Concentration, Spatial Distribution, and Source Analysis of Trace Elements in the Yarlung Zangbo River Basin and Its Two Tributaries
<p>Study area and the geographical location of sampling sites.</p> "> Figure 2
<p>Pollution index of trace elements in the YZRB: (<b>a</b>) Single-factor index (<span class="html-italic">P<sub>i</sub></span>); (<b>b</b>) multi-factor-integrated pollution index (<span class="html-italic">P<sub>n</sub></span>).</p> "> Figure 3
<p>Spatial distribution of trace elements.</p> "> Figure 4
<p>The sources of trace elements were analyzed via PMF: (<b>a</b>) Pearson correlation coefficient; (<b>b</b>) factor analysis and contribution rate; (<b>c</b>) the normalized contributions.</p> "> Figure 4 Cont.
<p>The sources of trace elements were analyzed via PMF: (<b>a</b>) Pearson correlation coefficient; (<b>b</b>) factor analysis and contribution rate; (<b>c</b>) the normalized contributions.</p> "> Figure 5
<p>Cluster analysis of sampling sites in the YZRB: (<b>a</b>) YZR’s mainstream; (<b>b</b>) Lhasa River; (<b>c</b>) Nianchu River; (<b>d</b>) clustering heat map of the whole sampling sites in the YZRB. C represents the concentration of trace elements (unit: mg/L).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Evaluation of the Contamination
2.4. Source Apportionment
2.5. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Parameters
3.2. Evaluation of the Contamination
3.3. Spatial Distribution
3.4. Source Apportionment
3.4.1. Correlation Analysis
3.4.2. Source Analysis of PMF Model
3.4.3. Cluster Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef]
- Li, Y.; Han, F.; Zhou, H. Assessment of terrestrial ecosystem sensitivity and vulnerability in Tibet. J. Resour. Ecol. 2017, 8, 526–537. [Google Scholar]
- Qu, B.; Zhang, Y.; Kang, S.; Sillanpää, M. Water chemistry of the southern Tibetan Plateau: An assessment of the Yarlung Tsangpo river basin. Environ. Earth Sci. 2017, 76, 74. [Google Scholar] [CrossRef]
- Wu, J.; Duan, D.; Lu, J.; Luo, Y.; Wen, X.; Guo, X.; Boman, B.J. Inorganic pollution around the Qinghai-Tibet Plateau: An overview of the current observations. Sci. Total Environ. 2016, 550, 628–636. [Google Scholar] [CrossRef]
- Dutta, S.; Dutta, P.; Devi, U.; Sarmaa, K.P. Distribution and pollution status of metals in some water bodies of mid-Brahmaputra valley. Desalin. Water Treat. 2017, 65, 215–223. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, H.; Kuang, X.; Hao, Y.; Shan, J.; Chen, J.; Li, L.; Feng, Y.; Zou, Y.; Zheng, Y. Water quality and health risk assessment of the water bodies in the Yamdrok-tso basin, southern Tibetan Plateau. J. Environ. Manag. 2021, 300, 113740. [Google Scholar] [CrossRef]
- Zheng, T.; Deng, Y.; Lin, H.; Xie, Y.; Pei, X. Hydrogeochemical controls on As and B enrichment in the aqueous environment from the Western Tibetan Plateau: A case study from the Singe Tsangpo River Basin. Sci. Total Environ. 2022, 817, 152978. [Google Scholar] [CrossRef]
- Huang, X.; Sillanpää, M.; Gjessing, E.T.; Peräniemi, S.; Vogt, R.D. Environmental impact of mining activities on the surface water quality in Tibet: Gyama valley. Sci. Total Environ. 2010, 408, 4177–4184. [Google Scholar] [CrossRef]
- Kara, G.T.; Kara, M.; Bayram, A.; Gündüz, O. Assessment of seasonal and spatial variations of physicochemical parameters and trace elements along a heavily polluted effluent-dominated stream. Environ. Monit. Assess. 2017, 189, 585. [Google Scholar] [CrossRef]
- Zhan, S.; Wu, J.; Jin, M. Hydrochemical characteristics, trace element sources, and health risk assessment of surface waters in the Amu Darya Basin of Uzbekistan, arid Central Asia. Environ. Sci. Pollut. Res. 2022, 29, 5269–5281. [Google Scholar] [CrossRef]
- Cong, Z.; Kang, S.; Zhang, Y.; Li, X. Atmospheric wet deposition of trace elements to central Tibetan Plateau. Appl. Geochem. 2010, 25, 1415–1421. [Google Scholar] [CrossRef]
- Jin, Z.; You, C.; Yu, T.; Wang, B. Elemental distribution in the topsoil of the Lake Qinghai catchment, NE Tibetan Plateau, and the implications for weathering in semi-arid areas. J. Geochem. Explor. 2015, 152, 1–9. [Google Scholar]
- State Environmental Protection Administration of the People’s Republic of China. Environmental Quality Standards for Surface Water; State Environmental Protection Administration of the People’s Republic of China: Beijing, China, 2002. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml (accessed on 26 May 2023).
