Rejuvenation of the Springs in the Hindu Kush Himalayas Through Transdisciplinary Approaches—A Review
<p>Map of the Hindu Kush Himalayan region and the sub-watersheds Indus, Ganga, Brahmaputra, Qinghai–Tibetan, and Irrawaddy. The population in each river basin is presented after [<a href="#B31-water-16-03675" class="html-bibr">31</a>].</p> "> Figure 2
<p>Schematic representing the systematic literature review (PRISMA method).</p> "> Figure 3
<p>The data for the HKH region showing the changes in temperature and rainfall patterns from 1901 to 2016 at Srinagar, Kathmandu and Lhasa in the HKH region [Data source: Climate Research Unit (CRU) Time Series (TS) Volume 4.01 [<a href="#B156-water-16-03675" class="html-bibr">156</a>]. Here, the black dot represents the respective location Srinagar, Kathmandu and Lasha temperature and precipitation.</p> "> Figure 4
<p>Change in LULC (Barren to Pine Forest) pattern between 1990 and 2022 of Kanlei Village in Khulgad watershed, Almora, India. The red arrow indicates the same tree as a marker location.</p> "> Figure 5
<p>Community participation in constructing trenches and pits for rainwater harvesting under mechanical recharge interventions.</p> "> Figure 6
<p>Conceptual framework of Assisted Natural Regeneration (ANR) strategy for forest rehabilitation (modified after [<a href="#B88-water-16-03675" class="html-bibr">88</a>]).</p> "> Figure 7
<p>Comparison of the Shyahidevi Reserve Forest of Almora, India, between 2012 and 2023 (Source of Photograph: Mr. Gajendra Pathak, Shitalakhet).</p> "> Figure 8
<p>Collective action for water resource management with PPP model.</p> "> Figure 9
<p>Conceptual diagram representing the four major pillars of spring water resources management, highlighting major contributing subsets collaborated after the critical review.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Defining Keywords
- “Spring hydrology” AND “sustainable water management”: 02.
- “Spring rejuvenation”: 16.
- “Springshed management”: 10.
- “Mountain forest” AND “hydrology”: 54.
- “Land use change” AND” spring hydrology”: 9.
- “Public participation” AND “hydrology”: 44.
- “Transdisciplinary research” AND “water”: 257.
- “Participatory action research” AND “hydrology”: 4.
- “Community participation” AND “Spring”: 63.
- “Community engagement” AND “Spring”: 96.
2.2. Initial Results
2.3. Refining the Initial Results
3. Factors Contributing to the Decrease in Spring Discharge and Water Quality
3.1. Impact of Climate Change on Spring Hydrological Cycle
3.2. Impact of Land Use Change on the Spring Hydrological Cycle
3.2.1. Deforestation
3.2.2. Population and Migration
3.2.3. Forest Fire
3.3. Change in Spring Water Quality
4. Spring Recharge Interventions and Rejuvenations
4.1. Mechanical Interventions
4.2. Assistive Natural Regeneration (ANR)
5. Effectiveness of Various Scientific Interventions
6. Impact of Various Government Policies over Spring Hydrology
7. Public–Private Partnerships in Water Resource Management
8. Converting Research into Action Research/Transdisciplinary Approach
8.1. Land Use Planning
8.2. Capacity Building
8.3. Adopting the Transdisciplinary Mode of Research and Rejuvenation
- i2s (Integration and Implementation science) Framework: Focuses on complex societal and environmental research through Synthesizing Knowledge, Managing Knowledge, and Supporting Improvement [146].
- CANDHY (Citizen and Hydrology) Framework: Integrates traditional Aboriginal Australian knowledge with modern hydrology and policy through collaboration among hydrologists, public servants, and researchers [151].
- ANU Framework: Emphasizes a transdisciplinary approach with characteristics like being Change-oriented, Systemic, Context-based, Pluralistic, Interactive, and Integrative [152].
8.4. Promoting the Suitable Development Goals
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dyurgerov, M.B.; Meier, M.F. Glaciers and the Changing Earth System: A 2004 Snapshot; Institute of Arctic and Alpine Research, University of Colorado: Boulder, CO, USA, 2005; Volume 58, p. 23. [Google Scholar]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Gurung, S.; Bhattarai, B.C.; Kayastha, R.B.; Stumm, D.; Joshi, S.P.; Mool, P.K. Study of annual mass balance (2011–2013) of Rikha Samba Glacier, Hidden Valley, Mustang, Nepal. Sci. Cold Arid. Reg. 2018, 8, 311–318. [Google Scholar]
- Pant, N.; Semwal, P.; Khobragade, S.D.; Rai, S.P.; Kumar, S.; Dubey, R.K.; Noble, J.; Joshi, S.K.; Rawat, Y.S.; Nainwal, H.C.; et al. Tracing the isotopic signatures of cryospheric water and establishing the altitude effect in Central. J. Hydrol. 2021, 595, 125983. [Google Scholar] [CrossRef]
- Rasul, G.; Sharma, B. The nexus approach to water–energy–food security: An option for adaptation to climate change. Clim. Policy 2016, 16, 682–702. [Google Scholar] [CrossRef]
- Aayog, N.I.T.I. Inventory and Revival of Springs in the Himalayas for Water Security; Department of Science and Technology, Government of India: New Delhi, India, 2017.
