Evaluating the Hydrological Impact of Reservoir Operation on Downstream Flow of Seomjin River Basin: SWAT Model Approach
<p>Seomjin River basin including reservoirs, weather stations, streamflow gauge, and Digital Elevation Model (DEM).</p> "> Figure 2
<p>Study region soil classification: (<b>a</b>) soil code and (<b>b</b>) hydrological group.</p> "> Figure 3
<p>Seomjin watershed: (<b>a</b>) land use and land cover (LULC) classification and (<b>b</b>) slope class.</p> "> Figure 4
<p>Flowchart: overview approach utilized for current study.</p> "> Figure 5
<p>Seomjin and Juam reservoirs: (<b>a</b>) outflow values and (<b>b</b>) inflow values.</p> "> Figure 6
<p>Streamflow: (<b>a</b>) observed and simulated vs. time for calibration and validation periods, (<b>b</b>) observed vs. simulated during calibration, and (<b>c</b>) observed vs. simulated during validation.</p> "> Figure 7
<p>Reservoir operation scenario influence on the downstream flow: (<b>a</b>) monthly average and (<b>b</b>) annual average.</p> "> Figure 8
<p>Percentage of flow reduction due to reservoir operation scenarios vs. non-reservoir operation: (<b>a</b>) monthly average and (<b>b</b>) annual average.</p> "> Figure 9
<p>Box plots for reservoir operation scenarios and their downstream flow impact on the study region: (<b>a</b>) monthly average and (<b>b</b>) annual average.</p> "> Figure 10
<p>The study watershed hydrological water segments: (<b>a</b>) evapotranspiration (ET), (<b>b</b>) surface runoff (SURQ), (<b>c</b>) recharge, and (<b>d</b>) water yield (WYLD) in mm.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. SWAT Model and Module for Reservoir
- 1.
- Using recorded daily outflow rates;
- 2.
- Using measured monthly outflow rates;
- 3.
- Applying a mean yearly release rate for reservoirs without flow control mechanisms;
- 4.
- Utilizing a target release rate for reservoirs with controlled outflows.
2.3. Model Setup and Calibration Process
3. Results
3.1. Model Calibration and Validation
3.2. The Impact of Reservoir Operation on the Downstream Flow
3.3. Water Balance of Seomjin River Basin
4. Discussion
Effect of Reservoir Operation on the Downstream Flow
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gleeson, T.; Wang-Erlandsson, L.; Porkka, M.; Zipper, S.C.; Jaramillo, F.; Gerten, D.; Fetzer, I.; Cornell, S.E.; Piemontese, L.; Gordon, L.J.; et al. Illuminating Water Cycle Modifications and Earth System Resilience in the Anthropocene. Water Resour. Res. 2020, 56, e2019WR024957. [Google Scholar] [CrossRef]
- Falkenmark, M.; Wang-Erlandsson, L.; Rockström, J. Understanding of Water Resilience in the Anthropocene. J. Hydrol. X 2019, 2, 100009. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, Y.; Chang, J.; Su, H.; Huang, Q.; Li, Z. Quantifying the Effects of Future Environmental Changes on Water Supply and Hydropower Generation Benefits of Cascade Reservoirs in the Yellow River Basin within the Framework of Reservoir Water Supply and Demand Uncertainty. J. Hydrol. Reg. Stud. 2024, 52, 101729. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Park, J.; Kim, S.; Kim, S. Improvement of Downstream Flow by Modifying SWAT Reservoir Operation Considering Irrigation Water and Environmental Flow from Agricultural Reservoirs in South Korea. Water 2021, 13, 2543. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; McVicar, T.R.; Guo, J.; Tang, Y.; Yao, A. Isolating the Impacts of Climate Change and Land Use Change on Decadal Streamflow Variation: Assessing Three Complementary Approaches. J. Hydrol. 2013, 507, 63–74. [Google Scholar] [CrossRef]