- Xia, Z.; Zhang, J.; Yan, Y.; Zhang, W.; Zhao, Z. Heavy metals in suspended particulate matter in the Yarlung Tsangpo River, Southwest China. GeoSyst. Geoenv. 2022, 100160. [Google Scholar] [CrossRef]
- Shi, D.; Tan, H.; Chen, X.; Rao, W.; Issombo, H.E.; Basang, R. Temporal and spatial variations of runoff composition revealed by isotopic signals in Nianchu River catchment, Tibet. J. Hydrol. Environ. Res. 2021, 37, 1–12. [Google Scholar] [CrossRef]
- Zhou, X.; Ao, Y.; Jiang, X.; Yang, S.; Hu, Y.; Wang, X.; Zhang, J. Water use efficiency of China’s karst ecosystems: The effect of different ecohydrological and climatic factors. Sci. Total Environ. 2023, 905, 167069. [Google Scholar] [CrossRef]
- Su, K.; Wang, Q.; Li, L.; Cao, R.; Xi, Y. Water quality assessment of Lugu Lake based on Nemerow pollution index method. Sci. Rep. 2022, 12, 13613. [Google Scholar] [CrossRef]
- Belle, G.; Schoeman, Y.; Oberholster, P. Potential toxic-element pollution in surface water and its implications for aquatic and human health: Source-pathway-receptor model. Water 2023, 15, 3100. [Google Scholar] [CrossRef]
- Paatero, P.; Tapper, U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 2010, 5, 111–126. [Google Scholar] [CrossRef]
- Wetzel, R.G. Lake and river ecosystems. In Limnology; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Huang, X.; Sillanpää, M.; Gjessing, E.T.; Vogt, R.D. Water quality in the Tibetan Plateau: Major ions and trace elements in the headwaters of four major Asian rivers. Sci. Total Environ. 2009, 407, 6242–6254. [Google Scholar] [CrossRef]
- Huang, X.; Sillanpää, M.; Gjessing, E.T.; Peräniemi, S.; Vogt, R.D. Water quality in the southern Tibetan Plateau: Chemical evaluation of the Yarlung Tsangpo (Brahmaputra). River Res. Appl. 2011, 27, 113–121. [Google Scholar] [CrossRef]
- Qu, B.; Zhang, Y.; Kang, S.; Sillanpää, M. Water quality in the Tibetan Plateau: Major ions and trace elements in rivers of the “Water Tower of Asia”. Sci. Total Environ. 2019, 649, 571–581. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, Z.; Meng, j.; Zhou, T. Analysis on water quality of the Tibetan Plateau based on the major ions and trace elements in the Niyang River Basin. Appl. Ecol. Environ. Res. 2020, 18, 3729–3740. [Google Scholar] [CrossRef]
- Liu, J.; Guo, H. Hydrochemical characteristics and ion source analysis of the Yarlung Tsangpo River Basin. Water 2023, 15, 537. [Google Scholar] [CrossRef]
- Gaillardet, J.; Viers, J.; Dupré, B. Trace elements in river waters. Treatise Geochem. 2003, 5, 225–272. [Google Scholar]
- Du, M.; Zhang, Q.; Ren, P.; Gao, S.; Bu, D. Distribution of soil heavy metals and ecological risk assessment of agricultural land in the Nianchu River Basin, Tibet. J. Environ. Eng. Technol. 2022, 12, 1618–1625. [Google Scholar]
- Guo, J.; Cao, Y.; Luo, Z.; Fang, H.; Chen, Z.; Wang, D.; Xu, F.; Yan, C. Distribution, fractions, and potential release of thallium in acidic soils nearby a waste copper mining site from southern China. Environ. Sci. Pollut. Res. 2018, 25, 17980–17988. [Google Scholar] [CrossRef]