- Mantri, V.A. Water security in the Himalaya through spring-ecosystem assessment and management. Curr. Sci. 2021, 121, 1008. [Google Scholar]
- Menon, S.; Koch, D.; Beig, G.; Sahu, S.; Fasullo, J.; Orlikowski, D. Black carbon aerosols and the third polar ice cap. Atmos. Chem. Phys. 2010, 10, 4559–4571. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: The Physical Science Basis; Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change; Solomon, S., Ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Berg, A.; Findell, K.; Lintner, B.; Giannini, A.; Seneviratne, S.I.; Van Den Hurk, B.; Lorenz, R.; Pitman, A.; Hagemann, S.; Meier, A.; et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nature 2016, 6, 869–874. [Google Scholar] [CrossRef]
- Li, Z.; Xu, X.; Liu, M.; Li, X.; Zhang, R.; Wang, K.; Xu, C. State-space prediction of spring discharge in a karst catchment in southwest China. J. Hydrol. 2017, 549, 264–276. [Google Scholar] [CrossRef]
- Siddique, M.I.; Desai, J.; Kulkarni, H.; Mahamuni, K. Comprehensive Report on Springs in the Indian Himalayan Region-Status of Springs, Emerging Issues and Responses; ACWADAM Report ACWA/Hydro/2019 H88; ACWADAM: Pune, India, 2019. [Google Scholar] [CrossRef]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef]
- Wu, W.Y.; Lo, M.H.; Wada, Y.; Famiglietti, J.S.; Reager, J.T.; Yeh, P.J.F.; Ducharne, A.; Yang, Z.L. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 2020, 11, 371. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Green, T.R. Linking climate change and groundwater. In Integrated Groundwater Management: Concepts, Approaches and Challenges; Springer Natue: London, UK, 2016; pp. 97–141. [Google Scholar]
- Kumar, A.; Saikia, P.; Srivastava, P. Human-induced impacts on ecological infrastructure in the Himalayan urban agglomerations. Ecol. Front. 2024, 44, 84–95. [Google Scholar]
- Vrba, J.; van der Gun, J. The world’s groundwater resources. In World Water Development Report 2, Contribution to Chapter 4, Report IP 2004-1, System; International Groundwater Resources Assessment Centre: Delft, The Netherlands, 2004; Volume 2, pp. 1–10. [Google Scholar]
- Puri, S.; Aureli, A. Transboundary aquifers: A global program to assess, evaluate, and develop policy. Groundwater 2005, 43, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Ojha, C.S.; Surampalli, R.Y.; Bárdossy, A.; Zhang, T.C.; Kao, J.C.M. (Eds.) Sustainable Water Resources Management; American Society of Civil Engineers: Reston, VA, USA, 2017. [Google Scholar]
- Linton Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Gleick, P.H. A look at twenty-first century water resources development. Water Int. 2000, 25, 127–138. [Google Scholar] [CrossRef]
- Linton, J.; Budds, J. The hydrosocial cycle: Defining and mobilizing a relational-dialectical approach to water. Geoforum 2014, 57, 170–180. [Google Scholar] [CrossRef]
- Nowotny, H.; Scott, P.; Gibbons, M. Re-Thinking Science: Knowledge and the Public in an Age of Uncertainty; Polity: Cambridge, UK, 2001; p. 12. [Google Scholar]
- Hoffmann, S.; Pohl, C.; Hering, J.G. Methods and procedures of transdisciplinary knowledge integration: Empirical insights from four thematic synthesis processes. Ecol. Soc. 2017, 22, 27. [Google Scholar] [CrossRef]
- Dollin, J.; Hagare, D.; Maheshwari, B.; Packham, R.; Reynolds, J.; Garg, A.; Harris, H.; Issac, A.M.; Meher, A.K.; Shivakumar, S.K. A reflective evaluation of young water professionals’ transdisciplinary learning. World Water Policy 2023, 9, 315–333. [Google Scholar] [CrossRef]
- Krueger, T.; Maynard, C.; Carr, G.; Bruns, A.; Mueller, E.N.; Lane, S. A transdisciplinary account of water research. Wiley Interdiscip. Rev. Water 2016, 3, 369–389. [Google Scholar] [CrossRef]
- Brouwer, S.; Büscher, C.; Hessels, L.K. Towards transdisciplinarity: A water research programme in transition. Sci. Public Policy 2018, 45, 211–220. [Google Scholar] [CrossRef]
- Ferguson, L.; Chan, S.; Santelmann, M.V.; Tilt, B. Transdisciplinary research in water sustainability: What’s in it for an engaged researcher-stakeholder community? Water Altern. 2018, 11, 1. [Google Scholar]
- Sahu, N.; Mallick, S.K.; Das, P.; Saini, A.; Sayama, T.; Varun, A.; Kumar, A.; Kesharwani, R.; Thakur, P.K. Climatic impacts on spring disappearance in the Indian Himalayas. Geomat. Nat. Hazards Risk 2024, 15, 2433115. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Agrawal, N.K.; Alfthan, B.; Bajracharya, S.R.; Maréchal, J.; Oort, B.V. The Himalayan Climate and Water Atlas: Impact of Climate Change on Water Resources in Five of Asia’s Major River Basins; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2015. [Google Scholar]
- Saunders-Stewart, K.S.; Gyles, P.D.; Shore, B.M. Student outcomes in inquiry instruction: A literature-derived inventory. J. Adv. Acad. 2012, 23, 5–31. [Google Scholar] [CrossRef]
- Fahimnia, B.; Sarkis, J.; Davarzani, H. Green supply chain management: A review and bibliometric analysis. Int. J. Prod. Econ. 2015, 162, 101–114. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Jung, H.Y.; Hogue, T.S.; Rademacher, L.K.; Meixner, T. Impact of wildfire on source water contributions in Devil Creek, CA: Evidence from end-member mixing analysis. Hydrol. Process. 2008, 23, 183–200. [Google Scholar] [CrossRef]
- Lane, P.N.; Sheridan, G.J.; Noske, P.J.; Sherwin, C.B.; Costenaro, J.L.; Nyman, P.; Smith, H.G. Fire effects on forest hydrology: Lessons from a multi-scale catchment experiment in SE Australia. IAHS Publ. 2012, 353, 137–143. [Google Scholar]
- Bart, R.R.; Tague, C.L. The impact of wildfire on baseflow recession rates in California. Hydrol. Process. 2017, 31, 1662–1673. [Google Scholar] [CrossRef]
- Bhat, S.U.; Nisa, A.U.; Sabha, I.; Mondal, N.C. Spring water quality assessment of Anantnag district of Kashmir Himalaya: Towards understanding the looming threats to spring ecosystem services. Appl. Water Sci. 2022, 12, 180. [Google Scholar] [CrossRef]
- Dimri, A.P.; Dash, S.K. Wintertime climatic trends in the western Himalayas. Clim. Chang. 2012, 111, 775–800. [Google Scholar] [CrossRef]
- Dudeja, D.; Bartarya, S.K.; Khanna, P.P. Ionic sources and water quality assessment around a reservoir in Tehri, Uttarakhand, Garhwal Himalaya. Environ. Earth Sci. 2013, 69, 2513–2527. [Google Scholar] [CrossRef]
- Joshi, B.K. Hydrology and nutrient dynamics of spring of Almora-Binsar area, Indian Central Himalaya: Landscapes, practices, and management. Water Resour. 2006, 33, 87–96. [Google Scholar] [CrossRef]
- Kumar, K.; Rawat, D.S.; Joshi, R. Chemistry of springwater in Almora, Central Himalaya, India. Environ. Geol. 1997, 31, 150–156. [Google Scholar] [CrossRef]
