Assessment of Microplastic Pollution in River Ecosystems: Effect of Land Use and Biotic Indices
<p>Study area and location of the three sampling points established throughout the course of each of the studied rivers: Lagares (1), Tea (2), Gafos (3), and Miñor (4). It represents the catchment and the land use within a buffer zone of 100 extracted from the drainage network.</p> "> Figure 2
<p>Microplastic concentration in water in all the sampling stations in both spring (<b>a</b>) and summer (<b>b</b>).</p> "> Figure 3
<p>Microplastic concentration in sediments in all the sampling stations in both spring (<b>a</b>) and summer (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
River Basins Characterization
2.2. MPs Sampling Collection
2.3. MPs Samples Processing
2.4. Quality Assurance and Quality Control
2.5. Benthic Macroinvertebrate Sampling and Processing
2.6. Data Analyses
3. Results and Discussion
3.1. Occurrence and Distribution of Microplastics in Water
Study Area | Continent | MPs Water (MPs m−3) | Reference |
---|---|---|---|
Paraiba do Sul and Pomba rivers | South America | 0.52 | da Costa et al. [42] |
Paraiba do Sul and Dois rivers | South America | 0.65 | da Costa et al. [42] |
Paraiba do Sul and Muriaé rivers | South America | 0.96 | da Costa et al. [42] |
Tea River. Spain | Europe | 1.54 | This study |
Miñor River. Spain | Europe | 2.82 | This study |
Pearl River | Asia | 4.21 | Li et al. [43] |
Liane River | Europe | 4.52 | Pasquier et al. [44] |
Ebro River. Spain | Europe | 4.9 | Simón-Sánchez et al. [45] |
Milwaukee Rivers (Milwaukee) | North America | 5.67 | Lenaker et al. [46] |
Gafos River. Spain | Europe | 11.36 | This study |
Elbe River | Europe | 13.24 | Scherer et al. [47] |
Lagares River. Spain | Europe | 35.22 | This study |
Ljubljanica | Europe | 45 | Matjasic et al. [48] |
Kamniška Bistrica Basin | Europe | 75 | Matjasic et al. [48] |
North Saskatchewan River | America | 88.3 | Ross et al. [49] |
Neuse River Basin | North America | 131 | Kurki-Fox et al. [50] |
Neuse River Basin | North America | 221 | Kurki-Fox et al. [50] |
River Ganga | Asia | 237.9 | Rajan et al. [51] |
Yangtze River. China | Asia | 258 | Yuan et al. [52] |
Swat River | Asia | 594 | Bilal et al. [53] |
Ergene River | Europe | 1206 | Akdogan et al. [54] |
Yangtze River | Asia | 35,986 | Huang et al. [55] |
3.2. Occurrence and Distribution of Microplastic in Sediments
Study Area | Continent | MPs Concentration (MPs Kg−1) | Reference |
---|---|---|---|
Nanhuizui tidal flat | Asia | 6 | Peng et al. [57] |
Ljubljanica | Europe | 44 | Matjasic et al. [48] |
Kamniška Bistrica Basin | Europe | 48 | Matjasic et al. [48] |
Yujiabang River | Asia | 53 | Peng et al. [57] |
Huangpu River branch | Asia | 102 | Peng et al. [57] |
Shajinggang River | Asia | 104 | Peng et al. [57] |
Jiangjiagang River | Asia | 117 | Peng et al. [57] |
Tea River. Spain | Europe | 138 | This study |
Beishagang River | Asia | 179 | Peng et al. [57] |
Miñor River. Spain | Europe | 194 | This study |
Tibet Plateau | Asia | 195 | Jiang et al. [61] |
Caohejing River | Asia | 230 | Peng et al. [57] |
Gafos River. Spain | Europe | 437 | This study |
Lagares River. Spain | Europe | 643 | This study |
Tisza River | Europe | 5147 | Kiss et al. [62] |
Milwakee Rivers | America | 6229 | Lenaker et al. [46] |
Elbe River | Europe | 6750 | Scherer et al. [47] |
St. Lawrence Rive | America | 7562 | Crew et al. [63] |
Amazon River | America | 8178 | Gerolin et al. [64] |
West River | Asia | 10,240 | Huang et al. [65] |