- Zipper, S.C.; Motew, M.; Booth, E.G.; Chen, X.; Qiu, J.; Kucharik, C.J.; Carpenter, S.R.; Loheide, S.P. Continuous Separation of Land Use and Climate Effects on the Past and Future Water Balance. J. Hydrol. 2018, 565, 106–122. [Google Scholar] [CrossRef]
- van Tol, J.; Bieger, K.; Arnold, J.G. A Hydropedological Approach to Simulate Streamflow and Soil Water Contents with SWAT+. Hydrol. Process. 2021, 35, e14242. [Google Scholar] [CrossRef]
- Hirpa, F.A.; Alfieri, L.; Lees, T.; Peng, J.; Dyer, E.; Dadson, S.J. Streamflow Response to Climate Change in the Greater Horn of Africa. Clim. Change 2019, 156, 341–363. [Google Scholar] [CrossRef]
- Mai, J.; Craig, J.R.; Tolson, B.A.; Arsenault, R. The Sensitivity of Simulated Streamflow to Individual Hydrologic Processes across North America. Nat. Commun. 2022 131 2022, 13, 455. [Google Scholar] [CrossRef]
- Bourdin, D.R.; Fleming, S.W.; Stull, R.B. Streamflow Modelling: A Primer on Applications, Approaches and Challenges. Atmosphere-Ocean 2012, 50, 507–536. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Remo, J.W.F.; Ickes, B.S.; Ryherd, J.K.; Guida, R.J.; Therrell, M.D. Assessing the Impacts of Dams and Levees on the Hydrologic Record of the Middle and Lower Mississippi River, USA. Geomorphology 2018, 313, 88–100. [Google Scholar] [CrossRef]
- Wang, Z.; He, Y.; Li, W.; Chen, X.; Yang, P.; Bai, X. A Generalized Reservoir Module for SWAT Applications in Watersheds Regulated by Reservoirs. J. Hydrol. 2023, 616, 128770. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Beguería, S.; García-Ruiz, J.M.; Portela, M.M.; Almeida, A.B. Dam Effects on Droughts Magnitude and Duration in a Transboundary Basin: The Lower River Tagus, Spain and Portugal. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Thomas, T.; Ghosh, N.C.; Sudheer, K.P. Optimal Reservoir Operation—A Climate Change Adaptation Strategy for Narmada Basin in Central India. J. Hydrol. 2021, 598, 126238. [Google Scholar] [CrossRef]
- Brunner, M.I. Reservoir Regulation Affects Droughts and Floods at Local and Regional Scales. Environ. Res. Lett. 2021, 16, 124016. [Google Scholar] [CrossRef]
- Van Loon, A.F.; Rangecroft, S.; Coxon, G.; Naranjo, J.A.B.; Van Ogtrop, F.; Van Lanen, H.A.J. Using Paired Catchments to Quantify the Human Influence on Hydrological Droughts. Hydrol. Earth Syst. Sci. 2019, 23, 1725–1739. [Google Scholar] [CrossRef]
- Tijdeman, E.; Hannaford, J.; Stahl, K. Human Influences on Streamflow Drought Characteristics in England and Wales. Hydrol. Earth Syst. Sci. 2018, 22, 1051–1064. [Google Scholar] [CrossRef]
- Wang, W.; Li, H.Y.; Leung, L.R.; Yigzaw, W.; Zhao, J.; Lu, H.; Deng, Z.; Demisie, Y.; Blöschl, G. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale. Water Resour. Res. 2017, 53, 8277–8292. [Google Scholar] [CrossRef]