- Panwar, S. Vulnerability of Himalayan springs to climate change and anthropogenic impact: A review. J. Mt. Sci. 2020, 17, 117–132. [Google Scholar] [CrossRef]
- Saxe, S.; Hogue, T.S.; Hay, L. Characterization and evaluation of controls on post-fire streamflow response across western US watersheds. Hydrol. Earth Syst. Sci. 2018, 22, 1221–1237. [Google Scholar] [CrossRef]
- Shah, S.; Tewari, A.; Tewari, B. Impact of human disturbance on forest vegetation and water resources of Nainital catchment. Nat. Sci. 2009, 7, 74–78. [Google Scholar]
- Shah, R.; Badiger, S. Conundrum or paradox: Deconstructing the spurious case of water scarcity in the Himalayan Region through an institutional economics narrative. Water Policy 2020, 22, 146–161. [Google Scholar] [CrossRef]
- Thakur, N.; Rishi, M.; Sharma, D.A.; Keesari, T. Quality of water resources in Kullu Valley in Himachal Himalayas, India: Perspective and prognosis. Appl. Water Sci. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Tiwari, P.C.; Tiwari, A.; Joshi, B. Urban growth in Himalaya: Understanding the process and options for sustainable development. J. Urban Reg. Stud. Contemp. India 2018, 4, 15–27. [Google Scholar]
- Scott, D.F.; Schulze, R.E. The Hydrological Effects of a Wildfire in a Eucalypt Afforested Catchment. S. Afr. For. J. 1992, 160, 67–74. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Lara, A.; Boisier, J.P.; Galleguillos, M. The impacts of native forests and forest plantations on water supply in Chile. Forests 2019, 10, 473. [Google Scholar] [CrossRef]
- Ansari, M.A.; Deodhar, A.; Kumar, U.S.; Khatti, V.S. Water quality of few springs in outer Himalayas–A study on the groundwater–bedrock interactions and hydrochemical evolution. Groundw. Sustain. Dev. 2015, 1, 59–67. [Google Scholar] [CrossRef]
- Balocchi, F.; Rivera, D.; Arumi, J.L.; Morgenstern, U.; White, D.A.; Silberstein, R.P.; Ramírez de Arellano, P. An Analysis of the Effects of Large Wildfires on the Hydrology of Three Small Catchments in Central Chile Using Tritium-Base. Hydrology 2022, 9, 45. [Google Scholar] [CrossRef]
- Bastin, L.; Gorelick, N.; Saura, S.; Bertzky, B.; Dubois, G.; Fortin, M.J.; Pekel, J.F. Inland surface waters in protected areas globally: Current coverage and 30-year trends. PLoS ONE 2019, 14, e0210496. [Google Scholar] [CrossRef] [PubMed]
- Batelis, S.-C.; Nalbantis, I. Potential Effects of Forest Fires on Streamflow in the Enipeas River Basin, Thessaly, Greece. Environ. Process. 2014, 1, 73–85. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Bozkurt, D.; Rojas, M.; Boisier, J.P.; Valdivieso, J. Climate change impacts on hydroclimatic regimes and extremes over Andean basins in central Chile. Hydrol. Earth Syst. Sci. Discuss. 2017, 1–29. [Google Scholar] [CrossRef]
- Chokkalingam, U.; De Jong, W. Secondary Forest: A working definition and typology. Int. For. Rev. 2001, 3, 19–26. [Google Scholar]
- Dehn, M.; Bürger, G.; Buma, J.; Gasparetto, P. Impact of climate change on slope stability using expanded downscaling. Eng. Geol. 2000, 55, 193–204. [Google Scholar] [CrossRef]
- Dobriyal, M.; Bijalwan, A. Forest fire in western Himalayas of India: A review. N. Y. Sci. J. 2017, 10, 39–46. [Google Scholar]
- Dragoni, W.; Sukhija, B.S. Climate Change and Groundwater: A Short Review; The Geological Society of London: London, UK, 2008; Volume 288, No. 1; pp. 1–12. [Google Scholar]
- Garreaud, R.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.A.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010–2015 mega drought in Central Chile: Impacts on regional. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [Google Scholar] [CrossRef]
- Ghimire, C.P.; Bruijnzeel, L.A.; Lubczynski, M.W.; Bonell, M. Negative trade-off between changes in vegetation water use and infiltration recovery after reforesting degraded pasture land in the Nepalese Lesser Himalaya. Hydrol. Earth Syst. Sci. 2014, 18, 4933–4949. [Google Scholar] [CrossRef]
- Nolan, R.H.; Lane, P.N.J.; Benyon, R.G.; Bradstock, R.A.; Mitchell, P.J. Trends in evapotranspiration and streamflow following wildfire in resprouting eucalypt forests. J. Hydrol. 2015, 524, 614–624. [Google Scholar] [CrossRef]
- Santy, S.; Mujumdar, P.; Bala, G. Increased risk of water quality deterioration under climate change in Ganga River. Front. Water 2022, 4, 971623. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Doerr, S.H. Wildfire as a hydrological and geomorphological agent. Earth-Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
- Shrestha, R.B.; Desai, J.; Mukherji, A.; Dhakal, M.; Kulkarni, H.; Mahamuni, K.; Bhuchar, S.; Bajracharya, S. Protocol for Reviving Springs in the Hindu Kush Himalayas: A Practitioner’s Manual; International Centre for Integrated Mountain Development (ICIMOD): Patan, Nepal, 2018. [Google Scholar]
- Singh, A.K.; Pande, R.K. Changes in spring activity: Experiences of Kumaun Himalaya, India. Environmentalist 1989, 9, 25–29. [Google Scholar] [CrossRef]
- Tambe, S.; Kharel, G.; Arrawatia, M.L.; Kulkarni, H.; Mahamuni, K.; Ganeriwala, A.K. Reviving dying springs: Climate change adaptation experiments from the Sikkim Himalaya. Mt. Res. Dev. 2012, 32, 62–72. [Google Scholar] [CrossRef]
- Valdiya, K.S.; Bartarya, S.K. Diminishing discharges of mountain springs in a part of Kumaun Himalaya. Curr. Sci. 1989, 58, 417–426. [Google Scholar]
- Valdiya, K.S.; Bartarya, S.K. Hydrogeological studies of springs in the catchment of the Gaula river, Kumaun Lesser Himalaya, India. Mt. Res. Dev. 1991, 11, 239–258. [Google Scholar] [CrossRef]
- Warner, S.D. Climate change, sustainability, and ground water remediation: The connection. Groundw. Monit. Remediat. 2007, 27, 50–52. [Google Scholar] [CrossRef]
- White, D.A.; Balocchi-Contreras, F.; Silberstein, R.P.; de Arellano, P.R. The effect of wildfire on the structure and water balance of a high conservation value Hualo (Nothofagus glauca (Phil.) Krasser.) forest in central Chile. For. Ecol. Manag. 2020, 472, 118219. [Google Scholar] [CrossRef]
- Bruijnzeel, L.A.; Bremmer, C.N. Highland-Lowland Interactions in the Ganges Brahmaputra River Basin: A Review of Published Literature; International Centre for Integrated Mountain Development: Lalitpur, Nepal, 1989; p. 136. [Google Scholar]
- Ministry of Jal Shakti. Spring Rejuvenation Framework; Ministry of Jal Shakti, DoWR, GoI: New Delhi, India, 2019. Available online: https://mowr.nic.in/core/WebsiteUpload/2024/Resource%20book_Springshed_Management_Final.pdf (accessed on 3 December 2024).