3.3. Biotic Indices and MPs Pollution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stegmann, P.; Daioglou, V.; Londo, M.; van Vuuren, D.P.; Junginger, M. Plastic Futures and Their CO2 Emissions. Nature 2022, 612, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Kalali, E.N.; Lotfian, S.; Shabestari, M.E.; Khayatzadeh, S.; Zhao, C.; Nezhad, H.Y. A Critical Review of the Current Progress of Plastic Waste Recycling Technology in Structural Materials. Curr. Opin. Green Sustain. Chem. 2023, 40, 100763. [Google Scholar] [CrossRef]
- Mu, J.; Zhang, S.; Qu, L.; Jin, F.; Fang, C.; Ma, X.; Zhang, W.; Wang, J. Microplastics Abundance and Characteristics in Surface Waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea. Mar. Pollut. Bull. 2019, 143, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Dai, J.; Xiao, S.; Tang, Z.; Zhang, J.; Wu, S.; Wu, X.; Deng, Y. Occurrence of Microplastic Pollution in Rivers Globally: Driving Factors of Distribution and Ecological Risk Assessment. Sci. Total Environ. 2023, 904, 165979. [Google Scholar] [CrossRef] [PubMed]
- Free, C.M.; Jensen, O.P.; Mason, S.A.; Eriksen, M.; Williamson, N.J.; Boldgiv, B. High-Levels of Microplastic Pollution in a Large, Remote, Mountain Lake. Mar. Pollut. Bull. 2014, 85, 156–163. [Google Scholar] [CrossRef]
- Cunningham, E.M.; Ehlers, S.M.; Dick, J.T.A.; Sigwart, J.D.; Linse, K.; Dick, J.J.; Kiriakoulakis, K. High Abundances of Microplastic Pollution in Deep-Sea Sediments: Evidence from Antarctica and the Southern Ocean. Environ. Sci. Technol. 2020, 54, 13661–13671. [Google Scholar] [CrossRef]
- Amelia, T.S.M.; Khalik, W.M.A.W.M.; Ong, M.C.; Shao, Y.T.; Pan, H.-J.; Bhubalan, K. Marine Microplastics as Vectors of Major Ocean Pollutants and Its Hazards to the Marine Ecosystem and Humans. Prog. Earth Planet. Sci. 2021, 8, 12. [Google Scholar] [CrossRef]
- Bergmann, M.; Gutow, L.; Klages, M. Marine Anthropogenic Litter; Springer Nature: Heidelberger/Berlin, Germany, 2015. [Google Scholar]
- Wang, Z.; Zhang, Y.; Kang, S.; Yang, L.; Shi, H.; Tripathee, L.; Gao, T. Research Progresses of Microplastic Pollution in Freshwater Systems. Sci. Total Environ. 2021, 795, 148888. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Aitken, J.; Marthouse, R.; Hajbane, S.; Cunsolo, S.; Schwarz, A.; Levivier, A.; et al. Evidence That the Great Pacific Garbage Patch Is Rapidly Accumulating Plastic. Sci. Rep. 2018, 8, 4666. [Google Scholar] [CrossRef]
- Wagner, M.; Lambert, S. Freshwater Microplastics: Emerging Environmental Contaminants? Springer Nature: Heidelberger/Berlin, Germany, 2018. [Google Scholar]
- Xiao, S.; Cui, Y.; Brahney, J.; Mahowald, N.M.; Li, Q. Long-Distance Atmospheric Transport of Microplastic Fibres Influenced by Their Shapes. Nat. Geosci. 2023, 16, 863–870. [Google Scholar] [CrossRef]
- Horton, A.A. Plastic Pollution: When Do We Know Enough? J. Hazard. Mater. 2022, 422, 126885. [Google Scholar] [CrossRef] [PubMed]
- Mani, T.; Primpke, S.; Lorenz, C.; Gerdts, G.; Burkhardt-Holm, P. Microplastic Pollution in Benthic Midstream Sediments of the Rhine River. Environ. Sci. Technol. 2019, 53, 6053–6062. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, H.B.; Li, Y.; Luo, Y.M. Progress on Microplastics Pollution and Its Ecological Effects in the Coastal Environment. Chin. Sci. Bullet. 2015, 60, 3210–3220. [Google Scholar]
- Windsor, F.M.; Tilley, R.M.; Tyler, C.R.; Ormerod, S.J. Microplastic Ingestion by Riverine Macroinvertebrates. Sci. Total Environ. 2019, 646, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Besseling, E.; Quik, J.T.; Sun, M.; Koelmans, A.A. Fate of Nano-and Microplastic in Freshwater Systems: A Modeling Study. Environ. Pollut. 2017, 220, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Pagter, E.; Nash, R.; Frias, J.; Kavanagh, F. Assessing Microplastic Distribution within Infaunal Benthic Communities in a Coastal Embayment. Sci. Total Environ. 2021, 791, 148278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, E.G.; Li, J.; Chen, Q.; Ma, L.; Zeng, E.Y.; Shi, H. A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environ. Sci. Technol. 2020, 54, 3740–3751. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Shim, W.J.; Jang, M.; Han, G.M.; Hong, S.H. Abundance and Characteristics of Microplastics in Market Bivalves from South Korea. Environ. Pollut. 2019, 245, 1107–1116. [Google Scholar] [CrossRef]