- Anderson, E.P.; Jenkins, C.N.; Heilpern, S.; Maldonado-Ocampo, J.A.; Carvajal-Vallejos, F.M.; Encalada, A.C.; Rivadeneira, J.F.; Hidalgo, M.; Cañas, C.M.; Ortega, H.; et al. Fragmentation of Andes-to-Amazon Connectivity by Hydropower Dams. Sci. Adv. 2018, 4, eaao1642. [Google Scholar] [CrossRef]
- Mumba, M.; Thompson, J.R.R. Hydrological and Ecological Impacts of Dams on the Kafue Flats Floodplain System, Southern Zambia. Phys. Chem. Earth, Parts A/B/C 2005, 30, 442–447. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhu, G.; Lu, S.; Ye, L.; Qiu, D.; Meng, G.; Wang, Q.; Li, R.; Chen, L.; Wang, Y.; et al. The Cooling Effect of Oasis Reservoir-Riparian Forest Systems in Arid Regions. Water Resour. Res. 2024, 60, e2024WR038301. [Google Scholar] [CrossRef]
- Xing, Z.; Ma, M.; Zhang, X.; Leng, G.; Su, Z.; Lv, J.; Yu, Z.; Yi, P. Altered Drought Propagation under the Influence of Reservoir Regulation. J. Hydrol. 2021, 603, 127049. [Google Scholar] [CrossRef]
- Lu, X.X.; Chua, S.D.X. River Discharge and Water Level Changes in the Mekong River: Droughts in an Era of Mega-Dams. Hydrol. Process. 2021, 35, e14265. [Google Scholar] [CrossRef]
- Dash, S.S.; Sahoo, B.; Raghuwanshi, N.S. An Adaptive Multi-Objective Reservoir Operation Scheme for Improved Supply-Demand Management. J. Hydrol. 2022, 615, 128718. [Google Scholar] [CrossRef]
- Latrubesse, E.M.; Arima, E.Y.; Dunne, T.; Park, E.; Baker, V.R.; D’Horta, F.M.; Wight, C.; Wittmann, F.; Zuanon, J.; Baker, P.A.; et al. Damming the Rivers of the Amazon Basin. Nature 2017, 546, 363–369. [Google Scholar] [CrossRef]
- Rabelo, U.P.; Dietrich, J.; Costa, A.C.; Simshäuser, M.N.; Scholz, F.E.; Nguyen, V.T.; Lima Neto, I.E. Representing a Dense Network of Ponds and Reservoirs in a Semi-Distributed Dryland Catchment Model. J. Hydrol. 2021, 603, 127103. [Google Scholar] [CrossRef]
- Firoz, A.B.M.; Nauditt, A.; Fink, M.; Ribbe, L. Quantifying Human Impacts on Hydrological Drought Using a Combined Modelling Approach in a Tropical River Basin in Central Vietnam. Hydrol. Earth Syst. Sci. 2018, 22, 547–565. [Google Scholar] [CrossRef]
- Nguyen, B.Q.; Kantoush, S.A.; Saber, M.; Van Binh, D.; Vo, N.D.; Sumi, T. Quantifying the Impacts of Hydraulic Infrastructure on Tropical Streamflows. Hydrol. Process. 2023, 37, e14834. [Google Scholar] [CrossRef]
- Qiu, H.; Qi, J.; Lee, S.; Moglen, G.E.; McCarty, G.W.; Chen, M.; Zhang, X. Effects of Temporal Resolution of River Routing on Hydrologic Modeling and Aquatic Ecosystem Health Assessment with the SWAT Model. Environ. Model. Softw. 2021, 146, 105232. [Google Scholar] [CrossRef]
- Zajac, Z.; Revilla-Romero, B.; Salamon, P.; Burek, P.; Hirpa, F.; Beck, H. The Impact of Lake and Reservoir Parameterization on Global Streamflow Simulation. J. Hydrol. 2017, 548, 552–568. [Google Scholar] [CrossRef] [PubMed]
- Dynesius, M.; Nilsson, C. Fragmentation and Flow Regulation of River Systems in the Northern Third of the World. Science 1994, 266, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.W.; Bishop, K.; Zarnetske, J.P.; Minaudo, C.; Chapin, F.S.; Krause, S.; Hannah, D.M.; Conner, L.; Ellison, D.; Godsey, S.E.; et al. Human Domination of the Global Water Cycle Absent from Depictions and Perceptions. Nat. Geosci. 2019, 12, 533–540. [Google Scholar] [CrossRef]