- Azhoni, A.; Goyal, M.K. Diagnosing climate change impacts and identifying adaptation strategies by involving key stakeholder organisations and farmers in Sikkim, India: Challenges and opportunities. Sci. Total Environ. 2018, 626, 468–477. [Google Scholar] [CrossRef]
- Balocchi, F.; Flores, N.; Arumí, J.L.; Iroumé, A.; White, D.A.; Silberstein, R.P.; Ramírez de Arellano, P. Comparison of streamflow recession between plantations and native forests in small catchments in Central-Southern Chile. Hydrol. Process. 2021, 35, e14182. [Google Scholar] [CrossRef]
- Bartarya, S.K.; Valdiya, K.S. Landslides and erosion in the catchment of the Gaula River, Kumaun Lesser Himalaya, India. Mt. Res. Dev. 1989, 9, 405–419. [Google Scholar] [CrossRef]
- Bay, D. Rehabilitation of Degraded Lands in Humid Zones of Africa; International Union of Forest Research Organizations, Global Forest Information Service (GFIS) Project: Kumasi, Ghana, 2002. [Google Scholar]
- Buono, J. Spring protection and management: Context, history and examples of spring management in India. In Groundwater development and Management: Issues and Challenges in South Asia; Springer: Berlin, Germany, 2019; pp. 227–241. [Google Scholar]
- Chiew, F.H.S.; McMahon, T.A. Modelling the impacts of climate change on Australian streamflow. Hydrol. Process 2002, 16, 1235–1245. [Google Scholar] [CrossRef]
- Dugan, P.C.; Durst, P.B.; Ganz, D.J.; PJ, M. Advancing Assisted Natural Regeneration (ANR) in Asia and the Pacific; RAP Publication: Bangkok, Thailand, 2003; p. 19. [Google Scholar]
- Kumar, V.; Paramanik, S. Application of high-frequency spring discharge data: A case study of Mathamali spring rejuvenation in the Garhwal Himalaya. Water Supply 2020, 20, 3380–3392. [Google Scholar] [CrossRef]
- Larsen, I.J.; MacDonald, L.H.; Brown, E.; Rough, D.; Welsh, M.J.; Pietraszek, J.H.; Libohova, Z.; Benavides-Solorio, J.D.; Schaffrath, K. Causes of post-fire runoff and erosion: Water repellency, cover, or soil sealing? Soil Sci. Soc. Am. J. 2009, 73, 1393–1407. [Google Scholar] [CrossRef]
- Negi, G.S.; Joshi, V. Drinking water issues and development of spring sanctuaries in a mountain watershed in the Indian Himalaya. Mt. Res. Dev. 2002, 22, 29–31. [Google Scholar] [CrossRef]
- Joshi, G.; Negi, G.C. Quantification and valuation of forest ecosystem services in the western Himalayan region of India. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2010, 7, 2–11. [Google Scholar] [CrossRef]
- Rijal, M.L. The importance of springshed approach for the conservation of springs in Nepal Himalaya. Bull. Nepal Geol. Soc. 2016, 33, 61–64. [Google Scholar]
- Rosli, Z.; Zakaria, M. Immediate Effects of Selective Logging on The Feeding Guild of The Understory Insectivorous Birds in Ulu Muda Forest Reserve, Kedah. In Proceedings of the Regional Symposium on Environment and Natural Resources, Kuala Lumpur, Malaysia, 10–11 April 2002; Volume 1, pp. 737–744. [Google Scholar]
- Sajise, P. Working with Nature: Technical and Social Dimensions of Assisted Natural Regeneration. In Advancing Assisted Natural Regeneration (ANR) in Asia and the Pacific; RAP Publication: Banghkok, Thailand, 2003; p. 5. [Google Scholar]
- Sannai, J. Assisted Natural Regeneration in China. In Advancing Assisted Natural Regeneration (ANR) in Asia and the Pacific; FAO: Rome, Italy, 2003; p. 29. [Google Scholar]
- Shono, K.; Cadaweng, E.A.; Durst, P.B. Application of assisted natural regeneration to restore degraded tropical forestlands. Restor. Ecol. 2007, 15, 620–626. [Google Scholar] [CrossRef]
- Tiwari, V.; Pandey, A. Urban water resilience in Hindu Kush Himalaya: Issues, challenges and way forward. Water Policy 2020, 22, 33–45. [Google Scholar]
- Tambe, S.; Rawat, G.S.; Bhutia, N.T.; Sherpa, P.N.; Dhakal, S.; Pradhan, S.; Kulkarni, H.; Arrawatia, M.L. Building sustainability in the Eastern Himalaya: Linking evidence to action. Environ. Dev. Sustain. 2020, 22, 5887–5903. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Yang, Z.; Xu, C.; Xie, J.; Chen, G.; Lin, C.; Guo, J.; Liu, X.; Xiong, D.; et al. Large ecosystem service benefits of assisted natural regeneration. J. Geophys. Res. Biogeosci. 2018, 123, 676–687. [Google Scholar] [CrossRef]
- Poteete, A.R.; Ostrom, E. Heterogeneity, group size and collective action: The role of institutions in forest management. Dev. Change 2004, 35, 435–461. [Google Scholar] [CrossRef]
- Drenkhan, F.; Buytaert, W.; Mackay, J.D.; Barrand, N.E.; Hannah, D.M.; Huggel, C. Looking beyond glaciers to understand mountain water security. Nat. Sustain. 2023, 6, 130–138. [Google Scholar] [CrossRef]
- Goldenberg, S. Himalayas in Danger of Becoming a Giant Rubbish Dump. The Guardian. 12 September 2011. Available online: http://www.theguardian.com/environment/blog/2011/sep/12/himalayas-waste (accessed on 6 February 2023).