- Schymanski, D.; Goldbeck, C.; Humpf, H.-U.; Fürst, P. Analysis of Microplastics in Water by Micro-Raman Spectroscopy: Release of Plastic Particles from Different Packaging into Mineral Water. Water Res. 2018, 129, 154–162. [Google Scholar] [CrossRef]
- Veerasingam, S.; Ranjani, M.; Venkatachalapathy, R.; Bagaev, A.; Mukhanov, V.; Litvinyuk, D.; Mugilarasan, M.; Gurumoorthi, K.; Guganathan, L.; Aboobacker, V.M.; et al. Contributions of Fourier Transform Infrared Spectroscopy in Microplastic Pollution Research: A Review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2681–2743. [Google Scholar] [CrossRef]
- Chang, X.; Xue, Y.; Li, J.; Zou, L.; Tang, M. Potential Health Impact of Environmental Micro-and Nanoplastics Pollution. J. Appl. Toxicol. 2020, 40, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Halden, R.U. Plastics and Health Risks. Annu. Rev. Public Health 2010, 31, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Shim, W.J.; Ha, S.Y.; Han, G.M.; Jang, M.; Hong, S.H. Microplastic Emission Characteristics of Stormwater Runoff in an Urban Area: Intra-Event Variability and Influencing Factors. Sci. Total Environ. 2023, 866, 161318. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Redondo-Hasselerharm, P.E.; Mohamed Nor, N.H.; Kooi, M. Solving the Nonalignment of Methods and Approaches Used in Microplastic Research to Consistently Characterize Risk. Environ. Sci. Technol. 2020, 54, 12307–12315. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Gutiérrez-Rial, D.; González, B.S.; Vázquez, D.G.; Méndez-Martínez, G.; Diego, M.Á.P.; González, J.G. Freshwater Biodiversity Loss in Urbanised Rivers. Ecol. Indic. 2023, 156, 111150. [Google Scholar] [CrossRef]
- Masura, J.; Baker, J.; Foster, G.; Arthur, C. Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for Quantifying Synthetic Particles in Waters and Sediments. Chin. Sci. Bull. 2015, 60, 3210–3220. [Google Scholar]
- Zobkov, M.; Esiukova, E. Microplastics in Baltic Bottom Sediments: Quantification Procedures and First Results. Mar. Pollut. Bull. 2017, 114, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.O.; Abrantes, N.; Gonçalves, F.J.M.; Nogueira, H.; Marques, J.C.; Gonçalves, A.M.M. Spatial and Temporal Distribution of Microplastics in Water and Sediments of a Freshwater System (Antuã River, Portugal). Sci. Total Environ. 2018, 633, 1549–1559. [Google Scholar] [CrossRef]
- Boonsoong, B.; Sangpradub, N.; Barbour, M.T. Development of Rapid Bioassessment Approaches Using Benthic Macroinvertebrates for Thai Streams. Env. Monit Assess 2009, 155, 129–147. [Google Scholar] [CrossRef]
- Tachet, H.; Richoux, P.; Bournaud, M.; Usseglio-Polatera, P. Invertébrés d’eau douce: Systématique, biologie, écologie; CNRS: Paris, France, 2000; ISBN 978-2-271-05745-7. [Google Scholar]
- Barrios Barcia, E.; Puig Infante, A.; Fernández Rodríguez, R.; Rodríguez-Carreño Alonso, B.; Corrochano Codorníu, A.; Ruza Rodríguez, J.; Garrido González, J.; Benetti, C.J.; González Martín, J.M.; Pérez Bilbao, A. Id-Tax: Catálogo y claves de identificación de organismos invertebrados utilizados como elementos de calidad en las redes de control del estado ecológico; Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2012; ISBN 978-84-491-1202-7.