- Lee, J.E.; Heo, J.H.; Lee, J.; Kim, N.W. Assessment of Flood Frequency Alteration by Dam Construction via SWAT Simulation. Water 2017, 9, 264. [Google Scholar] [CrossRef]
- Zhou, C.; Sun, N.; Chen, L.; Ding, Y.; Zhou, J.; Zha, G.; Luo, G.; Dai, L.; Yang, X. Optimal Operation of Cascade Reservoirs for Flood Control of Multiple Areas Downstream: A Case Study in the Upper Yangtze River Basin. Water 2018, 10, 1250. [Google Scholar] [CrossRef]
- Donchyts, G.; Winsemius, H.; Baart, F.; Dahm, R.; Schellekens, J.; Gorelick, N.; Iceland, C.; Schmeier, S. High-Resolution Surface Water Dynamics in Earth’s Small and Medium-Sized Reservoirs. Sci. Rep. 2022, 12, 13776. [Google Scholar] [CrossRef]
- Arheimer, B.; Donnelly, C.; Lindström, G. Regulation of Snow-Fed Rivers Affects Flow Regimes More than Climate Change. Nat. Commun. 2017, 8, 62. [Google Scholar] [CrossRef]
- Yang, Y.; Roderick, M.L.; Yang, D.; Wang, Z.; Ruan, F.; McVicar, T.R.; Zhang, S.; Beck, H.E. Streamflow Stationarity in a Changing World. Environ. Res. Lett. 2021, 16, 064096. [Google Scholar] [CrossRef]
- Kim, H.; Parajuli, P.B. Impacts of Reservoir Outflow Estimation Methods in SWAT Model Calibration. Trans. ASABE 2014, 57, 1029–1042. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Wannasin, C.; Brauer, C.C.; Uijlenhoet, R.; van Verseveld, W.J.; Weerts, A.H. Daily Flow Simulation in Thailand Part II: Unraveling Effects of Reservoir Operation. J. Hydrol. Reg. Stud. 2021, 34, 100792. [Google Scholar] [CrossRef]
- Li, D.; Long, D.; Zhao, J.; Lu, H.; Hong, Y. Observed Changes in Flow Regimes in the Mekong River Basin. J. Hydrol. 2017, 551, 217–232. [Google Scholar] [CrossRef]
- Tian, J.; Chang, J.; Zhang, Z.; Wang, Y.; Wu, Y.; Jiang, T. Influence of Three Gorges Dam on Downstream Low Flow. Water 2019, 11, 65. [Google Scholar] [CrossRef]
- Yun, X.; Tang, Q.; Wang, J.; Liu, X.; Zhang, Y.; Lu, H.; Wang, Y.; Zhang, L.; Chen, D. Impacts of Climate Change and Reservoir Operation on Streamflow and Flood Characteristics in the Lancang-Mekong River Basin. J. Hydrol. 2020, 590, 125472. [Google Scholar] [CrossRef]
Reservoir Parameters Used During SWAT Simulation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Description | Value | ||||||||||
Seomjin Dam | Juam Dam | |||||||||||
RES_ESA | Reservoir surface area when the reservoir is filled to emergency spillway (ha) | 2425 | 3000 | |||||||||
RES_EVOL | Volume of water needed to fill the reservoir to the emergency spillway (104 m3) | 46,600 | 45,700 | |||||||||
RES_PSA | Reservoir surface area when the reservoir is filled to the principal spillway (ha) | 2312 | 2880 | |||||||||
RES_PVOL | Volume of water needed to fill the reservoir to the principal spillway (104 m3) | 40,000 | 40,330 | |||||||||
RES_VOL | Initial reservoir volume (104 m3) | 25,120.6 | 23,546 | |||||||||
RES_K | Hydraulic conductivity of the reservoir bottom (mm/hr) | 0.5 | 0.5 | |||||||||
EVRSV | Lake evaporation coefficient | 0.6 | 0.6 | |||||||||
Monthly Data for Seomjin Dam | ||||||||||||
WURESN | Average daily water withdrawn from reservoir each day in the month for consumptive use (104 m3) | |||||||||||