- Gu, L.; Chen, J.; Yin, J.; Slater, L.J.; Wang, H.M.; Guo, Q.; Feng, M.; Qin, H.; Zhao, T. Global increases in compound flood-hot extreme hazards under climate warming. Geophys. Res. Lett. 2022, 49, e2022GL097726. [Google Scholar] [CrossRef]
- Maheshwari, B.L.; Mehta, A. MARVI: An Innovative Approach for Village Level Groundwater Management; Western Sydney University: Penrith, Australia, 2019. [Google Scholar]
- Mirnezami, S.J.; Bagheri, A.; Maleki, A. Inaction of society on the drawdown of groundwater resources: A case study of Rafsanjan plain in Iran. Water Altern 2018, 11, 725–748. [Google Scholar]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, K.; Singh, S.; Prakash, A. What Lies Behind the Deepening Water Crisis in Himalayan Towns? Citizen Matters. 29 July 2020. Available online: https://citizenmatters.in/urbanisation-water-management-climate-change-in-himalayan-cities-19663 (accessed on 3 December 2024).
- Shukla, T.; Sen, I.S. Preparing for floods on the Third Pole. Science 2021, 372, 232–234. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, P.G.; Sarkar, S.; Jin, L.; Futter, M.N.; Caesar, J.; Barbour, E.; Butterfield, D.; Sinha, R.; Nicholls, R.; Hutton, C.; et al. Dynamic modeling of the Ganga river system: Impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh. Environ. Sci. Process. Impacts 2015, 17, 1082–1097. [Google Scholar] [CrossRef]
- Rai, S.P. Hydrological and Geomorphological Studies of the Syahidevi–Binsar Area, District Almora, Kumaun Himalaya. Ph.D Thesis, Kumaun University, Uttarakhand, India, 1993. [Google Scholar]
- Ballav, S.; Mukherjee, S.; Gosavi, V.; Dimri, A.P. Projected changes in winter-season wet days over the Himalayan region during 2020–2099. Theor. Appl. Clim. 2021, 146, 883–895. [Google Scholar] [CrossRef]
- Cooper, C.F. Changes in vegetation, structure, and growth of southwestern pine forests since white settlement. Ecol. Monogr. 1960, 30, 130–164. [Google Scholar] [CrossRef]
- Das, K. Climate Change Forces Uttarakhand Farmers to Migrate. 2021. Available online: https://dialogue.earth/en/climate/climate-change-forces-migration-uttarakhand-farmers/ (accessed on 3 December 2024).
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; Van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Gilmour, D.A.; Bonell, M.; Cassells, D.S. The effects of forestation on soil hydraulic properties in the Middle Hills of Nepal: A preliminary assessment. Mt. Res. Dev. 1987, 7, 239–249. [Google Scholar] [CrossRef]
- Holman, I.P. Climate change impacts on groundwater recharge-uncertainty, shortcomings, and the way forward? Hydrogeol. J. 2006, 14, 637–647. [Google Scholar] [CrossRef]
- Jeelani, G.; Shah, R.A.; Deshpande, R.D. Assessment of groundwater in karst system of Kashmir Himalayas, India. In Groundwater of South Asia; Springer: Singapore, 2018; pp. 85–100. [Google Scholar]
- Joshi, B.; Kothyari, B.P. Chemistry of perennial springs of Bhetagad watershed: A case study from central Himalayas, India. Environ. Geol. 2003, 44, 572–578. [Google Scholar] [CrossRef]
- Lanh, L.V.L. Establishment of ecological models for rehabilitation of degraded barren midland land in northern Vietnam. J. Trop. For. Sci. 1994, 7, 143–156. [Google Scholar]
- Lone, S.A.; Bhat, S.U.; Hamid, A.; Bhat, F.A.; Kumar, A. Quality assessment of springs for drinking water in the Himalaya of South Kashmir, India. Environ. Sci. Pollut. Res. 2021, 28, 2279–2300. [Google Scholar] [CrossRef]
- Madani, E.M.; Jansson, P.E.; Babelon, I. Differences in water balance between grassland and forest watersheds using long-term data, derived using the CoupModel. Hydrol. Res. 2018, 49, 72–89. [Google Scholar] [CrossRef]
- Mishra, A. Changing temperature and rainfall patterns of Uttarakhand. Int. J. Environ. Sci. Nat. Resour. 2017, 7, 90–95. [Google Scholar] [CrossRef]
- Narain, V.; Singh, A.K. Replacement or displacement? Periurbanisation and changing water access in the Kumaon Himalaya, India. Land Use Policy 2019, 82, 130–137. [Google Scholar] [CrossRef]
- Nepal, S.; Flügel, W.A.; Shrestha, A.B. Upstream-downstream linkages of hydrological processes in the Himalayan region. Ecol. Process. 2014, 3, 1–16. [Google Scholar] [CrossRef]
- Peña-Arancibia, J.L.; van Dijk, A.I.; Guerschman, J.P.; Mulligan, M.; Bruijnzeel, L.A.S.; McVicar, T.R. Detecting changes in streamflow after partial woodland clearing in two large catchments in the seasonal tropics. J. Hydrol. 2012, 416, 60–71. [Google Scholar] [CrossRef]
- Rawat, J.S.; Rai, S.P. Pattern and intensity of erosion in the environmentally stressed Khulgad watershed, Kumaun Himalaya. J. Geol. Soc. India 1997, 50, 331–338. [Google Scholar] [CrossRef]
- Rawat, J.S. Saving Himalayan Rivers: Developing spring sanctuaries in headwater regions. In Natural Resource Conservation in Uttarakhand; Ankit Prakashan: Haldwani, India, 2009; pp. 41–69. [Google Scholar]
- Sahay, A.; Singh, R.B.P.; Bahuguna, R. Reviving Springs in Himalayan Region to guarantee Clean and Safe Drinking Water Supply to Remote Villages. Int. J. Res. Appl. Sci. Eng. Technol. 2019, 7, 2321–9653. [Google Scholar] [CrossRef]
- Schmidt-Vogt, D. 13 Indigenous knowledge and the use of fallow forests in Northern Thailand. For. For. Users Res. New Ways Learn. 2000, 1, 169. [Google Scholar]
- Seibert, J.; McDonnell, J.J.; Woodsmith, R.D. Effects of wildfire on catchment runoff response: A modelling approach to detect changes in snow-dominated forested catchments. Hydrol. Res. 2010, 41, 378–390. [Google Scholar] [CrossRef]
- Shah, R.A.; Jeelani, G. Vulnerability of karst aquifer to contamination: A case study of Liddar catchment, Kashmir Himalayas. J. Himal. Ecol. Sustain. Dev. 2016, 11, 58–72. [Google Scholar]
