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Abstract: A new daily water balance model is developed and tested in this paper. The new model
has a similar model structure to the existing probability distributed rainfall runoff models (PDM),
such as HyMOD. However, the model utilizes a new distribution function for soil water storage
capacity, which leads to the SCS (Soil Conservation Service) curve number (CN) method when the
initial soil water storage is set to zero. Therefore, the developed model is a unification of the PDM
and CN methods and is called the PDM—-CN model in this paper. Besides runoff modeling, the
calculation of daily evaporation in the model is also dependent on the distribution function, since
the spatial variability of soil water storage affects the catchment-scale evaporation. The generated
runoff is partitioned into direct runoff and groundwater recharge, which are then routed through
quick and slow storage tanks, respectively. Total discharge is the summation of quick flow from the
quick storage tank and base flow from the slow storage tank. The new model with 5 parameters
is applied to 92 catchments for simulating daily streamflow and evaporation and compared with
AWMB, SACRAMENTO, and SIMHYD models. The performance of the model is slightly better than
HyMOD but is not better compared with the 14-parameter model (SACRAMENTO) in the calibration,
and does not perform as well in the validation period as the 7-parameter model (SIMHYD) in some
areas, based on the NSE values. The linkage between the PDM-CN model and long-term water
balance model is also presented, and a two-parameter mean annual water balance equation is derived
from the proposed PDM-CN model.

Keywords: daily water balance model; PDM; curve number; soil water storage capacity; Budyko equation

1. Introduction

Conceptual water balance models have been used to simulate and predict hydrological
variables (e.g., runoff, evaporation, and storage change) for many applications, such as
reservoir operations and climate change impact assessments. Various conceptual daily
water balance models have been developed in the literature. Usually, models are developed
to meet specific conditions of hydrologic and climatic areas, and using them for purposes
other than their created purpose will result in unsatisfactory results [1]. Many models,
as an example, have depicted poor simulations for minimum flow situations; in that re-
spect, the representation of hydrological process will depend on how relevant models are
developed to meet low-flow conditions [2,3]. Conceptual models have their advantages
and disadvantages. They can predict and simulate hydrological processes for decision
making [4-8], prediction of streamflow in ungauged watersheds [9-13], evaluating changes
of land use [14-17], evaluating climate change implications [18-21], and evaluating human
impacts [4,22,23]. Despite their advantages, hydrological models can have limitations in
considering groundwater exchange, in oversimplifying hydrological processes, or in their
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underestimating of the importance of simulated water balance [1]. Schaake, et al. [22] de-
veloped a five-parameter daily water balance model and found that the model is favorably
comparable to the more sophisticated Sacramento soil moisture accounting (SAC-SMA)
model [23]. Zhang, et al. [24] developed a dynamic water balance model, based on the
Budyko framework [25], for multiple time scales, including the daily scale. Particularly,
the lumped conceptual model, HyMOD [26,27], with five parameters, has been used in
many studies, such as in the performance evaluation of model calibration algorithms
(e.g., [26-31]). The HyMOD has been utilized to predict streamflow and model calibration.
Parra, Fuentes-Aguilera and Mufioz [1] described that HyMOD uses rainfall excess with
five parameters: maximum soil moisture capacity (FC) and degree of soil moisture spatial
variability (B) [27]. Then, an excess of precipitation is controlled by («) and directed to

quick flow reservoir with residence time (Kj), generating quick flow (Q f) , having a quick

flow tank. The rest of the rainfall excess (1 — &) is then directed to slow flow (Qg) with
residence time (K;), having a slow flow tank. The sum of both quick flow and slow flow
generates the total streamflow of a watershed.

As a probability distributed model (PDM) for rainfall runoff [32], the runoff generation
of the HyMOD model is based on a generalized Pareto distribution for describing spatial
variability of soil water storage capacity. The generalized Pareto distribution has been used
in many saturation excess runoff generation models, such as the Xinanjiang model [32-34],
the VIC model [35,36], and the ARNO model [37]. The generated runoff in the HyMOD
model is partitioned into direct runoff and groundwater recharge, which are then routed
through quick and slow storage tanks, respectively. Evaporation is computed as the lower
value between potential evaporation and soil water storage [26].

Besides PDM, runoff has also been modeled by empirical equations, such as the Soil
Conservation Service curve number (SCS-CN) method [38]. The SCS-CN method has been
extensively used for modeling surface runoff in engineering hydrology community and
many hydrologic models such as HEC-HMS [39], HSPF [40], and SWAT [41]. The SCS-CN
method has been interpreted as an infiltration excess runoff model [42-45], as well as a
saturation excess runoff model [46-49]. The SCS-CN method was originally developed for
runoff calculation at the event scale and the effect of antecedent soil moisture condition is
not explicitly represented in the runoff equation [50]. The implicit representation of initial
soil moisture condition in the SCS5-CN method causes a challenge for applying the SCS-CN
method to continuous simulation of water balance [44,51].

Recently, Wang [52] proposed a new distribution function for describing the spatial
variability of soil water storage capacity, and the corresponding runoff equation becomes
the SCS-CN method when the initial soil water storage is set to zero. Therefore, the
new distribution unifies the runoff calculation of the SCS-CN method and PDM such
as HyMOD. The new distribution function can be used to replace the generalized Pareto
distribution in PDM or saturation excess runoff models. This will provide a linkage between
saturation excess runoff models and the SCS-CN method. For example, the average soil
water storage capacity of a catchment is related to the curve number, which is estimated
based on available land cover and soil data. Meanwhile, the issue of implicit representation
of initial soil moisture condition in the SCS-CN method is resolved automatically, since the
soil moisture carryover is accounted in PDM.

