Mapping of Soil Erosion Vulnerability in Wadi Bin Abdullah, Saudi Arabia through RUSLE and Remote Sensing
<p>Geographic location of the Wadi Bin Abdullah watershed.</p> "> Figure 2
<p>Flowchart depicting the conceptual framework for assessing soil loss retention using the RUSLE Model.</p> "> Figure 3
<p>Illustrates the four maps of Wadi Bin Abdullah. (<b>A</b>) shows the LS factor, (<b>B</b>) shows the R factor, (<b>C</b>) is the K factor map, and (<b>D</b>) shows the land cover land use.</p> "> Figure 4
<p>Illustrates the Total soil loss of Wadi Bin Abdullah.</p> "> Figure 5
<p>Illustrates the soil loss classification.</p> ">
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Data Sources
2.2. Morphometric Analysis
2.3. RUSLE Model
- A represents the annual average soil loss (t ha−1 yr−1);
- R is the rainfall erosivity factor (Mj mm ha−1 h−1 yr−1);
- K is the soil erodibility factor (t h Mj−1 mm−1);
- LS indicates the slope length and gradient factor (dimensionless);
- C is the land management factor (dimensionless).
2.3.1. Rainfall Erosivity (R)
2.3.2. Soil Erodibility Factor (K)
- San, sil, and cla are % sand, silt, and clay, respectively.
- C: organic carbon content.
- SN1: sand content subtracted from 1 and divided by 100 [38].
2.3.3. Topographic Factor (LS)
2.3.4. Land Cover Management Factor (C)
2.3.5. Conservation Practice Factor (P)
3. Results
3.1. RUSLE Model Parameters
3.1.1. R Factor
3.1.2. K Factor
3.1.3. Land Cover and Land Use
3.1.4. Cumulative Soil Loss Retention within the Basin
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.; Mishra, A.; Singh, U.K. Assessment of Land Cover Changes and Climate Variability Effects on Catchment Hydrology Using a Physically Distributed Model. Sustainability 2023, 15, 304. [Google Scholar] [CrossRef]
- Kandekar, V.U.; Pande, C.B.; Rajesh, J.; Atre, A.A.; Gorantiwar, S.D.; Kadam, S.A.; Gavit, B. Surface Water Dynamics Analysis Based on Sentinel Imagery and Google Earth Engine Platform: A Case Study of Jayakwadi Dam. Sustain. Water Resour. Manag. 2021, 7, 44. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Matthews, F.; Liakos, L.; Bezak, N.; Diodato, N.; Ballabio, C. Global Rainfall Erosivity Projections for 2050 and 2070. J. Hydrol. 2022, 610, 127865. [Google Scholar] [CrossRef]
- Wuepper, D. Countries and the Global Rate of Soil Erosion. Nat. Sustain. 2020, 3, 51–55. [Google Scholar] [CrossRef]
- Colman, C.B.; Oliveira, P.T.S.; Almagro, A.; Soares-filho, B.S.; Rodrigues, D.B.B. Effects of Climate and Land-Cover Changes on Soil Erosion in Brazilian Pantanal. Sustainability 2019, 11, 7053. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Poesen, J.; Lugato, E.; Scarpa, S.; Montanarella, L.; Borrelli, P. A Soil Erosion Indicator for Supporting Agricultural, Environmental and Climate Policies in the European Union. Remote Sens. 2020, 12, 1365. [Google Scholar] [CrossRef]
- Betrie, G.D.; Mohamed, Y.A.; Van Griensven, A.; Srinivasan, R. Sediment Management Modelling in the Blue Nile Basin Using SWAT Model. Hydrol. Earth Syst. Sci. 2011, 15, 807–818. [Google Scholar] [CrossRef]
- Pimentel, D. Soil Erosion: A Food and Environmental Threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Waseem, M.; Iqbal, F.; Humayun, M.; Umais Latif, M.; Javed, T.; Kebede Leta, M. Spatial Assessment of Soil Erosion Risk Using RUSLE Embedded in GIS Environment: A Case Study of Jhelum River Watershed. Appl. Sci. 2023, 13, 3775. [Google Scholar] [CrossRef]
- Arabameri, A.; Yamani, M.; Pradhan, B.; Melesse, A.; Shirani, K.; Tien Bui, D. Novel Ensembles of COPRAS Multi-Criteria Decision-Making with Logistic Regression, Boosted Regression Tree, and Random Forest for Spatial Prediction of Gully Erosion Susceptibility. Sci. Total Environ. 2019, 688, 903–916. [Google Scholar] [CrossRef]