- Alba-Tercedor, J. Un método rápido y simple para evaluar la calidad biológica de las aguas corrientes basado en el de Hellawell (1978). Limnetica 1988, 4, 51–66. [Google Scholar] [CrossRef]
- Phuong, N.N.; Duong, T.T.; Le, T.P.Q.; Hoang, T.K.; Ngo, H.M.; Phuong, N.A.; Pham, Q.T.; Doan, T.O.; Ho, T.C.; Da Le, N. Microplastics in Asian Freshwater Ecosystems: Current Knowledge and Perspectives. Sci. Total Environ. 2022, 808, 151989. [Google Scholar] [CrossRef] [PubMed]
- Talbot, R.; Chang, H. Microplastics in Freshwater: A Global Review of Factors Affecting Spatial and Temporal Variations. Environ. Pollut. 2022, 292, 118393. [Google Scholar] [CrossRef] [PubMed]
- Nakao, S.; Ozaki, A.; Yamazaki, K.; Masumoto, K.; Nakatani, T.; Sakiyama, T. Microplastics Contamination in Tidelands of the Osaka Bay Area in Western Japan. Water Environ. J. 2020, 34, 474–488. [Google Scholar] [CrossRef]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Busquets, R.; Nematollahi, M.J.; Javid, R.; Gobert, S. Effect of Land Use on Microplastic Pollution in a Major Boundary Waterway: The Arvand River. Sci. Total Environ. 2022, 830, 154728. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, Z.; Cai, L.; Han, J. Occurrence and Distribution of Microplastics in Surface Sediments of a Typical River with a Highly Eroded Catchment, a Case of the Yan River, a Tributary of the Yellow River. Sci. Total Environ. 2023, 863, 160932. [Google Scholar] [CrossRef] [PubMed]
- Tibbetts, J.; Krause, S.; Lynch, I.; Sambrook Smith, G. Abundance, Distribution, and Drivers of Microplastic Contamination in Urban River Environments. Water 2018, 10, 1597. [Google Scholar] [CrossRef]
- da Costa, I.D.; Costa, L.L.; Zalmon, I.R. Microplastics in Water from the Confluence of Tropical Rivers: Overall Review and a Case Study in Paraiba Do Sul River Basin. Chemosphere 2023, 338, 139493. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, K.; Tang, R.; Liang, J.-R.; Mai, L.; Zeng, E.Y. Environmental Fate of Microplastics in an Urban River: Spatial Distribution and Seasonal Variation. Environ. Pollut. 2023, 322, 121227. [Google Scholar] [CrossRef]
- Pasquier, G.; Doyen, P.; Dehaut, A.; Veillet, G.; Duflos, G.; Amara, R. Vertical Distribution of Microplastics in a River Water Column Using an Innovative Sampling Method. Environ. Monit Assess 2023, 195, 1302. [Google Scholar] [CrossRef]
- Simon-Sánchez, L.; Grelaud, M.; Garcia-Orellana, J.; Ziveri, P. River Deltas as Hotspots of Microplastic Accumulation: The Case Study of the Ebro River (NW Mediterranean). Sci. Total Environ. 2019, 687, 1186–1196. [Google Scholar] [CrossRef] [PubMed]
- Lenaker, P.L.; Baldwin, A.K.; Corsi, S.R.; Mason, S.A.; Reneau, P.C.; Scott, J.W. Vertical Distribution of Microplastics in the Water Column and Surficial Sediment from the Milwaukee River Basin to Lake Michigan. Environ. Sci. Technol. 2019, 53, 12227–12237. [Google Scholar] [CrossRef] [PubMed]
- Scherer, C.; Weber, A.; Stock, F.; Vurusic, S.; Egerci, H.; Kochleus, C.; Arendt, N.; Foeldi, C.; Dierkes, G.; Wagner, M.; et al. Comparative Assessment of Microplastics in Water and Sediment of a Large European River. Sci. Total Environ. 2020, 738, 139866. [Google Scholar] [CrossRef] [PubMed]