- Madadzada, A.I.; Badawy, W.M.; Hajiyeva, S.R.; Veliyeva, Z.T.; Hajiyev, O.B.; Shvetsova, M.S.; Frontasyeva, M.V. Assessment of atmospheric deposition of major and trace elements using neutron activation analysis and GIS technology: Baku-Azerbaijan. Microchem. J. 2017, 147, 605–614. [Google Scholar] [CrossRef]
- Li, F.; Qiu, Z.; Zhang, J.; Liu, C.; Cai, Y.; Xiao, M. Spatial distribution and fuzzy health risk assessment of trace elements in surface water from Honghu Lake. Int. J. Environ. Res. Public Health 2017, 14, 1011. [Google Scholar] [CrossRef]
- Bu, D.; Xu, Z.; Wu, J.; Li, M.; Dan, Z.; De, J. Study on the impact of mineral processing plant on environment in Lhasa river catchments. J. Tibet Univ. 2009, 24, 33–38. [Google Scholar]
- Zhang, Y.F.; Tan, H.B.; Zhang, W.J.; Huang, J.Z.; Zhang, Q. A new geochemical perspective on hydrochemical evolution of the Tibetan geothermal system. Geochem. Int. 2015, 53, 1090–1106. [Google Scholar] [CrossRef]
- Li, C.; Kang, S.; Chen, P.; Zhang, Q.; Mi, J.; Gao, S.; Sillanpää, M. Geothermal spring causes arsenic contamination in river waters of the southern Tibetan Plateau, China. Environ. Earth Sci. 2014, 71, 4143–4148. [Google Scholar] [CrossRef]
- Guo, Q.; He, T.; Wu, Q.; Liu, M. Constraints of major ions and arsenic on the geological genesis of geothermal water: Insight from a comparison between Xiong’an and Yangbajain, two hydrothermal systems in China. Appl. Geochem. 2020, 117, 104589. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Y.; Zhao, Z.; Li, X.; Guo, J.; Ding, H.; Cui, L.; Meng, J.; Liu, C. Spatial and seasonal variations of dissolved arsenic in the Yarlung Tsangpo River, southern Tibetan Plateau. Sci. Total Environ. 2021, 760, 143416. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Wei, L.; Ma, W.; Li, J.; Liu, X.; Hu, J.; Wang, X. Geochemistry and sources apportionment of major ions and dissolved heavy metals in a small watershed on the Tibetan Plateau. Water 2022, 14, 3856. [Google Scholar] [CrossRef]
- Nguyen, N.T.T.; Nguyen, L.M.; Nguyen, T.T.T.; Liew, R.K.; Nguyen, D.T.C.; Tran, T.V. Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review. Sci. Total Environ. 2022, 827, 154160. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Q. Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. J. Hazard. Mater. 2010, 176, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Leonardo, R.D.; Adelfio, G.; Bellanca, A.; Chiodi, M.; Mazzola, S. Analysis and assessment of trace element contamination in offshore sediments of the Augusta Bay (SE Sicily): A multivariate statistical approach based on canonical correlation analysis and mixture density estimation approach. J. Sea Res. 2014, 85, 428–442. [Google Scholar] [CrossRef]
- Pekey, H.; Doğan, G. Application of positive matrix factorisation for the source apportionment of heavy metals in sediments: A comparison with a previous factor analysis study. Microchem. J. 2013, 106, 233–237. [Google Scholar] [CrossRef]