The objective of this paper is to develop a daily water balance model (called PDM-CN),
based on the new distribution function for soil water storage capacity. The daily water
balance model has the similar model structure as the HyMOD model. The differences
between the developed PDM-CN model and the HyMOD model include the following;:
(1) the new distribution function is used for soil water storage capacity by replacing the
generalized Pareto distribution; (2) the calculation of evaporation is also based on the
distribution function in the PDM-CN model. The developed daily water balance model
is described in Section 2. The study catchments for the application of the model are
introduced in Section 3. Results and discussions are presented in Section 4, and conclusions
are summarized in Section 5.
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2. Description of the Daily Water Balance Model

The developed daily water balance model is described in this section. The model struc-
ture is similar to the HyMOD model, as shown in Figure 1. Soil wetting (i.e., infiltration)
and runoff are computed based on the distribution function describing the spatial vari-
ability of soil water storage capacity. Evaporation is computed as a function of soil water
storage and potential evaporation. Runoff is partitioned into direct runoff and groundwater
recharge. Direct runoff is routed through a quick storage tank, from which the release is
quick flow. Groundwater recharge is routed through a slow storage tank, from which the
release is base flow. The summation of quick flow and base flow is the total discharge. The
ranges of parameters used for calibration for the HyMOD are also listed in Table 1.

1y

P+C, ;/’/' ;
7

Co

0 02 04 06 08 1
F(O)

Figure 1. The structure of the proposed PDM—-CN model which unifies the PDM (probability dis-
tributed model) and the SCS curve number method.

Table 1. The ranges of parameters for the proposed PDM-CN model and HyMOD model.

PDM-CN Model HyMOD
Parameter Range Unit Parameter Range Unit
a 0.01-2 - B 0.01-7 -
Sp 50-1500 mm Ciax 50-2000 mm
0% 0.01-1 - T2 0.01-1 -
ky 0.14-1 day~! ko 0.14-1 day~!
kyp 0.01-0.14 day~! ki 0.01-0.14 day~!

2.1. Soil Wetting

The spatial variation of point-scale storage capacity (C) is represented by the following
cumulative distribution function (CDF), proposed by [52]:

1 C 1—a)S
n +(1—a)Sy

F(C)=1-1 (1)
a\/(C +8,)? — 2a8,C

where C is soil water storage capacity at a point, and it is supported by a positive semi-
infinite interval (i.e., C > 0); F(C) is the fraction of the catchment in Equation (1) area for
which the storage capacity is less than C; a is the shape parameter with a range of 0 < a < 2;
Sp is the mean of the distribution, i.e., the average soil water storage capacity over the
catchment. As discussed earlier, the generalized Pareto distribution is used in the HyMOD



Water 2022, 14, 143

4 0f 20

model as well as VIC model. The differences between these two distribution functions are
discussed by Wang [52,53].

As shown in Figure 1, the initial average soil moisture is denoted as Sy, and the
corresponding value of C is denoted as Cy. The precipitation depth (P) is partitioned into a
runoff (R) and soil wetting (W) (i.e., infiltration). Soil wetting is computed by the following
integration [27]:

P+Cy
W= (1-F)dC 2)
Co

Substituting Equation (1) into Equation (2), soil wetting is obtained [52], as follows:

P4 Syi/(m+1)% —2am — /[P + (m +1)Sy]* — 2amS,2 — 2aS, P
L PHSn/m+1) ¢[a< )Si) 2 — 208,

®)

where,
- SO(ZSb — 6150)
2(Sy — So)

If initial soil water storage is zero (i.e., Sy = 0), Equation (4) becomes the proportional-
ity relationship of the SCS-CN method [52]. Therefore, the computation of soil wetting by
Equation (3) is an extension of the SCS-CN method by incorporating initial soil moisture
explicitly. Therefore, the developed daily model is called PDM-CN.

4)

2.2. Evaporation

Once W is computed by Equation (3), the sum of soil wetting and initial soil water
storage is computed as Y = W + Sy. Y is then partitioned into evaporation (E) and ending
soil water storage (S1), i.e.,, Y = E + 51. In the HyMOD model, E is computed as the
smaller value between Y and potential evaporation (Ep), i.e., E = min(Y, Ep). However,
the computation of evaporation in the proposed PDM-CN model considers the spatial
variability of soil water storage in Equation (5). As shown in Figure 1, the actual soil water
storage varies spatially due to the spatial variability of storage capacity. Therefore, the actual
evaporation also varies spatially even though the potential evaporation is spatially uniform.
As shown in Figure 2a, when the soil water storage at every point in a catchment reaches
their storage capacities (i.e., the entire catchment is saturated), the average evaporation
over the entire catchment is computed as follows:

Ep
E.= [ (- F(O)dc (5)

As demonstrated in Figure 2a, E; is smaller than Ep, even though the average storage
(Sp) is higher than Ep. The reason is that the soil water storage at some points is lower than
Ep and evaporation at those points is equal to the corresponding soil water storage. Es is
spatially averaged evaporation for the condition that the entire catchment is saturated in
Equation (6). For the condition when the entire catchment is not saturated with average
storage of W + Sy, evaporation is reduced from Es proportionally to the relative soil water
storage (Figure 2b), as follows:
. W+ Sg
=5,

Therefore, evaporation is computed after substituting Equation (1) into Equation (5),
as resulted in Equation (7), as follows:

E

Es (6)

WSy Ep+S,— \/(EP+Sh)2 —2aSyEp

E
Sb a

@)
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Figure 2. The calculation of evaporation for two cases: (a) the entire catchment is saturated; (b) the
catchment is partially saturated.

2.3. Quick Flow and Base Flow

It should be noted that direct runoff is computed by the proportionality relationship
in the SCS-CN method. However, in this paper, the difference between precipitation and
soil wetting is total runoff (R), as with the HyMOD model [26], in Equation (8), as follows:

R=P-W 8)

Substituting Equation (3) into Equation (8) and setting So = 0, Equation (8) becomes
the SCS—CN method. The total runoff from Equation (8) is partitioned into direct runoff
(Ry) in Equation (9a) and groundwater recharge (R;) in Equation (9b), as follows:

Ry =R (9a)

Re=(1—7)R (9b)

Direct runoff is fed into a quick storage tank for routing, and the discharge from the
quick storage tank is computed by a linear storage—discharge relationship in Equation (10),
as follows:

Qu = ka(Sa0 + Ry) (10)

where Sy is the initial storage in the quick storage tank, and k; is the coefficient of the
storage—discharge relation. The ending storage at the quick storage tank (S41) is computed
by Equation (11), as follows:

Sa1 = (1 —=ka)(Sao + Ra) (11)

Groundwater recharge is fed into a slow storage tank, and the discharge from the slow
storage tank is also computed by a linear storage-discharge relationship in Equation (12),
as follows:

Qp=ky (Sgo + Rg) (12)

where Sy is the initial storage in the slow storage tank, and k;, is the coefficient of storage—
discharge relation for the slow storage tank. The ending storage in the slow storage tank
(Sg1) is computed by Equation (13), as follows:

Sg1 = (1 —ky)(Sg0 + Rg) (13)
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The total streamflow is computed by Equation (14), as follows:

Q=Qi+Q (14)

2.4. Models of Comparison
(a) Australian Water Balance Model (AWBM):

The AWBM is a lumped catchment model that generates runoff from daily or hourly
data. The model replicates partial areas of runoff and three surface stores are used. Each
surface store’s water balance is determined independently of the others (Figure 3). At
daily or hourly time steps, the model calculates the moisture balance of each partial
area. Rainfall is added to each of the three surface moisture stores at each time step, and
evapotranspiration is withdrawn from each store. The water balance is represented in
Equation (15), as described in [54], as follows:

store, = store, + rain — evap (n =1to 3)

P
i Excess Surface runoff
rf’ 'f, (1-BFI) “Excess
C1 : _ 5
c2 I
— c2
Al l 55 T
L
A2
I A3 Baseflow recharge
Routed surf
=BFI *Excess ortea shrace
runoff
=(1-KS) "S5
Baseflow
BS =1-K. *BS
# Total

Figure 3. The AWMB description and structure to simulate runoff.

Because the evapotranspiration demand exceeds the available moisture, if the store’s
moisture value reaches negative, it is reset to zero. If the amount of moisture in the store
exceeds its capacity, the excess moisture becomes runoff, and the store is restored to its
original capacity. Only Al and A2 can be set because the three parameters A1, A2, and
A3 reflecting the proportions of the catchment areas; A3 will be updated to respect the
constraint if A1 and/or A2 are changed.

If there is base flow in the stream flow, part of the runoff from any store becomes
recharged of the base flow store. BFI*runoff is the percentage of runoff utilized to replenish
the base flow store, where BF]I is the base flow index, or the ratio of base flow to total flow in
the stream flow. Surface runoff accounts for the balance of the runoff, i.e., (1.0 — BFI)*runoff.
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The base flow store depletes at a rate of (1.0 — K) * BS, where BS is the current moisture in
the base flow store and K is the time step’s base flow recession constant (daily or hourly).

To simulate the delay of surface runoff reaching the outlet of a medium-large catch-
ment, the surface runoff can be routed through a store if necessary. The surface store
depletes at the rate of (1.0 — KS) % SS, where SS is the current moisture in the surface
runoff store and KS is the surface runoff recession constant of the time step being used. All
eight parameters range setup in the calibration, in shown in Table 2.

Table 2. Parameters of the AWBM and their ranges.

AWBM

Parameter Range Unit
Al 0-1 -
A2 0-1 -
BFI 0-1 -

C1 0-50 mm

C2 0-200 mm

C3 0-500 mm
KBase 0-1 -
Ksurf 0-1 -

(b) Sacramento Soil Moisture Accounting (SAC-SMA) Model:

Burnash, et al. [55] developed the Sacramento model for the United States National
Weather Service and the California Department of Water Resources. The model simulates
the water balance within the watershed by using soil moisture accounting. Rainfall in-
creases soil moisture storage, but evaporation and water movement out of the store lower it.
The depth of rainfall absorbed, real evapotranspiration, and the amount of water moving
vertically or laterally out of the storage are all determined by the size and relative wetness
of the storage. Rainfall that is not absorbed generates runoff, which is converted using
an empirical unit hydrograph or another technique. Streamflow is created by overlaying
lateral water motions from soil moisture reserves on this runoff.

The Sacramento model uses a total of 16 parameters, as shown in Table 3, to depict the
water balance, as follows:

- Five parameters define the soil moisture store (UZTWM, UZFWM, LZTWM, LZFSM,
and LZFPM).

- Three parameters calculate the rate of lateral outflow (LZPK, LZSK, and UZK).

- Three parameters calculate the percolation water from the upper to the lower soil
moisture stores (PFREE, REXP, and ZPERC).

- Two parameters calculate direct runoff (PCTIM and ADIMP).

- Three parameters calculate losses in the system (SIDE, SSOUT, and SARVA).

- Five parameters allow time delays to be applied to instantaneous runoff (UH1-UHS5).

- RSERY, the final parameter, has a very low sensitivity; therefore, optimizing it is
usually not necessary.

(c) The SIMHYD Model:

The SIMHYD model is a simplified version of HYDROLOG, a daily conceptual rainfall
runoff model developed by Porter and McMahon [56], and MODHYDROLOG, a more
contemporary model [57]. The SIMHYD model has 7 parameters, as shown in Table 4,
as compared with the 17 parameters required for HYDROLOG and the 19 required for
MODHYDROLOG.
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Table 3. Parameters of SACRAMENTO model and their ranges.
SACRAMENTO Model
Parameter Description Range Unit
LZPK The ratio of water in LZFPM, which drains as base flow each day. 0.001-0.015 fraction
LZSK The ratio of water in LZFSM, which drains as base flow each day. 0.03-0.2 fraction
UZK The fraction of water in UZFWM, which drains as interflow each day. 0.2-0.5 fraction
Upper zone tension water maximum. The maximum volume of water held
by the upper zone between field capacity and the wilting point which can be
UZTWM lost by direct evaporation and evapotranspiration from soil surface. This 25-125 mm
storage is filled before any water in the upper zone is transferred to other
storages.
Upper zone free water maximum: this storage is the source of water for
UZEWM interflow and the driving force for transferring water to deeper depths. 10-75 mm
Lower zone tension water maximum: the maximum capacity of lower zone
LZTWM tension water. Water from this store can only be removed through 75-300 mm
evapotranspiration.
LZFSM Low{ver zone free water supplemental maximum: the maximum volume from 15-300 mm
which supplemental base flow can be drawn.
LZEPM Lower zone free water primary maximum: the maximum capacity from 40-600 mm
which primary base flow can be drawn.
PFREE The minimum prf)portlon of perco}atlon from the upper zone to the lower 0-05 percent/100
zone directly available for recharging the lower zone free water stores.
REXP An exPonent determining the rate of change of the percolation rate with 0-3 none
changing lower zone water storage.
ZPERC ;F;E proportional increase in Pbase that defines the maximum percolation 0-80 none
SIDE The ratio of non-channel baseflow (deep recharge) to channel (visible) 0-0.8 ratio
baseflow.
SSOUT The volume of the flow which can be conveyed by porous material in the 0-0.1 mm
bed of stream.
The permanently impervious fraction of the basin contiguous with stream
PCTIM channels, which contributes to direct runoff. 0-0.05 percent/100
ADIMP The addlt.lopal fraction ,Of the cat'chment, y\{hlch develops impervious 0-0.2 percent/100
characteristics under soil saturation conditions.
A decimal fraction representing that portion of the basin normally covered
SARVA by streams, lakes, and vegetation that can deplete stream flow by 0-0.1 percent/100
evapotranspiration.
RSERV Fraction of lower zone free water unavailable for transpiration. 0-0.4 percent/100
UH1 The first component of the unit hydrograph, i.e., the proportion of 0-1 percent/100
instantaneous runoff not lagged.
UH2 The second component of the unit hydrogra.ph, i.e., the proportion of 0-1 percent/100
instantaneous runoff runoff lagged by one time-step.
The third component of the unit hydrograph, i.e., the proportion of
UH3 instantaneous runoff runoff lagged by two time-steps. 0-1 percent/100
The fourth component of the unit hydrograph, i.e., the proportion of
UH4 instantaneous runoff runoff lagged by three time-steps. 0-1 percent/100
UH5 The fifth component of the unit hydrograph, i.e., the proportion of 0-1 percent/100

instantaneous runoff runoff lagged by four time-steps.
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Table 4. Parameters of the SIMHYD model and their ranges.
SIMHYD
Parameter Description Range Unit
Baseflow Coeff. Base flow Coefficient 0-1 -
Impervious Threshold Impervious Threshold 0-5 mm
Infiltration Coeff. Infiltration Coefficient 0-400 -
Infiltration shape Infiltration Shape 0-10 -
Interflow Coeff. Interflow Coefficient 0-1 -
Perv. Fraction Pervious Fraction 0-1 -
RISC Rainfall Interception Store Capacity 0-5 mm
Recharge coefficient Recharge Coefficient 0-1 -
SMSC Soil Moisture Store Capacity 1-500 mm

Daily rainfall in SIMHYD first fills the interception store, which is then drained by
evaporation each day. The excess rainfall is then run through an infiltration function to
assess the capacity of infiltration. Excess rainfall that exceeds the capability of infiltration
is known as infiltration excess runoff. Moisture that infiltrates is diverted to the stream
(interflow), groundwater storage (recharge), and soil moisture store via a soil moisture
function. The interflow is first calculated as a linear function of soil moisture (soil moisture
level divided by soil moisture capacity). As a result, the equation employed to approximate
interflow tries to replicate both interflow and saturation surplus runoff processes (with the
soil wetness used to reflect parts of the catchment that are saturated, from which saturation
excess runoff can occur). The recharge of groundwater is then calculated as a linear function
of soil wetness. The remaining moisture is absorbed by the soil moisture storage system.
The rate of areal potential evapotranspiration from the soil moisture store is estimated as a
linear function of soil wetness, although it cannot exceed the atmospherically controlled
rate. The capacity of the soil moisture store is limited, and it overflows into the groundwater
store. The groundwater store’s base flow is modeled as a linear recession from the store.
Infiltration excess runoff, interflow (and saturation excess runoff), and base flow are the
three sources of runoff estimated by the model.

3. Application of the Daily Water Balance Model

The developed PDM-CN model was applied to 92 catchments from the MOPEX
(model parameter estimation experiment) dataset [58]. Figure 4 shows the spatial distri-
bution of these study catchments with catchment areas ranging from 134 to 9886 km?,
presented in Table 5. The mean temperature of the catchments ranges from 9 to 21 °C, and
the climate aridity index ranges from 0.27 to 1.91, and the runoff coefficient ranges from
0.09 to 0.80. These catchments were selected based on the criteria of minimum human
interferences [59] and snow effect. The catchments with an average temperature less than
—2 °C during the months from November to April were excluded to minimize the snow
effect [60-62]. Daily precipitation, maximum and minimum air temperature, and stream-
flow observations were obtained from the MOPEX dataset. Daily potential evaporation
data were estimated using the Priestley—Taylor method [63] at the spatial resolution of 8
by 8 km [64]. The daily precipitation and potential evaporation during 1948-2003 were
the inputs for the daily water balance model, and the daily streamflow data was used for
model calibration and validation.

The available data during 1948-2003 is divided into three periods, as follows: (1) the
warm-up period during 1948-1953; (2) the calibration period during 1954-1973; (3) the
validation period during 1974-2003. During the calibration period, the model parameters
were estimated using the genetic algorithm (GA), which has been used for parameter
estimation of hydrologic models [65]. There are five parameters for calibration: a and S
are parameters for describing the spatial distribution of soil water storage capacity; 7 is
used for the partitioning of runoff into direct runoff and groundwater recharge; k; and k;
are parameters for routings of quick flow and base flow. The ranges of the five parameters
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for calibration are shown in Table 1. The objective function of calibration is to maximize the
Nash and Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970), as follows:

YT (QL-Qh)?

NSE=1- =
Z;:l(Qé - Qo)

(15)

where Q! is the observed daily streamflow at time t; Qf, is simulated daily streamflow; Q,
is the mean observed streamflow; and T is the total number of days for calibration. The
NSE in Equation (15) has been used as an objective function in many studies [66-68].