- Matjašič, T.; Simčič, T.; Medvešček, N.; Bajt, O.; Dreo, T.; Mori, N. Critical Evaluation of Biodegradation Studies on Synthetic Plastics through a Systematic Literature Review. Sci. Total Environ. 2021, 752, 141959. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.S.; Loutan, A.; Groeneveld, T.; Molenaar, D.; Kroetch, K.; Bujaczek, T.; Kolter, S.; Moon, S.; Huynh, A.; Khayam, R.; et al. Estimated Discharge of Microplastics via Urban Stormwater during Individual Rain Events. Front. Environ. Sci. 2023, 11, 1090267. [Google Scholar] [CrossRef]
- Kurki-Fox, J.J.; Doll, B.A.; Monteleone, B.; West, K.; Putnam, G.; Kelleher, L.; Krause, S.; Schneidewind, U. Microplastic Distribution and Characteristics across a Large River Basin: Insights from the Neuse River in North Carolina, USA. Sci. Total Environ. 2023, 878, 162940. [Google Scholar] [CrossRef] [PubMed]
- Rajan, K.; Khudsar, F.A.; Kumar, R. Urbanization and Population Resources Affect Microplastic Concentration in Surface Water of the River Ganga. J. Hazard. Mater. Adv. 2023, 11, 100342. [Google Scholar] [CrossRef]
- Yuan, W.; Christie-Oleza, J.A.; Xu, E.G.; Li, J.; Zhang, H.; Wang, W.; Lin, L.; Zhang, W.; Yang, Y. Environmental Fate of Microplastics in the World’s Third-Largest River: Basin-Wide Investigation and Microplastic Community Analysis. Water Res. 2022, 210, 118002. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Qadir, A.; Yaqub, A.; Hassan, H.U.; Irfan, M.; Aslam, M. Microplastics in Water, Sediments, and Fish at Alpine River, Originating from the Hindu Kush Mountain, Pakistan: Implications for Conservation. Environ. Sci. Pollut. Res. 2023, 30, 727–738. [Google Scholar] [CrossRef]
- Akdogan, Z.; Guven, B.; Kideys, A.E. Microplastic Distribution in the Surface Water and Sediment of the Ergene River. Environ. Res. 2023, 234, 116500. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, M.; Cao, X.; Liu, Z. Occurrence of Microplastics Pollution in the Yangtze River: Distinct Characteristics of Spatial Distribution and Basin-Wide Ecological Risk Assessment. Water Res. 2023, 229, 119431. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.-C.; Ziajahromi, S.; Neale, P.A.; Leusch, F.D.L. A Systematic Review of Freshwater Microplastics in Water and Sediments: Recommendations for Harmonisation to Enhance Future Study Comparisons. Sci. Total Environ. 2021, 781, 146693. [Google Scholar] [CrossRef]
- Lin, L.; Zuo, L.-Z.; Peng, J.-P.; Cai, L.-Q.; Fok, L.; Yan, Y.; Li, H.-X.; Xu, X.-R. Occurrence and Distribution of Microplastics in an Urban River: A Case Study in the Pearl River along Guangzhou City, China. Sci. Total Environ. 2018, 644, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ndungu, A.W.; Li, Z.; Wang, J. Microplastics Pollution in Inland Freshwaters of China: A Case Study in Urban Surface Waters of Wuhan, China. Sci. Total Environ. 2017, 575, 1369–1374. [Google Scholar] [CrossRef] [PubMed]
- Gago, J.; Booth, A.M.; Tiller, R.; Maes, T.; Larreta, J. Microplastics Pollution and Regulation. In Handbook of Microplastics in the Environment; Springer: Heidelberger/Berlin, Germany, 2022; pp. 1071–1096. [Google Scholar]
- Schwartz, R. Aspekte Des Schadstoff-Sedimentmanagements Im Bereich Der Tideelbe. Hydrologie und Wasserbewirtschaftung/BfG–Jahrgang: HW 59. 2015, H.6, ISSN 1439. Available online: https://doi.bafg.de/HyWa/2015/HyWa_2015,6_9.pdf (accessed on 12 January 2024).