- Comero, S.; Vaccaro, S.; Locoro, G.; Capitani, L.D.; Gawlik, B.M. Characterization of the Danube River sediments using the PMF multivariate approach. Chemosphere 2014, 95, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Chen, J.; Xu, J.; Lei, M.; Xiong, Q. Origin of Miocene Cu-bearing porphyries in the Zhunuo region of the southern Lhasa subterrane: Constraints from geochronology and geochemistry. Gondwana Res. 2017, 41, 51–64. [Google Scholar] [CrossRef]
- Zheng, W.; Tang, J.; Zhong, K.; Ying, L.; Leng, Q.; Ding, S.; Lin, B. Geology of the Jiama porphyry copper-polymetallic system, Lhasa Region, China. Ore Geol. Rev. 2016, 74, 151–169. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, L.; Jiang, X.; Zhao, L.; Wang, S. Determination of background value and potential ecological risk of heavy metals in sediments of a deep Plateau Lake. Res. Environ. Sci. 2018, 31, 2124–2132. [Google Scholar]
- Bai, J.; Li, C.; Kang, S.; Chen, P.; Wang, J. Chemical speciation and risk assessment of heavy metals in the middle part of Yarlung Zangbo surface sediments. Environ. Sci. 2014, 5, 3346–3351. [Google Scholar]
- Dupré, B.; Gaillardet, J.; Rousseau, D.; Allègre, C.J. Major and trace elements of river-borne material: The Congo Basin. Geochim. Cosmochim. Acta 1996, 60, 1301–1321. [Google Scholar] [CrossRef]
- Su, J. The Conventional Pesticide Products Cr, Pb, Cd, As, Hg Heavy Metal Analysis in Gan Su Province. Master’s Thesis, Lanzhou University, Lanzhou, China, 2018. [Google Scholar]
- Vidmar, J.; Zuliani, T.; Milačič, R.; Ščančar, J. Following the occurrence and origin of titanium dioxide nanoparticles in the Sava River by single particle ICP-MS. Water 2022, 14, 959. [Google Scholar] [CrossRef]
- Rodríguez-González, V.; Terashima, C.; Fujishima, A. Applications of photocatalytic titanium dioxide-based nanomaterials in sustainable agriculture. J. Photochem. Photobiol. C Photochem. Rev. 2019, 40, 49–67. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Zhang, C.; Fu, C.; Xie, X.; Wang, X.; Li, X.; Zhang, D.; Bai, Z.; Wang, Z. Recharge source, mode and development potential of typical tectonic karst groundwater in the eastern Qinghai-Xizang Plateau. Geol. China 2022, 1–20. Available online: http://kns.cnki.net/kcms/detail/11.1167.P.20220822.1417.016.html (accessed on 1 May 2023).
- Pu, T.; Kong, Y.; Kang, S.; Shi, X.; Zhang, G.; Wang, S.; Cao, B.; Wang, K.; Hua, H.; Chen, P. New insights into trace elements in the water cycle of a karst-dominated glacierized region, southeast Tibetan Plateau. Sci. Total Environ. 2021, 751, 141725. [Google Scholar] [CrossRef]
- Wen, Y.; Li, W.; Yang, Z.; Zhang, Q.; Ji, J. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China. Chemosphere 2020, 245, 125620. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Chen, M.; Wang, X.; Chen, Y.; Dong, K. Ecological risk assessment and source analysis of heavy metals in the soils of a lead-zinc mining watershed area. Water 2023, 15, 113. [Google Scholar] [CrossRef]