- Jing, T.; Fang, N.; Zeng, Y.; Huang, X.; Shi, Z. Catchment Properties Controlling Suspended Sediment Transport in Wind-Water Erosion Crisscross Region. J. Hydrol. Reg. Stud. 2022, 39, 100980. [Google Scholar] [CrossRef]
- Thapa, P. Spatial Estimation of Soil Erosion Using RUSLE Modeling: A Case Study of Dolakha District, Nepal. Environ. Syst. Res. 2020, 9, 15. [Google Scholar] [CrossRef]
- Senanayake, S.; Pradhan, B.; Huete, A.; Brennan, J. Assessing Soil Erosion Hazards Using Land-Use Change and Landslide Frequency Ratio Method: A Case Study of Sabaragamuwa Province, Sri Lanka. Remote Sens. 2020, 12, 1483. [Google Scholar] [CrossRef]
- Almouctar, M.A.S.; Wu, Y.; Zhao, F.; Dossou, J.F. Soil Erosion Assessment Using the Rusle Model and Geospatial Techniques (Remote Sensing and Gis) in South-Central Niger (Maradi Region). Water 2021, 13, 3511. [Google Scholar] [CrossRef]
- Singh, M.C.; Sur, K.; Al-Ansari, N.; Arya, P.K.; Verma, V.K.; Malik, A. GIS Integrated RUSLE Model-Based Soil Loss Estimation and Watershed Prioritization for Land and Water Conservation Aspects. Front. Environ. Sci. 2023, 11, 243. [Google Scholar] [CrossRef]
- Azaiez, N.; Alleoua, A.; Baazaoui, N.; Qhtani, N. Assessment of Soil Loss in the Mirabah Basin: An Overview of the Potential of Agricultural Terraces as Ancestral Practices (Saudi Arabia). Open J. Soil Sci. 2020, 10, 159–180. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, D.R.; Matson, P.A. Soil Erosion and Agricultural Sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef]
- Igwe, P.U.; Onuigbo, A.A.; Chinedu, O.C.; Ezeaku, I.I.; Muoneke, M.M. Soil Erosion: A Review of Models and Applications. Int. J. Adv. Eng. Res. Sci. 2017, 4, 138–150. [Google Scholar] [CrossRef]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A Review of Erosion and Sediment Transport Models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Islam Saikh, N.; Sarkar, D.; Saha, S.; Mondal, P. Application of Machine Learning Algorithms for Soil Erosion Susceptibility Estimation in Gumani River Basin, Eastern India. J. Geol. Soc. India 2024, 100, 320–334. [Google Scholar] [CrossRef]
- Horton, R. Drainage Basin Characteristics. Trans. Am. Geophys. Union 1932, 13, 350–361. [Google Scholar] [CrossRef]
- Langbein, W.B. Topographic Characteristics of Drainage Basins. U.S. Geol. Surv. Water-Supply Pap. 1947, 968-C, 125–157. [Google Scholar]
- Appolov, B.A. A Study of Rivers; Izdatel’stvo Moskovskogo Universiteta: Moscow, Russia, 1963. [Google Scholar]
- Schumm, S.A. Evolution of Drainage Systems and Slopes in Badlands at Perth Amboy, New Jersey. Bull. Geol. Soc. Am. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Strahler, N. Dimensional Analysis Applied to Fluvially Eroded Landforms. Geol. Soc. Am. Bull. 1958, 69, 279–300. [Google Scholar] [CrossRef]
- Pike, R.J.; Wilson, S.E. Elevation-Relief Ratio, Hypsometric Integral, and Geomorphic Area-Altitude Analysis. Geol. Soc. Am. Bull. 1971, 82, 1079–1084. [Google Scholar] [CrossRef]
- Miller, V.C. A Quantitative Geomorphic Study of Drainage Basin Characteristics in the Clinch Mountain Area, Virginia and Tennessee; Technical Report 3; Columbia University, Department of Geology: New York, NY, USA, 1953. [Google Scholar]
- Gravelius, H. Morphometry of Drainage Basins; Elsevier: Amsterdam, The Netherlands, 1914. [Google Scholar]
- Chorley, R.J.; Donald, M.; Pogrzelski, H. A New Standard for Estimating Drainage Basin Shape. Am. J. Sci. 1957, 255, 138–141. [Google Scholar] [CrossRef]