- Jiang, C.; Yin, L.; Li, Z.; Wen, X.; Luo, X.; Hu, S.; Yang, H.; Long, Y.; Deng, B.; Huang, L.; et al. Microplastic Pollution in the Rivers of the Tibet Plateau. Environ. Pollut. 2019, 249, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Kiss, T.; Fórián, S.; Szatmári, G.; Sipos, G. Spatial Distribution of Microplastics in the Fluvial Sediments of a Transboundary River—A Case Study of the Tisza River in Central Europe. Sci. Total Environ. 2021, 785, 147306. [Google Scholar] [CrossRef] [PubMed]
- Crew, A.; Gregory-Eaves, I.; Ricciardi, A. Distribution, Abundance, and Diversity of Microplastics in the Upper St. Lawrence River. Environ. Pollut. 2020, 260, 113994. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, A.; Janssens de Bisthoven, L.; Soares, A.M.V.M. Macroinvertebrate Response to Acid Mine Drainage: Community Metrics and on-Line Behavioural Toxicity Bioassay. Environ. Pollut. 2004, 130, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Li, X.; Ouyang, Z.; Zhao, X.; Wu, R.; Zhang, C.; Lin, C.; Li, Y.; Guo, X. The Occurrence and Abundance of Microplastics in Surface Water and Sediment of the West River Downstream, in the South of China. Sci. Total Environ. 2021, 756, 143857. [Google Scholar] [CrossRef]
- Klein, S.; Worch, E.; Knepper, T.P. Occurrence and Spatial Distribution of Microplastics in River Shore Sediments of the Rhine-Main Area in Germany. Environ. Sci. Technol. 2015, 49, 6070–6076. [Google Scholar] [CrossRef]
- Duis, K.; Coors, A. Microplastics in the Aquatic and Terrestrial Environment: Sources (with a Specific Focus on Personal Care Products), Fate and Effects. Environ. Sci. Eur. 2016, 28, 2. [Google Scholar] [CrossRef] [PubMed]
- Shruti, V.C.; Jonathan, M.P.; Rodriguez-Espinosa, P.F.; Rodríguez-González, F. Microplastics in Freshwater Sediments of Atoyac River Basin, Puebla City, Mexico. Sci. Total Environ. 2019, 654, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Eerkes-Medrano, D.; Thompson, R.C.; Aldridge, D.C. Microplastics in Freshwater Systems: A Review of the Emerging Threats, Identification of Knowledge Gaps and Prioritisation of Research Needs. Water Res. 2015, 75, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M. Microplastics Research—From Sink to Source. Science 2018, 360, 28–29. [Google Scholar] [CrossRef] [PubMed]
- Xia, F.; Yao, Q.; Zhang, J.; Wang, D. Effects of Seasonal Variation and Resuspension on Microplastics in River Sediments. Environ. Pollut. 2021, 286, 117403. [Google Scholar] [CrossRef] [PubMed]
- Brahney, J.; Hallerud, M.; Heim, E.; Hahnenberger, M.; Sukumaran, S. Plastic Rain in Protected Areas of the United States. Science 2020, 368, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Hurley, R.; Woodward, J.; Rothwell, J.J. Microplastic Contamination of River Beds Significantly Reduced by Catchment-Wide Flooding. Nat. Geosci. 2018, 11, 251–257. [Google Scholar] [CrossRef]
- Tien, C.-J.; Wang, Z.-X.; Chen, C.S. Microplastics in Water, Sediment and Fish from the Fengshan River System: Relationship to Aquatic Factors and Accumulation of Polycyclic Aromatic Hydrocarbons by Fish. Environ. Pollut. 2020, 265, 114962. [Google Scholar] [CrossRef]
- Feld, C.K. Response of Three Lotic Assemblages to Riparian and Catchment-Scale Land Use: Implications for Designing Catchment Monitoring Programmes: Response of Three Lotic Assemblages to Land Use. Freshw. Biol. 2013, 58, 715–729. [Google Scholar] [CrossRef]