- Sheoran, R.; Dumka, U.C.; Hyvärinen, A.P.; Sharma, V.P.; Tiwari, R.K.; Lihavainen, H.; Virkkula, A.; Hooda, R.K. Assessment of carbonaceous aerosols at Mukteshwar: A high-altitude (~2200 m amsl) background site in the foothills of the Central Himalayas. Sci. Total Environ. 2022, 866, 161334. [Google Scholar] [CrossRef]
- Silberstein, R.P.; Dawes, W.R.; Bastow, T.P.; Byrne, J.; Smart, N.F. Evaluation of changes in post-fire recharge under native woodland using hydrological measurements, modelling and remote sensing. J. Hydrol. 2013, 489, 1–15. [Google Scholar] [CrossRef]
- Taloor, A.K.; Pir, R.A.; Adimalla, N.; Ali, S.; Manhas, D.S.; Roy, S.; Singh, A.K. Spring water quality and discharge assessment in the Basantar watershed of Jammu Himalaya using geographic information system (GIS) and water quality Index (WQI). Groundw. Sustain. Dev. 2020, 10, 100364. [Google Scholar] [CrossRef]
- Tiwari, P. Land use changes in Himalaya and their impacts on environment, society and economy: A study of the Lake Region in Kumaon Himalaya, India. Adv. Atmos. Sci. 2008, 25, 1029–1042. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; Peña-Arancibia, J.L.; Bruijnzeel, L.A. Land cover and water yield: Inference problems when comparing catchments with mixed land cover. Hydrol. Earth Syst. Sci. 2012, 16, 3461–3473. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Ma, C.; Wang, Y.; Li, T.; Dai, Z.; Wang, L.; Qi, Z.; Hu, Y. The Hydrological and Mechanical Effects of Forests on Hillslope Soil Moisture Changes and Stability Dynamics. Forests 2023, 14, 507. [Google Scholar] [CrossRef]
- Woldeamlak, S.T.; Batelaan, O.; De Smedt, F. Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium. Hydrogeol. J. 2007, 15, 891–901. [Google Scholar] [CrossRef]
- Tiwari, P.C.; Joshi, B. Rapid urban growth in mountainous regions: The case of Nainital, India. In Urbanization and Global Envi-ronment Change (UGEC) Viewpoints, Global Institute of Sustainability; Arizona State University: Tempe, AZ, USA, 2016. [Google Scholar]
- Andreu, J.; Capilla, J.; Sanchís, E. AQUATOOL, a generalized decision-support system for water-resources planning and operational management. J. Hydrol. 1996, 177, 269–291. [Google Scholar] [CrossRef]
- Chettri, V. Centre Funds Darjeeling Water Supply Rejig. Telegraph India, 26 April 2016. Available online: https://www.telegraphindia.com/west-bengal/centre-funds-darjeeling-water-supply-rejig/cid/1524726 (accessed on 3 December 2024).
- Bisht, B.K.; Mahamuni, K. CHIRAG’s spring protection programme. In Proceedings of the 3rd Annual Meeting of the Springs Initiative, Bhimtal, Uttarakhand, India, 15 May 2015; Volume 15. [Google Scholar]
- Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R.D.G.; Jain, R.C.; Bear, J.; Schwarz, J.; Wang, W.; Fernandez, E.; et al. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. 2019, 27, 1–30. [Google Scholar] [CrossRef]
- Emn Nagaland: Springshed Development Project to Cover 100 Villages—Eastern Mirror 2019. Available online: https://easternmirrornagaland.com/nagaland-springshed-development-project-to-cover-100-villages/ (accessed on 3 December 2024).
- Flint, L.E.; Underwood, E.C.; Flint, A.L.; Hollander, A.D. Characterizing the Influence of Fire on Hydrology in Southern Cali-fornia. Nat. Areas J. 2019, 39, 108–121. [Google Scholar] [CrossRef]
- Gibson, J.; Prepas, E.; McEachern, P. Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: Modelling and results from a regional survey of Boreal lakes. J. Hydrol. 2002, 262, 128–144. [Google Scholar] [CrossRef]
- Hardin, G. The tragedy of the commons: The population problem has no technical solution; it requires a fundamental extension in morality. Science 1968, 162, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Kartawinata, K.; Riswan, S.; Gintings, A.N.; Puspitojati, T. An overview of post-extraction secondary forests in Indonesia. J. Trop. For. Sci. 2001, 13, 621–638. [Google Scholar]
- Khattiyavong, C.; Lee, H.S. Performance simulation and assessment of an appropriate wastewater treatment technology in a densely populated growing city in a developing country: A case study in Vientiane, Laos. Water 2019, 11, 1012. [Google Scholar] [CrossRef]
- Leach, M.; Mearns, R.; Scoones, I. Environmental entitlements: Dynamics and institutions in community-based natural resource management. World Dev. 1999, 27, 225–247. [Google Scholar] [CrossRef]
- Maheshwari, B.; Varua, M.; Ward, J.; Packham, R.; Chinnasamy, P.; Dashora, Y.; Dave, S.; Soni, P.; Dillon, P.; Rao, P. The role of transdisciplinary approach and community participation in village scale groundwater management: Insights from Gujarat and Rajasthan, India. Water 2014, 6, 3386–3408. [Google Scholar] [CrossRef]
- Bammer, G. Should we discipline interdisciplinarity? Palgrave Commun. 2017, 3, 1–4. [Google Scholar] [CrossRef]
- Rao, N.; Mishra, A.; Prakash, A.; Singh, C.; Qaisrani, A.; Poonacha, P.; Vincent, K.; Bedelian, C. A qualitative comparative analysis of women’s agency and adaptive capacity in climate change hotspots in Asia and Africa. Nat. Clim. Change 2019, 9, 964–971. [Google Scholar] [CrossRef]
- Erostate, M.; Huneau, F.; Garel, E.; Ghiotti, S.; Vystavna, Y.; Garrido, M.; Pasqualini, V. Groundwater dependent ecosystems in coastal Mediterranean regions: Characterization, challenges and management for their protection. Water Res. 2020, 172, 115461. [Google Scholar] [CrossRef]
- Pohl, C.; Klein, J.T.; Hoffmann, S.; Mitchell, C.; Fam, D. Conceptualising transdisciplinary integration as a multidimensional interactive process. Environ. Sci. Policy 2021, 118, 18–26. [Google Scholar] [CrossRef]
- Sati, V.P. Out-migration in Uttarakhand Himalaya: Its types, reasons, and consequences. Migr. Lett. 2021, 18, 281–295. [Google Scholar] [CrossRef]