0 250 500 1,000
km

Figure 4. The location and boundary of the study catchments where the proposed daily water balance
model is applied.

Table 5. Description of the 92 catchment areas located in the U.S.

Site ID Area (km?) Location Longitude Latitude Ep/P T, (°C)
01127000 1847 QUINEBAUG R At JEWETT CITY, CT. —71.985 41.598 0.603  10.162
01445500 275 PEQUEST RIVER at PEQUEST, NJ. —74.979 40.831 0.630  10.750
01559000 2113 JUNIATA RIVER at HUNTINGDON, PA. —78.019 40.485 0.807  10.907
02055000 1023 ROANOKE RIVER at ROANOKE, VA. —79.939 37.258 0.786  13.367
02083500 5654 TAR RIVER at TARBORO, NC. —77.533 35.894 0.862  16.929
02102000 3714 DEEP RIVER at MONCURE, NC. —79.116 35.627 0.805  16.725
02116500 5905 YADKIN RIVER at YADKIN COLLEGE, NC. —80.386 35.857 0709 15173
02118000 793 SOUTH YADKIN RIVER NEAR MOCKSVILLE, NC.  —80.659 35.845 0.734  15.805
02126000 3553 ROCKY RIVER NEAR NORWOOD, NC. —80.176 35.148 0.821  17.360
02138500 173 LINVILLE RIVER NEAR NEBO, NC. —81.890 35.795 0.562  12.557
02143000 215 HENRY FORK NEAR HENRY RIVER, NC. —81.403 35.684 0.673 15946
02143500 179 INDIAN CREEK NEAR LABORATORY, NC. —81.264 35.422 0752  16.845
02192000 3704 BROAD RIVER NEAR BELL, GA. —82.770 33.974 0.803  17.417
02202500 6863 OGEECHEE RIVER NEAR EDEN, GA. —81.416 32.191 0919  19.372
02217500 1015 MIDDLE OCONEE RIVER NEAR ATHENS, GA. —83.423 33.947 0752  17.311
02228000 7226 SATILLA RIVER at ATKINSON, GA. —81.868 31.221 0919  20.628
02329000 2953 OCHLOCKONEE RIVER NR HAVANA, FL. —84.384 30.554 0.829  21.036
02339500 9194 CHATTAHOOCHEE RIVER at WEST POINT, GA. —85.182 32.886 0.691  17.120
02347500 4791 FLINT RIVER NEAR CULLODEN, GA. —84.233 32.721 0.817  18.404
02349500 7511 FLINT RIVER at MONTEZUMA, GA. —84.044 32.298 0.843  18.778
02375500 9886 ESCAMBIA RIVER NEAR CENTURY, FL. —87.234 30.965 0726 19.968
02387000 1779 CONASAUGA RIVER at TILTON, GA. —84.928 34.667 0.613  16.251
02387500 4149 OOSTANAULA RIVER at RESACA, GA. —84.941 34.578 059  16.208
02414500 4338 TALLAPOOSA RIVER at WADLEY, AL. —85.561 33.117 0708  17.111
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Table 5. Cont.