- Aparna, P.; Nigee, K.; Shimna, P.; Drissia, T.K. Quantitative Analysis of Geomorphology and Flow Pattern Analysis of Muvattupuzha River Basin Using Geographic Information System. Aquat. Procedia 2015, 4, 609–616. [Google Scholar] [CrossRef]
- Kabite, G.; Gessesse, B. Hydro-Geomorphological Characterization of Dhidhessa River Basin, Ethiopia. Int. Soil Water Conserv. Res. 2018, 6, 175–183. [Google Scholar] [CrossRef]
- Melton, M.A. Drainage Structure of Morphometric Properties of Systems and Their Controlling Agents. J. Geol. 1958, 66, 442–460. [Google Scholar] [CrossRef]
- Rastogi, R.A.; Sharma, T. Quantitative analysis of drainage basin characteristics. J. Soil Water Conserv. India 2022, 26, 18–25. [Google Scholar]
- Asfaw, D.; Workineh, G. International Soil and Water Conservation Research Quantitative Analysis of Morphometry on Ribb and Gumara Watersheds: Implications for Soil and Water Conservation. Int. Soil Water Conserv. Res. 2019, 7, 150–157. [Google Scholar] [CrossRef]
- Uddin, M.J.; Babu, M.A.H.; Islam, M.R.; Farzana, F.; Khatun, M.L.; Sazzad, S.M.F.; Islam, M.S. Estimation of Morphometric Parameters of Karatoya Sub-River Basin in Bangladesh Using GIS and Remote Sensing Techniques. Grassroots J. Nat. Resour. 2020, 3, 73–89. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised universal soil loss equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar]
- Arnoldus, H.M.J. An Approximation of the Rainfall Factor in the Universal Soil Loss Equation. Assess. Eros. 1980, 6, 127–132. [Google Scholar]
- Erencin, Z. C-Factor Mapping Using Remote Sensing and GIS; A Case Study of Lom Sak/Lom Kao, Thailand; International Institute for Aerospace Survey and Earth Sciences (ITC): Upper Aise, The Netherlands, 2000. [Google Scholar]
- Kouli, M.; Soupios, P. Soil Erosion Prediction Using the Revised Universal Soil Loss Equation (RUSLE) in a GIS Framework, Chania, Northwestern Crete, Greece. Environ. Geol. 2008, 57, 483–497. [Google Scholar] [CrossRef]
- Li, P.; Tariq, A.; Li, Q.; Ghaffar, B.; Farhan, M.; Jamil, A.; Soufan, W.; El Sabagh, A.; Freeshah, M. Soil Erosion Assessment by RUSLE Model Using Remote Sensing and GIS in an Arid Zone. Int. J. Digit. Earth 2023, 16, 3105–3124. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agricultural Handbook No. 537.; U.S. Department of Agriculture: Washington, DC, USA, 1978. [Google Scholar]
- Maqsoom, A.; Aslam, B.; Hassan, U.; Kazmi, Z.A.; Sodangi, M.; Tufail, R.F.; Farooq, D. Geospatial Assessment of Soil Erosion Intensity and Sediment Yield Using the Revised Universal Soil Loss Equation (RUSLE) Model. ISPRS Int. J. Geo-Inf. 2020, 9, 356. [Google Scholar] [CrossRef]
- Barbosa, W.C.d.S.; Guerra, A.J.T.; Valladares, G.S. Soil Erosion Modeling Using the Revised Universal Soil Loss Equation and a Geographic Information System in a Watershed in the Northeastern Brazilian Cerrado. Geosciences 2024, 14, 78. [Google Scholar] [CrossRef]
Variable | Symbol | Source | |
---|---|---|---|
Basin relief | Mean elevation | H′ (m) | (Horton, 1932) [22] |
Minimum elevation | h min (m) | WMS output | |
Maximum elevation | H max (m) | WMS output | |
Mean basin slope | I b (m/m) | (Horton, 1932) [22] | |
Main channel slope | I s (m/m) | (Langbein, 1947) [23] | |
Mean slope of water divide | I p (m/km) | (Appolov, 1963) [24] | |
Basin perimeter | P (km) | (Schumm, 1956) [25] | |
Total basin relief | Z-z (m) | (Strahler, 1952) [26] | |
Hypsometric Integral | Hi (m/m) | (Pike et al., 1971) [27] | |
Basin shape | Form factor ratio | Ff | Horton, 1932 [22] |
Elongation ratio | Re | Schumm, 1956 [25] | |
Circularity ratio | Rc | Miller, 1953 [28] | |
Compactness coefficient | Cc | Gravelius, 1914 [29] | |
Lemniscate factor | k | Chorley, 1957 [30] |