- Armitage, P.; Moss, D.; Wright, J.; Furse, M. The Performance of a New Biological Water Quality Score System Based on Macroinvertebrates over a Wide Range of Unpolluted Running-Water Sites. Water Res. 1983, 17, 333–347. [Google Scholar] [CrossRef]
- Redondo-Hasselerharm, P.E.; Falahudin, D.; Peeters, E.T.; Koelmans, A.A. Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates. Environ. Sci. Technol. 2018, 52, 2278–2286. [Google Scholar] [CrossRef]
- Prakash, V.; Dwivedi, S.; Gautam, K.; Seth, M.; Anbumani, S. Occurrence and Ecotoxicological Effects of Microplastics on Aquatic and Terrestrial Ecosystems. In Microplastics in Terrestrial Environments; He, D., Luo, Y., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2020; Volume 95, pp. 223–243. ISBN 978-3-030-56270-0. [Google Scholar]
- Silva, C.J.M.; Machado, A.L.; Campos, D.; Rodrigues, A.C.M.; Patrício Silva, A.L.; Soares, A.M.V.M.; Pestana, J.L.T. Microplastics in Freshwater Sediments: Effects on Benthic Invertebrate Communities and Ecosystem Functioning Assessed in Artificial Streams. Sci. Total Environ. 2022, 804, 150118. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, S.; Manz, W.; Koop, J. Microplastics of Different Characteristics Are Incorporated into the Larval Cases of the Freshwater Caddisfly Lepidostoma Basale. Aquat. Biol. 2019, 28, 67–77. [Google Scholar] [CrossRef]
- Ehlers, S.M.; Al Najjar, T.; Taupp, T.; Koop, J.H.E. PVC and PET Microplastics in Caddisfly (Lepidostoma Basale) Cases Reduce Case Stability. Environ. Sci. Pollut. Res. 2020, 27, 22380–22389. [Google Scholar] [CrossRef]
- Nantege, D.; Odong, R.; Auta, H.S.; Keke, U.N.; Ndatimana, G.; Assie, A.F.; Arimoro, F.O. Microplastic Pollution in Riverine Ecosystems: Threats Posed on Macroinvertebrates. Environ. Sci. Pollut. Res. 2023, 30, 76308–76350. [Google Scholar] [CrossRef]
- Campos, D.; Machado, A.L.; Cardoso, D.N.; Silva, A.R.R.; Silva, P.V.; Rodrigues, A.C.M.; Simão, F.C.P.; Loureiro, S.; Grabicová, K.; Nováková, P.; et al. Effects of the Organic UV-Filter, 3-(4-Methylbenzylidene) Camphor, on Benthic Invertebrates and Ecosystem Function in Artificial Streams. Environ. Pollut. 2020, 260, 113981. [Google Scholar] [CrossRef] [PubMed]
- Hasenbein, S.; Lawler, S.P.; Connon, R.E. An Assessment of Direct and Indirect Effects of Two Herbicides on Aquatic Communities. Environ. Toxicol. Chem. 2017, 36, 2234–2244. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.A.; Covich, A.P.; Lake, S.; Biro, P.; Brooks, J.J.; Cole, J.; Dahm, C.; Gibert, J.; Goedkoop, W.; Martens, K.; et al. Linkages between Aquatic Sediment Biota and Life Above Sediments as Potential Drivers of Biodiversity and Ecological Processes. BioScience 2000, 50, 1062. [Google Scholar] [CrossRef]
- Horton, A.A.; Jürgens, M.D.; Lahive, E.; Van Bodegom, P.M.; Vijver, M.G. The Influence of Exposure and Physiology on Microplastic Ingestion by the Freshwater Fish Rutilus Rutilus (Roach) in the River Thames, UK. Environ. Pollut. 2018, 236, 188–194. [Google Scholar] [CrossRef]
- Krause, S.; Baranov, V.; Nel, H.A.; Drummond, J.D.; Kukkola, A.; Hoellein, T.; Sambrook Smith, G.H.; Lewandowski, J.; Bonet, B.; Packman, A.I.; et al. Gathering at the Top? Environmental Controls of Microplastic Uptake and Biomagnification in Freshwater Food Webs. Environ. Pollut. 2021, 268, 115750. [Google Scholar] [CrossRef]
- Joachim, S.; Roussel, H.; Bonzom, J.; Thybaud, E.; Mebane, C.A.; Van Den Brink, P.; Gauthier, L. A Long-term Copper Exposure in a Freshwater Ecosystem Using Lotic Mesocosms: Invertebrate Community Responses. Environ. Chem. 2017, 36, 2698–2714. [Google Scholar] [CrossRef] [PubMed]