Site ID Area (km?) Location Longitude Latitude Ep/P T, (°O)
02456500 2292 LOCUST FORK at SAYRE, AL. —86.983 33.710 0.699 17.571
02472000 1924 LEAF RIVER NR COLLINS, MS. —89.407 31.707 0.730 19.188
02143000 9052 LEAF RIVER NR MCLAIN, MS. —88.808 31.103 0.722 19.523
02475500 956 CHUNKY RIVER NR CHUNKY, MS. —88.910 32.326 0.743 18.692
02478500 6967 CHICKASAWHAY RIVER AT LEAKESVILLE, MS. —88.548 31.148 0.727 19.211
02482000 2341 PEARL RIVER at EDINBURG, MS. —89.335 32.798 0.755 18.506
03109500 1285 L BEAVER C NR EAST LIVERPOOL, OH. —80.541 40.676 0.840 11.534
03111500 319 SHORT C NR DILLONVALE, OH. —80.734 40.193 0.774 12.370
03159500 2442 HOCKING R at ATHENS, OH. —82.088 39.329 0.845 12.557
03161000 531 SOUTH FORK NEW RIVER NEAR JEFFERSON, NC.  —81.407 36.393 0.569 12.163
03164000 2929 NEW RIVER NEAR GALAX, VA. —80.979 36.647 0.638 12.155
03168000 5703 NEW RIVER AT ALLISONIA, VA. —80.746 36.937 0.694 12.411
03237500 1002 OHIO BRUSH C NR WEST UNION, OH. —83.421 38.804 0.793 13.567
03238500 565 WHITEOAK C NR GEORGETOWN, OH. —83.929 38.858 0.781  13.014
03253500 8547 LICKING RIVER at CATAWBA, KY. —84.311 38.710 0.726 14.229
03265000 1303 STILLWATER R at PLEASANT HILL, OH. —84.356 40.058 0.924 11.881
03266000 1683 STILLWATER R at ENGLEWOOD, OH. —84.283 39.869 0919  12.072
03269500 1269 MAD R NR SPRINGFIELD, OH. —83.870 39.923 0.896 11.905
03274000 9402 G MIAMI R at HAMILTON, OH. —84.572 39.391 0.894 12.302
03281500 1870 SOUTH FORK KENTUC§§ RIVER at BOONEVILLE, —83.677 37.479 0.648  14.666
03301500 3364 ROLLING FORK NR BOSTON, KY. —85.704 37.767 0.719 14.859
03303000 1233 BLUE RIVER NEAR WHITE CLOUD, IND —86.228 38.237 0.779 14.296
03326500 1766 MISSISSINEWA RIVER at MARION, IND. —85.659 40.576 0.894 11.977
03339500 1318 SUGAR CREEK at CRAWFORDSVILLE, IND. —86.899 40.049 0.882 12.555
03345500 3926 EMBARRAS RIVER at STE. MARIE, IL. —88.019 38.936 0.952 13.173
03346000 824 NORTH FORK EMBARRIALS RIVER NEAR OBLONG, —87.946 39.010 0.927 13.419
03349000 2222 WHITE RIVER at NOBLESVILLE, IN. —86.017 40.047 0.879 12.148
03361500 1090 BIG BLUE RIVER at SHELBYVILLE, IN. —85.782 39.529 0.827 12.449
03362500 1228 SUGAR CREEK NEAR EDINBURGH, IN. —85.998 39.361 0.820 12.631
03364000 4421 EAST FORK WHITE RIVER at COLUMBUS, IND. —85.926 39.200 0.829 12.699
03365500 6063 EAST FORK WHITE RIVER at SEYMOUR, IND. —85.899 38.983 0.821 12.849
03381500 8034 LITTLE WABASH RIVER at CARM], IL. —88.160 38.061 0.964 14.006
03443000 767 FRENCH BROAD RIVER at BLANTYRE, NC. —82.624 35.299 0.432 13.878
03451500 2448 FRENCH BROAD RIVER at ASHEVILLE, NC. —82.579 35.609 0.543 13.989
03504000 134 NANTAHALA RIVER 1\133? R RAINBOW SPRINGS, —83.619 35.127 0.389  12.819
03512000 477 OCONALUFTEE RIVER at BIRDTOWN, NC. —83.354 35.461 0.428 12.284
03531500 826 POWELL RIVER NEAR JONESVILLE, VA. —83.095 36.662 0.595 13.949
03574500 829 PAINT ROCK RIVER NEAR WOODVILLE, AL. —86.306 34.624 0.622 16.334
04191500 6004 AUGLAIZE R NR DEFIANCE, OH. —84.399 41.238 0.977 11.793
05515500 1391 KANKAKEE RIVER at DAVIS, IND. —86.701 41.400 0.907  11.081
05520500 5941 KANKAKEE RIVER at MOMENCE, IL. —87.669 41.160 0.929 11.199
05584500 1696 LA MOINE RIVER at COLMAR, IL. —90.899 40.329 1.076 12.239
05585000 3349 LA MOINE RIVER at RIPLEY, IL. —90.632 40.025 1.073 12.372
05592500 5025 KASKASKIA RIVER at VANDALIA, IL. —89.089 38.960 0.994 13.066
05593000 7042 KASKASKIA RIVER at CARLYLE, IL. —89.356 38.612 1.013 13.251
06894000 477 LITTLE BLUE RIVER NEAR LAKE CITY, MO. —94.300 39.101 1.130 13.883
06914000 865 POTTAWATOMIE C NR GARNETT, KS. —95.249 38.334 1.256 13.869
06933500 7356 GASCONADE RIVER at JEROME MO. —91.977 37.930 0.925 13.821
07052500 2556 JAMES RIVER at GALENA, MO. —93.461 36.805 0.943 13.996
07056000 2147 BUFFALO RIVER NEAR ST. JOE, ARK. —92.746 35.984 0.784 14.355
07067000 4318 CURRENT RIVER at VAN BUREN, MO. —91.015 36.991 0.881 14.058
07068000 5278 CURRENT RIVER at DONIPHAN, MO. —90.848 36.622 0.870  14.257
07172000 1153 CANEY R NR ELGIN, KS. —96.315 37.004 1.448 14.563
07186000 3015 SPRING RIVER NEAR WACO, MO. —94.566 37.246 1.014 14.462
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Site ID Area (km?) Location Longitude Latitude Ep/P T, (°O)
07261000 438 CADRON CREEK NEAR GUY, ARK. —92.403 35.299 0.753  15.811
07363500 5444 SALINE RIVER NEAR RYE, ARK. —92.026 33.701 0.720  17.515
07378000 736 COMITE RIVER NEAR COMITE, LA. —91.074 30.512 0.697  20.264
07378500 3315 AMITE RIVER NEAR DENHAM SPRINGS, LA. —90.990 30.464 0.682  20.090
08033500 9417 NECHES RIVER NEAR ROCKLAND, TEX. —94.399 31.025 1.139  19.792
08095000 2507 NORTH BOSQUE RIVER NR CLIFTON, TX. —97.568 31.786 1915  18.968
11342000 1101 SACRAMENTO R A DELTA CA. —122.416 40.940 0579  10.273
11413000 647 N YUBA R BL GOODYEARS BAR CA. —120.937 39.525 0.690 9.286
11427000 886 NF AMERICAN R A NORTH FORK DAM CA. —121.023 38.936 0.777  10.188
11530000 7389 TRINITY R A HOOPA CA. —123.671 41.050 0721  11.062
11532500 1589 SMITH R NR CRESCENT CITY CA. —124.054 41.789 0272  10.525
12027500 2318 CHEHALIS RIVER NEAR GRAND MOUND, WASH.  —123.034 46.776 0.379 9.988
14308000 1163 S. UMPQUA RIVER TILLER, OR. —122.947 42931 0.622 9.225
14321000 9539 UMPQUA RIVER NEAR ELKTON, OREG. —123.554 43.586 0.598  10.210

T, is the average temperature in °C; Ep/P is the aridity index.

4. Results and Discussion

The results for the application of the proposed PDM-CN model to the 92 catchments
are presented in this section.

4.1. Model Performance

The NSE values during the calibration and validation periods were computed to
evaluate the performance of the model. During the validation period, 8 catchments had
an NSE value greater than 0.7; 30 catchments had an NSE value between 0.7 and 0.6;
36 catchments had an NSE value between 0.6 and 0.5. Figure 5 compares the NSE values
between the proposed PDM-CN model, HyMOD, AWMB, SACRAMENTO, and SIMHYD
models. In Table 6, the NSE values are categorized to explicitly show the performance in
each category, from strong (1-0.75), to moderate (0.67-0.75), and ending with very weak
(<0.59), which shows a better performance for PDM-CN over HyMOD in both strong and
moderate NSE categories. In the strong calibrated NSE category, the HyMOD showed
strong calibration in 5 catchments, while showing in 6 catchments in the unified model.
Additionally, in the moderate category, the unified model showed 20 catchments, versus
15 from the HyMOD model in the calibration period. The calibration results show NSE
values for each row, for specific calibration—-validation combinations, suggesting that the
calibration results are somewhat better than the validation results, as expected [69].