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Value | 24.1 | 31.2 | 44.6 | 123.4 | 253.6 | 258.3 | 199.5 | 238.8 | 207.5 | 66.8 | 27.4 | 21.0 |
Monthly Data for Juam Dam | ||||||||||||
WURESN | Average daily water withdrawn from reservoir each day in the month for consumptive use (104 m3) | |||||||||||
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Value | 72.9 | 77 | 82.5 | 87.1 | 104.3 | 121.8 | 156.8 | 159.3 | 144.5 | 121.2 | 100.1 | 80.2 |
Calibration Parameter | Description | Calibrated Range Value | Fitted Value |
---|---|---|---|
r__CN2.mgt | Initial SCS runoff curve no. for moisture condition II | −0.5–0.2 | −0.45 |
v__CH_N2.rte | Manning’s “n” value for main channel | 0.06–0.3 | 0.07 |
v__ALPHA_BF.gw | Baseflow alpha factor (days) | 0–1 | 0.09 |
v__GW_DELAY.gw | Groundwater delay (days) | 1–5 | 1 |
v__GWQMN.gw | Threshold depth of water in the shallow aquifer required for return flow to occur (mm) | 0–2000 | 1058 |
v__GW_REVAP.gw | Groundwater “revap” coefficient | 0.02–0.2 | 0.026 |
v__ESCO.hru | Soil evaporation compensation factor (-) | 0.01–1 | 0.42 |
v__EPCO.hru | Plant uptake compensation factor (-) | 0–1 | 0.91 |
r__SOL_AWC().sol | Available water capacity of the soil layer (mm mm−1) | −0.4–0.2 | 0.12 |
v__RCHRG_DP.gw | Deep aquifer percolation fraction | 0–1 | 0.68 |
v__CANMX.hru | Maximum canopy storage | 0–10 | 1.67 |
v__SLSOIL.hru | Slope length of lateral subsurface flow (m) | 0–10 | 3.97 |
v__REVAPMN.gw | Threshold depth of water in the shallow aquifer for “revap” to occur (mm) | 0–500 | 86.5 |
r__HRU_SLP.hru | Average slope steepness (m/m) | −0.1–0.1 | 0.076 |
r__OV_N.hru | Manning’s “n” value for overland flow | −0.1–0.1 | −0.037 |
v__SURLAG.bsn | Surface runoff lag coefficient | 0–7 | 0.71 |
Station | Calibration (2008–2015) | Validation (2016–2020) | ||||
---|---|---|---|---|---|---|
R2 | NSE | PBIAS | R2 | NSE | PBIAS | |
Gwangyangsi | 0.77 | 0.77 | −3.0 | 0.77 | 0.76 | 0.8 |
Hydrological Components | ||||||
---|---|---|---|---|---|---|
Precipitation | Surface Runoff | Lateral Flow | Water Yield | Recharge | ET | |
Value (mm) | 1432.6 | 179.8 | 392.1 | 917.1 | 365.8 | 458.7 |
Coverage (%) | 12.5 | 27.4 | 64 | 25.5 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ware, H.H.; Chang, S.W.; Lee, J.E.; Chung, I.-M. Evaluating the Hydrological Impact of Reservoir Operation on Downstream Flow of Seomjin River Basin: SWAT Model Approach. Water 2024, 16, 3584. https://doi.org/10.3390/w16243584
Ware HH, Chang SW, Lee JE, Chung I-M. Evaluating the Hydrological Impact of Reservoir Operation on Downstream Flow of Seomjin River Basin: SWAT Model Approach. Water. 2024; 16(24):3584. https://doi.org/10.3390/w16243584
Chicago/Turabian StyleWare, Hiyaw Hatiya, Sun Woo Chang, Jeong Eun Lee, and Il-Moon Chung. 2024. "Evaluating the Hydrological Impact of Reservoir Operation on Downstream Flow of Seomjin River Basin: SWAT Model Approach" Water 16, no. 24: 3584. https://doi.org/10.3390/w16243584
APA StyleWare, H. H., Chang, S. W., Lee, J. E., & Chung, I. -M. (2024). Evaluating the Hydrological Impact of Reservoir Operation on Downstream Flow of Seomjin River Basin: SWAT Model Approach. Water, 16(24), 3584. https://doi.org/10.3390/w16243584