- Morais, M.; Pinto, P.; Guilherme, P.; Rosado, J.; Antunes, I. Assessment of Temporary Streams: The Robustness of Metric and Multimetric Indices under Different Hydrological Conditions. Hydrobiologia 2004, 516, 229–249. [Google Scholar] [CrossRef]
- Yorulmaz, B.; Ertaş, A. Water Quality Assessment of Selendi Stream and Comparative Performance of the Indices Based on Benthic Macroinvertebrates and Physicochemical Parameters. Biologia 2021, 76, 2599–2607. [Google Scholar] [CrossRef]
Basin Area (Km2) | Population Density (Hab Km−2) | CLC 1 (%) | CLC 2 (%) | CLC 3 (%) | CLC 5 (%) | |
---|---|---|---|---|---|---|
T1 | 14.03 | 13.79 | 0.00 | 7.80 | 92.20 | 0.00 |
T2 | 218.79 | 36.03 | 1.14 | 14.01 | 84.85 | 0.00 |
T3 | 406.62 | 85.02 | 2.01 | 18.95 | 79.03 | 0.00 |
M1 | 12.66 | 75.43 | 2.46 | 12.51 | 85.03 | 0.00 |
M2 | 63.74 | 215.38 | 7.70 | 20.28 | 71.62 | 0.41 |
M3 | 73.92 | 214.67 | 7.83 | 21.05 | 70.76 | 0.35 |
G1 | 11.56 | 173.46 | 11.26 | 29.16 | 59.58 | 0.00 |
G2 | 25.82 | 310.94 | 14.55 | 40.20 | 45.25 | 0.00 |
G3 | 26.94 | 756.02 | 16.94 | 39.68 | 43.38 | 0.00 |
L1 | 4.27 | 461.93 | 31.74 | 33.58 | 34.68 | 0.00 |
L2 | 47.33 | 1338.67 | 41.67 | 28.40 | 29.93 | 0.00 |
L3 | 69.45 | 1958.89 | 42.09 | 25.55 | 32.36 | 0.00 |
N | S | EP | EPT | IBMWP | IASPT | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Spring | Summer | Spring | Summer | Spring | Summer | Spring | Summer | Spring | Summer | |
T1 | 1556 | 269 | 40 | 29 | 8 | 6 | 20 | 14 | 279 | 185 | 6.8 | 6.8 |
T2 | 417 | 640 | 23 | 32 | 5 | 7 | 13 | 17 | 161 | 210 | 7 | 6.56 |
T3 | 391 | 429 | 14 | 28 | 5 | 4 | 7 | 13 | 91 | 169 | 6.5 | 6.26 |
M1 | 1211 | 1660 | 35 | 18 | 11 | 0 | 19 | 7 | 296 | 112 | 7.05 | 5.89 |
M2 | 2007 | 464 | 32 | 15 | 4 | 2 | 15 | 2 | 203 | 75 | 6.64 | 5 |
M3 | 792 | 881 | 13 | 8 | 2 | 0 | 5 | 0 | 82 | 32 | 6.31 | 4.57 |
G1 | 956 | 569 | 31 | 27 | 3 | 4 | 8 | 11 | 151 | 170 | 5.2 | 6.3 |
G2 | 3579 | 2676 | 25 | 22 | 4 | 3 | 7 | 7 | 141 | 126 | 5.84 | 5.73 |
G3 | 153 | 792 | 14 | 18 | 1 | 1 | 3 | 3 | 81 | 78 | 4.5 | 4.33 |
L1 | 482 | 370 | 29 | 30 | 3 | 4 | 9 | 12 | 142 | 182 | 5.68 | 6.07 |
L2 | 304 | 454 | 25 | 28 | 3 | 4 | 6 | 13 | 128 | 170 | 5.33 | 6.3 |
L3 | 577 | 97 | 14 | 8 | 2 | 0 | 3 | 1 | 67 | 41 | 4.78 | 5.12 |
MPs Water | MPs Sediments | |
---|---|---|
N | −0.125 | 0.024 |
S | −0.112 | −0.427 * |
EP | −0.201 | −0.468 * |
EPT | −0.101 | −0.558 ** |
IBMWP | −0.130 | −0.500 * |
IASPT | −0.132 | −0.551 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Rial, D.; Villar, I.; Álvarez-Troncoso, R.; Soto, B.; Mato, S.; Garrido, J. Assessment of Microplastic Pollution in River Ecosystems: Effect of Land Use and Biotic Indices. Water 2024, 16, 1369. https://doi.org/10.3390/w16101369
Gutiérrez-Rial D, Villar I, Álvarez-Troncoso R, Soto B, Mato S, Garrido J. Assessment of Microplastic Pollution in River Ecosystems: Effect of Land Use and Biotic Indices. Water. 2024; 16(10):1369. https://doi.org/10.3390/w16101369
Chicago/Turabian StyleGutiérrez-Rial, David, Iria Villar, Romina Álvarez-Troncoso, Benedicto Soto, Salustiano Mato, and Josefina Garrido. 2024. "Assessment of Microplastic Pollution in River Ecosystems: Effect of Land Use and Biotic Indices" Water 16, no. 10: 1369. https://doi.org/10.3390/w16101369
APA StyleGutiérrez-Rial, D., Villar, I., Álvarez-Troncoso, R., Soto, B., Mato, S., & Garrido, J. (2024). Assessment of Microplastic Pollution in River Ecosystems: Effect of Land Use and Biotic Indices. Water, 16(10), 1369. https://doi.org/10.3390/w16101369