1.0 1.0
a) Calibration period b) Validation period
0.8 qt. 0.8 1
0.6 1 0.6 1
= =
7 n
4 z
0.4 Y 0.4 -
—PDM-CN ; —PDM-CN i
- - -HyMOD - - -HyMOD \.I
0.2 4| — —SACRAMENTO I 0.2 4] — —SACRAMENTO !
-~ “AWBM | AWBM |
— - - SIMHYD | — - SIMHYD |
0.0 ' . : . ! 0.0 r T r r '
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Exceedance Probability Exceedance Probability

Figure 5. The exceedance probability of the number of catchments, with respect to NSE, during the
calibration (a) and validation (b) periods.
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Table 6. Categories of Nash-Sutcliffe efficiency (NSE) for catchments in calibration and
validation periods.

Calibration Period Validation Period
NSE HyMOD PDM-CN AWBM SAC* SIMHYD HyMOD PDM-CN AWBM SAC* SIMHYD
(Catchments)
Strong (1-0.75) 5 6 3 18 2 3 2 1 2 1
Moderate
(0.67-0.75) 15 20 20 27 16 10 15 7 11 5
Weak
(0.59-0.67) 26 39 37 31 20 18 23 26 29 15
Very weak
(<0.59) 46 27 32 16 54 61 52 58 50 70

*SAC is an abbreviation for the SCARAMENO model.

Figure 5a shows the percentage of catchments with NSE value greater than a certain
value during the calibration period. For example, 40% of catchments have an NSE value
greater than 0.65 for the proposed PDM—-CN model and 0.60 for the HyMOD. Figure 5b
shows the corresponding comparison during the validation period, and 40% of catchments
have an NSE value greater than 0.60 for the PDM—CN model and 0.57 for the HyMOD
model. As shown in Figure 5, the performance of the proposed PDM-CN model is slightly
better than the HyMOD, AWMB, and SIMHYD models but it could not overcome the
performance of the SACRAMENTO model during the calibration period. However, the
PDM-CN model is nearly better than or equal to over 50% of the NSE values in the
validation period compared to the SACRAMENTO model, which has 16 parameters,
the AWMB model with 8 parameters, and the SIMHYD model with 7 parameters. As
discussed earlier, the main differences between these models and the PDM-CN are the
following: (1) different distribution functions used for describing soil water storage capacity;
(2) computation of evaporation. In the remainder of the paper, the simulation results for
the proposed model are presented. The structure of the PDM—CN parameters in Equation
(3), which represents the soil wetting (W), and the runoff in Equation (8). Wetter soil
creates more surface runoff in drier soil (m = 0), given the same amount of precipitation
and storage capacity, and the difference is higher for watersheds with larger average
storage capacity. For watersheds with larger average storage capacity, the shape parameter,
a, in Equation (1) has a considerable impact on runoff generation. Additionally, in the
PDM-CN model, the initial abstraction is dependent on the shape parameter, a, which
is not the same as the SCS-CN initial abstraction, which is based on average storage
capacity. As for the AWBM and SimHyd, the model structure comparison by Yu and
Zhu [69] summarized that parameterization varies; these conceptual models are essentially
ways of speaking to the nonlinear relationship between the compelling precipitation and
runoff sum. The AWBM and the SimHyd model were developed in Australia; therefore, a
limitation to accurately reproduce runoff in snowy areas was not considered similar to the
SACRAMENTO and PDM-CN models. Nevertheless, the models’ performance using the
genetic algorithm was successful in calibration. However, various parameters, including
population size, crossover probability, mutation probability, and halting criterion, can all
affect the effectiveness of the genetic algorithm. The effect of various combinations of these
on the algorithm should be investigated [70].

4.2. Soil Water Storage Capacity

The distribution function for soil water storage capacity is the most important compo-
nent for the PDM—-CN model since it determines the partitioning between runoff and soil
wetting and the calculation of evaporation. Figure 6a shows the frequency distribution of
the estimated shape parameter for the distribution function, shown in Equation (1).
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Figure 6. The frequency distribution of the calibrated parameters for the distribution function for soil
water storage capacity: (a) the shape parameter (); (b) the mean of the distribution (S;).

As shown in Table 1, the range for the shape parameter (a) is set to [0.01, 2.0]. However,
the estimated parameters for all the catchments are greater than 1.75. That indicates that
the CDF of the distributions is S-shaped [52]. For example, Figure 7 plots the CDF of the
soil water storage capacity for the Nantahala River, located in North Carolina.

1000

a=1.98, S, =445 mm (Nantahala River) “'
——-a=1.90, S;,=445 mm N
800 L ==-=-- a=1.99, S,=445 mm

- = a=1.999, Sy=445 mm

200

0 I 1 1 1 1
0 0.2 0.4 0.6 0.8 1

F(O)

Figure 7. The estimated cumulative distribution of soil water storage capacity in the Nantahala River,
North Carolina (USGS gage #03504000), and sensitivities of the shape parameter (a).

The catchment is located in a humid area with a climate aridity index of 0.39. The
USGS streamflow gage number is 03504000 with a drainage area of 134 km?. The estimated
shape parameter (a) is 1.98 and the mean of the distribution (Sp) is 445 mm. Particularly,
the shape parameter of most catchments is between 1.90 and 2.0. To show the sensitivity of
CDF to the shape parameter, Figure 7 plots the CDF for other 3 shape parameters, i.e., 1.90,
1.99, and 1.999 for the same value of 5;,. As we can see, CDF is quite sensitive to a from
1.9 to 2.0. With the increase in g, the soil water storage capacity becomes more uniformly
distributed in space. Figure 6b shows the frequency distribution of the estimated mean
value for the distribution function shown in Equation (1). As shown in Table 1, the range
for Sy is set to [50, 1500]. The mean storage capacity for most catchments (86 out of 92) are
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less than 1000 mm. The peak of the frequency distribution is at 200~300 mm. The majority
of the catchments are within the range of 200~600 mm. As shown in Figure 7, the estimated
Sy, for Nantahala River is 445 mm.