Stream Order (u) | Stream Number (Nu) | Stream Length (km) (Lu) | Mean stream Length (km) (Lu′) |
---|---|---|---|
1 | 2341 | 1262.3 | 0.54 |
2 | 520 | 615.7 | 1.18 |
3 | 105 | 285.3 | 2.72 |
4 | 25 | 193.0 | 7.72 |
5 | 5 | 64.0 | 12.80 |
6 | 2 | 59.6 | 29.80 |
7 | 1 | 60.8 | 60.80 |
Total | 2999 | 2540.8 | 0.85 |
Morphometry Indicator | Value | |
---|---|---|
Stream frequency | Fs | 2.43 |
Drainage density | Dd | 2.06 |
Drainage intensity | Fs/Dd | 1.18 |
Infiltration number | Fs*Dd | 5 |
Overland flow | Fo | 1.03 |
Mean bifurcation ratio | Rbm | 4.9 |
Weighted bifurcation ratio | WRb | 4.3 |
Stream slope | Ss | 1.89 |
Constant of channel Maintenance | CCM | 0.49 |
Morphometry Indicator | Value |
---|---|
Basin area (km2) | 1235 |
Basin length (km) | 84.8 |
Basin width (km) | 14.6 |
Perimeter length (km) | 304 |
Gradient (longest path) | 138.5 |
Circulatory ratio (Rc) ratio (Rc) | 0.17 |
Elongation ratio (Re) | 0.23 |
Form factor (Ff) | 0.17 |
Compactness coefficient (Cc) | 2.44 |
Length/width ratio | 5.82 |
Leminescate ratio | 1.46 |
Months | Average Temperature (°C) | Relative Humidity (%) | Wind Speed km/h | Rainfall (mm) |
---|---|---|---|---|
January | 25.1 | 53.2 | 6 | 7.6 |
February | 26.3 | 51.7 | 5.9 | 3.9 |
March | 28.6 | 47.1 | 6 | 4.3 |
April | 31 | 42.3 | 5.9 | 4.3 |
May | 32.7 | 40 | 5.8 | 3.6 |
June | 34 | 37.4 | 6 | 2.2 |
July | 33.2 | 44 | 6.3 | 10.8 |
August | 32.5 | 50.3 | 6.1 | 20.6 |
September | 33.1 | 42.1 | 6.3 | 2.09 |
October | 30.8 | 38 | 6.9 | 2.5 |
November | 27.8 | 43.7 | 7.1 | 4.5 |
December | 25.7 | 49.6 | 6.7 | 9.2 |
Data | Spatial Resolution | Source |
---|---|---|
Digital Elevation Model (DEM) | 30 m | USGS |
Climate Data | 30 pixel size | Global Rainfall Erosivity |
Soil Data | 30 pixel size | HWSD Dataset |
Land Cover Land Use | 10 m | Sentinal-2 Data |
Basin relief | Basin area (km2) | A | Hierarchical rank |
Basin length (km) | Lb | Obtained from ArcGIS Pro | |
Basin width (km) | Wb | Obtained from ArcGIS Pro | |
Perimeter length (km) | P | Obtained from ArcGIS Pro | |
Maximum elevation (m) | H | Obtained from ArcGIS Pro | |
Minimum elevation (m) | h | Obtained from ArcGIS Pro | |
Mean elevation (m) | H’ | Obtained from ArcGIS Pro | |
Main stream length (km) | L | Obtained from ArcGIS Pro | |
Total stream length (km) | ΣLu | Obtained from ArcGIS Pro | |
Hypsometric integral | Hi (m/m) | Hi (m/m) | |
Basin form | Circulatory ratio (Rc) | Rc | Rc = 4π × A/P2 |
Elongation ratio (Re) | Re | Re = (2/Lb) × 2√(A/π) | |
Form factor (Ff) | Ff | Ff = A/Lb2 | |
Compactness coefficient (Cc) | Cc | Cc = 0.2824 × p/√A | |
Length/width ratio | Lb/Wb | Lb/Wb | |
Lemniscate ratio | k | K = Lb2/A |
Soil Unit | Sand % | Silt % | Clay % | Organic Carbon % | Soil Type | K Factor |
---|---|---|---|---|---|---|
1 | 26 | 63 | 11 | 1.15 | Silty Loam | 0.24 |
1 | 37 | 46 | 17 | 3.14 | Loam | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaihani, M.; Alharbi, R. Mapping of Soil Erosion Vulnerability in Wadi Bin Abdullah, Saudi Arabia through RUSLE and Remote Sensing. Water 2024, 16, 2663. https://doi.org/10.3390/w16182663
Alsaihani M, Alharbi R. Mapping of Soil Erosion Vulnerability in Wadi Bin Abdullah, Saudi Arabia through RUSLE and Remote Sensing. Water. 2024; 16(18):2663. https://doi.org/10.3390/w16182663
Chicago/Turabian StyleAlsaihani, Majed, and Raied Alharbi. 2024. "Mapping of Soil Erosion Vulnerability in Wadi Bin Abdullah, Saudi Arabia through RUSLE and Remote Sensing" Water 16, no. 18: 2663. https://doi.org/10.3390/w16182663
APA StyleAlsaihani, M., & Alharbi, R. (2024). Mapping of Soil Erosion Vulnerability in Wadi Bin Abdullah, Saudi Arabia through RUSLE and Remote Sensing. Water, 16(18), 2663. https://doi.org/10.3390/w16182663