- Hussain, M.; Ahmed, S.M.; Abderrahman, W. Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia. J. Environ. Manag. 2008, 86, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, L.; Wen, H.; Hao, Y. Geochemical evidence for the nonexistence of supercritical geothermal fluids at the Yangbajing geothermal field, southern Tibet. J. Hydrol. 2022, 604, 127243. [Google Scholar] [CrossRef]
Pollution Grading | Pollution Grading | ||
---|---|---|---|
≤ 1 | no pollution | ≤ 0.7 | clean level |
1 < ≤ 2 | low pollution | 0.7 < ≤ 1 | precaution level |
2 < ≤ 3 | moderate pollution | 1 < ≤ 2 | light pollution level |
3 < ≤ 5 | strong pollution | 2 < ≤ 3 | moderate level |
> 5 | very strong pollution | > 3 | heavy pollution leve |
Trace Elements | Fe | V | Be | Ti | Mo | Se | Cd | Zn | Cu | Ni | Co | Mn | Cr | Ba | Tl | Pb | Hg | As | Sb | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | 4.5 | <5 | 0.03 | 0.4 | 0.096 | <0.25 | 0.06 | 0.8 | 0.14 | 0.8 | 0.046 | 0.06 | 0.09 | 1 | <0.01 | 0.007 | <0.4 | 0.12 | 0.078 | This study |
Max | 700 | <5 | 1.3 | 150 | 4.2 | 0.29 | 0.22 | 29 | 28 | 9.9 | 1.35 | 32.9 | 55 | 92 | 0.2 | 1.1 | <0.4 | 28 | 3.5 | |
Mean | 101.107 | <5 | 0.143 | 9.711 | 1.001 | <0.25 | 0.074 | 2.507 | 2.046 | 2.888 | 0.249 | 3.261 | 4.903 | 16.851 | 0.043 | 0.177 | <0.4 | 2.335 | 0.639 | |
Mean | 14.925 | – | – | 0.938 | 1.518 | – | – | – | – | – | – | 16.829 | – | – | – | – | – | – | – | [21] |
Mean | 16.628 | – | – | 0.621 | 1.673 | – | – | – | – | – | – | 4.12 | – | – | – | – | – | 24.48 | – | [22] |
Mean | – | – | – | – | 1.4 | – | 3.6 | 20.5 | 1.9 | 2.8 | – | 30.7 | 2.8 | 15.3 | – | 15.8 | – | – | 4.3 | [3] |
Mean | – | – | – | 7.8 | 1.2 | – | 1 | 9.8 | 1.4 | – | – | 12.8 | 2.7 | 12 | <0.007 | 5.6 | 3.225 | 10.5 | 3.4 | [23] |
Mean | 20.592 | – | – | 0.368 | 0.821 | – | 0.088 | 10.8 | 1.124 | – | – | 54.86 | 0.128 | 43.285 | 0.014 | 0.557 | 0.023 | 0.862 | – | [24] |
Mean | 30 | – | – | 7.51 | 1.83 | 0.05 | 0.04 | 0.53 | 0.76 | 2.4 | 0.37 | 5.43 | 4.01 | – | – | 0.13 | 0.03 | 12.2 | – | [25] |
World Mean | 66 | – | 0.009 | 0.489 | 0.42 | 0.07 | 0.08 | 0.6 | 1.48 | 0.801 | 0.148 | 34 | 0.7 | 23 | – | 0.079 | – | 0.62 | 0.07 | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, F.; Zhao, Y.; Bu, D.; Zhang, Q. Concentration, Spatial Distribution, and Source Analysis of Trace Elements in the Yarlung Zangbo River Basin and Its Two Tributaries. Water 2023, 15, 3558. https://doi.org/10.3390/w15203558
Xiao F, Zhao Y, Bu D, Zhang Q. Concentration, Spatial Distribution, and Source Analysis of Trace Elements in the Yarlung Zangbo River Basin and Its Two Tributaries. Water. 2023; 15(20):3558. https://doi.org/10.3390/w15203558
Chicago/Turabian StyleXiao, Fangjing, Yuanzhao Zhao, Duo Bu, and Qingying Zhang. 2023. "Concentration, Spatial Distribution, and Source Analysis of Trace Elements in the Yarlung Zangbo River Basin and Its Two Tributaries" Water 15, no. 20: 3558. https://doi.org/10.3390/w15203558
APA StyleXiao, F., Zhao, Y., Bu, D., & Zhang, Q. (2023). Concentration, Spatial Distribution, and Source Analysis of Trace Elements in the Yarlung Zangbo River Basin and Its Two Tributaries. Water, 15(20), 3558. https://doi.org/10.3390/w15203558