4.3. Simulated Streamflow and Evaporation

For demonstration purposes, the simulated streamflow and evaporation for the Nan-
tahala River catchment are presented in Figure 8. The estimated parameters for the catch-
ments are a = 1.98, S, = 445 mm, y = 0.46, k; = 0.31 day_l, and k; = 0.03 day‘l. The
NSE value is 0.78 during the calibration period and 0.74 during the validation period.
Figure 8a compares the observed and simulated daily streamflow for one year (i.e., 1999) in
this catchment.

N

03/99 04/99 05/99 05/99 06/99 07/99 08/99 09/99 10/99 11/99 1299

Date

Values [mm/day]

b) Evaporation in Nantahala River, NC

Potential evaporation
----- Simulated evaporation

01/99

03/99 04/99 05/99 05/99 06/99 07/99 08/99 09/99 10/99 11/99 12/99
Date

Figure 8. Simulation results for the Nantahala River, North Carolina (USGS gage #03504000), during
the calendar year of 1999: (a) daily streamflow; (b) evaporation.

Figure 8b compares the potential evaporation to the simulated evaporation, which
shows that simulated evaporation does not exceed potential evaporation. Therefore, during
the summer, the temperature is too high, and the air is too dry. As a result, the rate of
evaporation increases [71,72].

Figure 9 compares the observed and simulated (PDM-CN model) flow duration curves
(FDC) during the validation period. The lower part of the unified model (PDM-CN) FDC is
slightly lower than the observed one and goes further, lower, than other compared models
(HyMOD, SACRAMENTO, AWBM, and SIMHYD); however, the simulated FDC matches
the observed one well in other parts. Figure 8b shows the daily potential evaporation and
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simulated daily evaporation, which is computed by Equation (8), considering the spatial
variability of soil water storage. In summary, conceptual models are most commonly
viewed and recognized as useful tools for simulating observed streamflow. While model
parameters are ostensibly physical, they are mostly utilized to characterize this nonlinear
relationship. The considerable range in the calibrated parameter values over time may
support the notion of equifinality [73], but it also suggests that assigning physical meanings
to parameter values is likely fruitless. For the Nantahala River watershed, the PDM-

CN model performed somewhat better than the HyMOD, SACRAMENTO, AWBM, and
SIMHYD models.

100

Flow Duration Curve (Gage #03504000)

Streamflow (mm/day)
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—

- - - IIyMOD
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—— Observed H‘:
|
|
— -+ SIMHYD |
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Figure 9. Observed and simulated flow duration curves during the validation period (1974-2003) for
the Nantahala River in North Carolina.

4.4. Linkage to Budyko Equation

If Equations (3) and (7) are applied to the mean annual water balance directly, P
and Ep are the mean annual precipitation and the mean annual potential evaporation,
respectively. For the mean annual water balance, the impact of initial water storage is
negligible. Therefore, Sy is set to 0, as it is in the SCS-CN method. Substituting W from
Equation (3) into Equation (7), the following equation is obtained:

_ 2
E 1+(p1—\/(1+¢*1) —2a¢p~1 | Ep Ep 2 Ep
ﬁ = 112 ? + @ — (P + q)) — ZIZQD? (16)
where,
_ 5 (17)
=P

Equation (16) shows that the long-term evaporation ratio, i.e., %, can be written as a
function of climate aridity index, (%’) , the ratio of soil water storage capacity and mean
annual precipitation (¢), and the shape parameter of the distribution of soil water storage
capacity (a).

For example, Figure 10 plots Equation (16) for three values of ST%’ with a =1.98. The
evaporation ratio increases with % for a given climate aridity index. Equation (16) captures

control of ETP and % (i.e., climate and soil water storage capacity) on a long-term water
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balance. This equation can be interpreted as a two-parameter Budyko equation, compared
with the one-parameter Budyko equation developed by [74].

0.8
0.7
0.6
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0.3
----- a=1.98, Sp/P=0.4
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0 1
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Figure 10. The obtained two-parameter, long-term water balance equation from the developed
PDM-CN model.

5. Conclusions

In this paper, a new daily water balance model is developed, based on the new
distribution function proposed by [52] for describing the spatial variability of soil water
storage capacity. For a runoff generation perspective, the model is a PDM model, alike to
the HyMOD model. When the initial soil water storage is neglected, this model becomes
the SCS-CN method. Therefore, the model is a unified version of the HyMOD model and
the SCS—CN method. Besides the distribution function for storage capacity, the calculation
of evaporation in the model is also different from that of the HyMOD. In the developed
PDM-CN model, the distribution function is also used for the calculation of evaporation,
since the spatial variability of soil water storage also affects the catchment-scale evaporation.
When applied to the long-term scale directly, the model leads to a two-parameter Budyko
equation for a long-term water balance. Therefore, this model provides a unification for the
PDM, the SCS-CN, and the Budyko models.

The developed 5-parameter model was applied to 92 catchments where the snow
effect is minimal. The performance of the daily model was good in most catchments and
was better than the HyMOD model, which is the currently used five-parameter daily water
balance model; however, the performance was not entirely better when it was compared
with the SCARAMENTO model, with 17 parameters in the calibration and validation
periods, or when it was compared with the SIMHYD, with 7 parameters, in the period.
Therefore, the PDM-CN model showed good results when it was compared with more
sophisticated models, that have more than five parameters, such as the SACRAMENTO
model, the SIMHYD model, and the AWBM. From the validation of the NSE results,
8 catchments had an NSE value greater than 0.7; 30 catchments had an NSE value between
0.7 and 0.6; 36 catchments had an NSE value between 0.6 and 0.5. Future research will
explore the linkage between the estimated parameters (2 and S;) and the curve number,
considering the connection of this model with the SCS-CN method. The simplified version
of the model will be applied for modeling monthly and annual water balance. For example,
by removing the quick flow storage tank, the daily water balance model becomes a monthly
water balance model; furthermore, by removing the slow flow storage tank, the monthly
water balance model becomes an annual water balance model; in addition, through further
removal of the soil water storage carryover, the annual water balance model becomes a
mean annual water balance model (i.e., Equation (16)).
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