Jangi, M.R.H.; Jangi, A.R.H. A novel and reusable multinanozyme system for sensitive and selective quantification of hydrogen peroxide and highly efficient degradation of organic dye. Surf. Interfaces 2020, 21, 100771. [Google Scholar] [CrossRef]
- Liu, Q.; Bian, Y.; Xu, T.; Yue, T.; Cao, X.; Bai, S.; Lin, H.; Liu, L. Removal potential and mechanism of sulfamethoxazole and norfloxacin by biochar derived from bagasse and polymeric ferric sulfate. Chem. Eng. Res. Des. 2024, 204, 400–409. [Google Scholar] [CrossRef]
- Geng, X.; Song, K.; Hu, Q.; Yin, Y.; Li, H.; Yan, X.; Jiang, B. Broad-spectrum degradation of fluoroquinolone antibiotics by Hemin-His-Fe nanozymes with peroxidase-like activity. J. Mater. Chem. B 2024, 12, 8647–8654. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, J.; Guo, K.; Yue, Q.; Yin, K.; Xu, X.; Li, Y.; Gao, Y.; Gao, B. Coordination Number Regulation of Iron Single-Atom Nanozyme for Enhancing H2O2 Activation and Selectively Eliminating Cephalosporin Antibiotics. Adv. Funct. Mater. 2024, 34, 2406790. [Google Scholar] [CrossRef]
- Zhang, H.; Cui, P.; Xie, D.; Wang, Y.; Wang, P.; Sheng, G. Axial N Ligand-Modulated Ultrahigh Activity and Selectivity Hyperoxide Activation over Single-Atoms Nanozymes. Adv. Sci. 2023, 10, 2205681. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Chen, X.; Wang, Y.; Zhang, M.; Fan, Y.; Yang, X. High-loading Cu single-atom nanozymes supported by carbon nitride with peroxidase-like activity for the colorimetric detection of tannic acid. Talanta 2023, 257, 124387. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, F.; Yu, J.; Zhang, X.; Lu, G.-P. Iron single-atom anchored N-doped carbon as a ‘laccase-like’ nanozyme for the degradation and detection of phenolic pollutants and adrenaline. J. Hazard. Mater. 2022, 425, 127763. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, B.; Wei, T.; Liu, Z.; Li, J. Self-propelled Janus magnetic micromotors as peroxidase-like nanozyme for colorimetric detection and removal of hydroquinone. Environ. Sci. Nano 2023, 10, 476–488. [Google Scholar] [CrossRef]
- Lv, X.; Liu, H.; Li, Z.; Cui, M.; Cui, K.; Guo, Z.; Dai, Z.; Wang, B.; Chen, X. Critical role of zero-valent iron in the efficient activation of H2O2 for 4-CP degradation by bimetallic peroxidase-like. Environ. Sci. Pollut. Res. 2024, 31, 10838–10852. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Z.; Wei, T.; Liu, Z.; Li, J. Bimetallic FeMn-N nanoparticles as nanocatalyst with dual enzyme-mimic activities for simultaneous colorimetric detection and degradation of hydroquinone. J. Environ. Chem. Eng. 2023, 11, 110186. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Du, D.; Ni, L.; Pan, J.; Niu, X. Emerging applications of nanozymes in environmental analysis: Opportunities and trends. TrAC Trends Anal. Chem. 2019, 120, 115653. [Google Scholar] [CrossRef]
- Yi, W.; Zhang, P.; Wang, Y.; Li, Z.; Guo, Y.; Liu, M.; Dong, C.; Li, C. Copper ferrite nanoparticles loaded on reduced graphene oxide nanozymes for the ultrasensitive colorimetric assay of chromium ions. Anal. Methods 2022, 14, 3434–3443. [Google Scholar] [CrossRef]
- Lou, C.; Yang, F.; Zhu, L.; Sun, Q.; Yang, Y.; Guo, J. Dual-function sensor based on NH2-MIL-101(Fe)@Cu/CeO2 nanozyme for colorimetric and fluorescence detection of heavy metals. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 677, 132398. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Xu, X.; Ye, K.; Wang, L.; Zhu, H.; Wang, M.; Niu, X. Integrating peroxidase-mimicking activity with photoluminescence into one framework structure for high-performance ratiometric fluorescent pesticide sensing. Sensors Actuators B Chem. 2021, 328, 129024. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, X.; Tang, J.; Ouyang, X.; Liao, Y.; Lu, Y.; Wang, J.; Wei, Z.; Xi, B.; Tang, L. Porous Fe/CeO2 Nanozyme-Based Hydrogel Colorimetric Platform for on-Site Detection of Kanamycin. ACS ES&T Water 2023, 3, 2318–2327. [Google Scholar] [CrossRef]
- Che, H.; Tian, X.; Guo, F.; Nie, Y.; Dai, C.; Li, Y.; Lu, L. Enhancement of the Peroxidase Activity of g-C3N4 with Different Morphologies for Simultaneous Detection of Multiple Antibiotics. Anal. Chem. 2023, 95, 12550–12556. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Khunger, A.; Wallen, S.L.; Kaushik, A.; Chaudhary, G.R.; Varma, R.S. Advanced green analytical chemistry for environmental pesticide detection. Curr. Opin. Green Sustain. Chem. 2021, 30, 100488. [Google Scholar] [CrossRef]