- Nardi, F.; Cudennec, C.; Abrate, T.; Allouch, C.; Annis, A.; Assumpcao, T.; Aubert, A.H.; Berod, D.; Braccini, A.M.; Buytaert, W.; et al. Citizens AND HYdrology (CANDHY): Conceptualizing a transdisciplinary framework for citizen science addressing hydrological challenges. Hydrol. Sci. J. 2022, 67, 2534–2551. [Google Scholar] [CrossRef]
- Bammer, G.; Browne, C.A.; Ballard, C.; Lloyd, N.; Kevan, A.; Neales, N.; Nurmikko-Fuller, T.; Perera, S.; Singhal, I.; van Kerkhoff, L. Setting parameters for developing undergraduate expertise in transdisciplinary problem solving at a university-wide scale: A case study. Humanit. Soc. Sci. Commun. 2023, 10, 1–11. [Google Scholar] [CrossRef]
- Maheshwari, B.; Hagare, D.; Spencer, R.; Dollin, J.; Reynolds, J.; Atkins, D.; Packham, R.; Batelaan, O.; Sitharam, T.G.; Lan, Y.C.; et al. Training young water professionals in leadership and transdisciplinary competencies for sustainable water management in India. World Water Policy 2023, 9, 300–314. [Google Scholar] [CrossRef]
- Verma, R.; Jamwal, P. Sustenance of Himalayan springs in an emerging water crisis. Environ. Monit. Assess. 2022, 194, 87. [Google Scholar] [CrossRef]
- Shrestha, S.; Bae, D.H.; Hok, P.; Ghimire, S.; Pokhrel, Y. Future hydrology and hydrological extremes under climate change in Asian river basins. Sci. Rep. 2021, 11, 17089. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Rüegg, J.; Moos, C.; Gentile, A.; Luisier, G.; Elsig, A.; Prasicek, G.; Otero, I. An approach to evaluate mountain forest protection and management as a means for flood mitigation. Front. For. Glob. Chang. 2022, 5, 785740. [Google Scholar] [CrossRef]
- Bandyopadhyay, J.; Gyawali, D. Himalayan water resources: Ecological and political aspects of management. Mt. Res. Dev. 1994, 14, 1–24. [Google Scholar] [CrossRef]
- Bart, R.; Hope, A. Streamflow response to fire in large catchments of a Mediterranean-climate region using paired-catchment experiments. J. Hydrol. 2010, 388, 370–378. [Google Scholar] [CrossRef]
- Loáiciga, H.A.; Pedreros, D.; Roberts, D. Wildfire-streamflow interactions in a chaparral watershed. Adv. Environ. Res. 2001, 5, 295–305. [Google Scholar] [CrossRef]
- Panwar, P.; Joshi, A.; Singh, K.P.; Prasad, M.; Mehra, R.; Sahoo, S.K.; Ramola, R.C. Distribution of uranium and selected toxic heavy metals in drinking water of Garhwal Himalaya, India. J. Radioanal. Nucl. Chem. 2023, 333, 1–9. [Google Scholar] [CrossRef]
- Shrestha, R.; Desai, J.; Mukherji, A.; Dhakal, M.; Kulkarni, H.; Acharya, S. Application of Eight-step Methodology for Reviving Springs and Improving Springshed Management in the Mid-hills of Nepal; CGIAR Research Program on Water, Land and Ecosystems (WLE): Colombo, Sri Lanka, 2017. [Google Scholar]
- ACWADAM, R. Hydrogeological Studies and Action Research for Spring Recharge and Development and Hill-top Lake Restoration in Parts of Southern District, Sikkim State; Advanced Center for Water Resources Development and Management (ACWADAM) and Rural Management and Development Department (RMDD), Government of Sikkim: Gangtok, India, 2011. Available online: http://sikkimsprings.org/dv/research/ACWADAMreport.pdf. (accessed on 3 December 2024).
- Panwar, S.; Shivam, K.; Goyal, N.; Ram, M.; Thapliyal, M.; Semwal, P.; Thapliyal, A. Mathematical modelling for the phosphate and nitrate carrying capacity of dams in Uttarakhand. Environ. Conserv. J. 2022, 23, 343–352. [Google Scholar] [CrossRef]
- Pant, N.; Rai, S.P.; Singh, R.; Kumar, S.; Saini, R.K.; Purushothaman, P.; Nijesh, P.; Rawat, Y.S.; Sharma, M.; Pratap, K. Impact of geology and anthropogenic activities over the water quality with emphasis on fluoride in water scarce Lalitpur district of Bundelkhand region, India. Chemosphere 2021, 279, 130496. [Google Scholar] [CrossRef]
- Nowreen, S.; Misra, A.K.; Zzaman, R.U.; Sharma, L.P.; Abdullah, M.S. Sustainability Challenges to Springshed Water Management in India and Bangladesh: A Bird’s Eye View. Sustainability 2023, 15, 5065. [Google Scholar] [CrossRef]
- Nijesh, P.; Akpataku, K.V.; Patel, A.; Rai, P.; Rai, S.P. Spatial variability of hydrochemical characteristics and appraisal of water quality in stressed phreatic aquifer of Upper Ganga Plain, Uttar Pradesh, India. Environ. Earth Sci. 2021, 80, 1–5. [Google Scholar] [CrossRef]
- Patel, A.; Rai, S.P.; Akpataku, K.V.; Puthiyottil, N.; Singh, A.K.; Pant, N.; Singh, R.; Rai, P.; Noble, J. Hydrogeochemical characterization of groundwater in the shallow aquifer system of Middle Ganga Basin, India. Groundw. Sustain. Dev. 2023, 21, 100934. [Google Scholar] [CrossRef]
- Fraga, N.S.; Cohen, B.S.; Zdon, A.; Mejia, M.P.; Parker, S.S. Floristic Patterns and Conservation Values of Mojave and Sonoran Desert Springs in California. Nat. Areas J. 2023, 43, 4–21. [Google Scholar] [CrossRef]
- Rawat, S.S.; Jose, P.G.; Rai, S.P.; Hakhoo, N. Spring Sanctuary Development Sustaining Water Security in The Himalayan Region in Changing Climate. In Proceedings of the International Conference on Water Environment and Climate Change Knowledge Sharing and Partnership, Kathmandu, Nepal, 10–12 April 2018; pp. 151–159. [Google Scholar]
- Dillon, P.; Page, D.; Vanderzalm, J.; Toze, S.; Simmons, C.; Hose, G.; Martin, R.; Johnston, K.; Higginson, S.; Morris, R. Lessons from 10 years of experience with Australia’s risk-based guidelines for managed aquifer recharge. Water 2020, 12, 537. [Google Scholar] [CrossRef]
- Vijhani, A.; Sinha, V.S.P.; Vishwakarma, C.A.; Singh, P.; Pandey, A.; Govindan, M. Study of stakeholders’ perceptions of climate change and its impact on mountain communities in central himalaya, India. Environ. Dev. 2023, 46, 100824. [Google Scholar] [CrossRef]