- Banerjee, D.; Adhikary, S.; Bhattacharya, S.; Chakraborty, A.; Dutta, S.; Chatterjee, S.; Ganguly, A.; Nanda, S.; Rajak, P. Breaking boundaries: Artificial intelligence for pesticide detection and eco-friendly degradation. Environ. Res. 2024, 241, 117601. [Google Scholar] [CrossRef]
- Xu, W.; Kang, Y.; Jiao, L.; Wu, Y.; Yan, H.; Li, J.; Gu, W.; Song, W.; Zhu, C. Tuning Atomically Dispersed Fe Sites in Metal–Organic Frameworks Boosts Peroxidase-Like Activity for Sensitive Biosensing. Nano-Micro Lett. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Gao, W.; Liu, S.G.; Zhao, Q.; Fu, Z.; Shi, X. A smartphone-integrated colorimetric sensor for sensitive detection of organophosphorus pesticides based on large-scale synthesized Fe-N/C single-atom nanozymes. Sens. Actuators B Chem. 2024, 403, 135130. [Google Scholar] [CrossRef]
- Wang, J.; Huang, R.; Qi, W.; Su, R.; He, Z. Construction of biomimetic nanozyme with high laccase- and catecholase-like activity for oxidation and detection of phenolic compounds. J. Hazard. Mater. 2022, 429, 128404. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhang, Z.; Luo, Y.; Bai, Y.; Fan, J. Bioremediation of phenolic pollutants by algae—Current status and challenges. Bioresour. Technol. 2022, 350, 126930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, X.; Hu, W.; Liao, Y.; He, Y.; Dong, B.; Zhao, M.; Ma, Y. SPR-Enhanced Au@Fe3O4 Nanozyme for the Detection of Hydroquinone. Chemosensors 2023, 11, 392. [Google Scholar] [CrossRef]
- Chu, S.; Xia, M.; Xu, P.; Lin, D.; Jiang, Y.; Lu, Y. Single-atom Fe nanozymes with excellent oxidase-like and laccase-like activity for colorimetric detection of ascorbic acid and hydroquinone. Anal. Bioanal. Chem. 2023, 416, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Cheng, D.; Zou, S.; Gao, J.; Wang, J.; Wang, Y. Rational design of magnetic MOFs-COFs hybrid nanozyme for the colorimetric detection of phenol. J. Environ. Chem. Eng. 2023, 11, 110914. [Google Scholar] [CrossRef]
Preparation Method | Advantage | Disadvantage | Nanozyme | Activity Type | Ref. |
---|---|---|---|---|---|
Hydrothermal method | Narrow size distribution; High purity High crystallinity Controlled morphology | High temperature and pressure range Security risks Limited scope of application | MoSe2@Fe | Peroxidase | [44] |
MoS2 | Peroxidase | [45] | |||
Fe-CDs | Peroxidase | [46] | |||
Fe, N-CDs | Peroxidase | [47] | |||
MNP@CTS | Peroxidase | [48] | |||
Solvothermal method | Wider adjustment range Ability to adapt to more synthetic needs | Higher costs High chemical toxicity High risk | FeS2@SNW-1 | Peroxidase | [49] |
N-CDs/Fe3O4 | Peroxidase | [50] | |||
MIL-88B (Fe, Ni) | Peroxidase | [51] | |||
Co-precipitation method | Simple operation High yield Short reaction time | Uneven composition Prone to agglomeration Lower crystallinity | Ni/Al-Fe(CN)6 LDH | Peroxidase | [52] |
Fe3(PO4)2·8H2O-CDs-FA | Peroxidase | [53] | |||
Fe/CuSn(OH)6 | Peroxidase | [54] | |||
Fe3O4 MNPs | zymolyase | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Fan, G.; Wu, S.; Luo, J.; Lin, Y.; Zheng, W.; Min, S.; Xu, K.-Q. Preparation of Iron-Based Nanozymes and Their Application in Water Environment: A Review. Water 2024, 16, 3431. https://doi.org/10.3390/w16233431
Cao X, Fan G, Wu S, Luo J, Lin Y, Zheng W, Min S, Xu K-Q. Preparation of Iron-Based Nanozymes and Their Application in Water Environment: A Review. Water. 2024; 16(23):3431. https://doi.org/10.3390/w16233431
Chicago/Turabian StyleCao, Xingfeng, Gongduan Fan, Shiyun Wu, Jing Luo, Yuhan Lin, Weixin Zheng, Shuangyu Min, and Kai-Qin Xu. 2024. "Preparation of Iron-Based Nanozymes and Their Application in Water Environment: A Review" Water 16, no. 23: 3431. https://doi.org/10.3390/w16233431
APA StyleCao, X., Fan, G., Wu, S., Luo, J., Lin, Y., Zheng, W., Min, S., & Xu, K. -Q. (2024). Preparation of Iron-Based Nanozymes and Their Application in Water Environment: A Review. Water, 16(23), 3431. https://doi.org/10.3390/w16233431