- Lima, S.; Brochado, A.; Marques, R.C. Public-private partnerships in the water sector: A review. Util. Policy 2021, 69, 101182. [Google Scholar] [CrossRef]
- Roque, A.; Wutich, A.; Quimby, B.; Porter, S.; Zheng, M.; Hossain, M.J.; Brewis, A. Participatory approaches in water research: A review. Wiley Interdiscip. Rev. Water 2022, 9, e1577. [Google Scholar] [CrossRef]
- Van Aalst, M.K.; Cannon, T.; Burton, I. Community level adaptation to climate change: The potential role of participatory community risk assessment. Glob. Environ. Chang. 2008, 18, 165–179. [Google Scholar] [CrossRef]
- Vedeld, T. Village politics: Heterogeneity, leadership and collective action. J. Dev. Stud. 2000, 36, 105–134. [Google Scholar] [CrossRef]
- Phetkongtong, N.; Nulong, N. Design Guidelines for the Hot Spring Renovation by Participatory Action Research (PAR) and Design Thinking for Sustainable Health Tourism Promotion. Int. J. Sustain. Dev. Plan. 2022, 17, 1489. [Google Scholar] [CrossRef]
- Van Den Hoek, J.; Smith, A.C.; Hurni, K.; Saksena, S.; Fox, J. Shedding new light on mountainous forest growth: A cross-scale evaluation of the effects of topographic illumination correction on 25 years of forest cover change across Nepal. Remote Sens. 2021, 13, 2131. [Google Scholar] [CrossRef]
- Sharma, P.; Prashanth, S.S.; Sharma, A.; Sen, S. Spatial heterogeneity of ecosystem services and their valuation across Himalayas: A systematic literature review and meta-analysis. Environ. Res. Lett. 2024, 20. [Google Scholar] [CrossRef]
S. No. | Type of Linkages | References | No. of Studies |
---|---|---|---|
1 | Hydrological investigation | [1,2,3,4,5,7,10,19,30,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48] | 15 |
2 | Mountain forest hydrology | [9,10,19,38,39,46,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72] | 29 |
3 | Spring rejuvenation activities | [6,9,19,31,38,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93] | 26 |
4 | Socio-economic survey and technology transfer | [78,85,94,95,96,97,98,99,100,101,102,103] | 12 |
5 | Impact of climate and land use change on the spring hydrology | [9,10,11,13,14,15,16,18,19,20,37,40,41,48,52,53,55,56,57,58,59,60,61,62,73,76,77,80,91,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133] | 58 |
6 | Springshed management | [6,30,38,50,52,54,75,78,79,81,100,106,134,135,136,137,138,139,140,141,142,143,144] | 23 |
7 | Transdisciplinary and public–private participation model | [24,25,26,30,145,146,147,148,149,150,151,152,153] | 13 |
Before 1990 | 1990 to 2005 | 2005 to 2023 |
---|---|---|
Traditional water utilization and conservation methods. | The climate change effect can be seen in the precipitation and temperature pattern. | Growing domestic and industrial demand for water. |
Agriculture was the main source of livelihood; hence, a major portion of LULC was agricultural land. | Decline in spring discharge. | Migration has increased the barren lands in the region, resulting in high surface runoff. |
Springs were perennial. | The quantity of water emerged as a major problem in the region. | Degraded water quantity and quality. |
Less scientific knowledge. | Development of data-driven management plans. | Perennial to seasonal springs. |
Far-distance water fetching issues. | Construction of water-lifting schemes and piped water supply schemes at the village level. | The high impact of climate change and anthropogenic activities in spring hydrology. |
The culmination of traditional and scientific interventions | Rejuvenation activities has increased by government and non-government organizations. | |
Migration has decreased the awareness of water conservation among villagers. | An interdisciplinary approach of water conservation at the basin level has adopted. | |
Door-to-door water pipeline supply schemes are developed; however, there is no water to supply. |
Specific | LULC-Based Interventions and Civil Construction/Urbanization |
---|---|
Capacity Building of Local Stakeholders | |
Spring Rejuvenation | |
Measurable | The trend of discharge in springwater |
Impact of climate change and anthropogenic activities on spring discharge | |
Impact of public–private partnerships in rejuvenation of the springs | |
Achievable | Sustainable Development Goals (SDGs) |
Relevant | Understand the impact of rejuvenation on spring hydrology |
Role of public participation in spring rejuvenation | |
Develop various policies and methodologies for achieving SDGs | |
Time frame | 2030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pant, N.; Hagare, D.; Maheshwari, B.; Rai, S.P.; Sharma, M.; Dollin, J.; Bhamoriya, V.; Puthiyottil, N.; Prasad, J. Rejuvenation of the Springs in the Hindu Kush Himalayas Through Transdisciplinary Approaches—A Review. Water 2024, 16, 3675. https://doi.org/10.3390/w16243675
Pant N, Hagare D, Maheshwari B, Rai SP, Sharma M, Dollin J, Bhamoriya V, Puthiyottil N, Prasad J. Rejuvenation of the Springs in the Hindu Kush Himalayas Through Transdisciplinary Approaches—A Review. Water. 2024; 16(24):3675. https://doi.org/10.3390/w16243675
Chicago/Turabian StylePant, Neeraj, Dharmappa Hagare, Basant Maheshwari, Shive Prakash Rai, Megha Sharma, Jen Dollin, Vaibhav Bhamoriya, Nijesh Puthiyottil, and Jyothi Prasad. 2024. "Rejuvenation of the Springs in the Hindu Kush Himalayas Through Transdisciplinary Approaches—A Review" Water 16, no. 24: 3675. https://doi.org/10.3390/w16243675
APA StylePant, N., Hagare, D., Maheshwari, B., Rai, S. P., Sharma, M., Dollin, J., Bhamoriya, V., Puthiyottil, N., & Prasad, J. (2024). Rejuvenation of the Springs in the Hindu Kush Himalayas Through Transdisciplinary Approaches—A Review. Water, 16(24), 3675. https://doi.org/10.3390/w16243675