Electric Field Variations Caused by Low, Middle and High-Altitude Clouds over the Negev Desert, Israel
<p>Data for two case studies: 4 January 2018 (<b>top</b>) and 6 February 2018 (<b>Bottom</b>). In each row: (<b>left</b>) Satellite image of clouds above Israel in visible light. (<b>center</b>) Measured cloud top height by Terra MODIS with colors indicating approximate height. (<b>right</b>) Observed PG values at ground level in Mitzpe Ramon.</p> "> Figure 2
<p>The height of clouds and their effect on the measured ground level PG. Circles are single layer of clouds while the triangles are a superposition of two or three types of clouds and are the average height. (for example, a presence of a ~10 km high cirrus cloud together with a ~1500 m stratus layer is indicated as a single combined height of 5750 m).</p> "> Figure 3
<p>The variability of PG for different types of clouds at Mitzpe Ramon. Variability is expressed in terms of the Inter-Quartile Range and is scaled to one standard deviation for a normal distribution.</p> "> Figure 4
<p>Mean Aerosol Optical Depth values [nm] for 19 out of 22 days and the 0.17–0.3 range of AOD mean fair weather values from previous studies [<a href="#B10-atmosphere-13-01331" class="html-bibr">10</a>,<a href="#B20-atmosphere-13-01331" class="html-bibr">20</a>].</p> "> Figure 5
<p>The vertical electric field (<b>top</b>) and wind speed results (<b>bottom</b>) for 3 events. 15 February 2014 (<b>left</b>), 16 February 2014 (<b>middle</b>) and 14 December 2016 (<b>right</b>). High values were recorded during short periods of light rain.</p> "> Figure 5 Cont.
<p>The vertical electric field (<b>top</b>) and wind speed results (<b>bottom</b>) for 3 events. 15 February 2014 (<b>left</b>), 16 February 2014 (<b>middle</b>) and 14 December 2016 (<b>right</b>). High values were recorded during short periods of light rain.</p> ">
Abstract
:1. Introduction
2. Instrumentation, Observation Site and Data
3. Results
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrison, R.G. Urban smoke concentrations at Kew, London, 1898–2004. Atmos. Environ. 2006, 40, 3327–3332. [Google Scholar] [CrossRef]
- Aplin, K.L. Smoke emissions from industrial western Scotland in 1859 inferred from Lord Kelvin’s atmospheric electricity measurements. Atmos. Environ. 2012, 50, 373–376. [Google Scholar] [CrossRef]
- Rycroft, M.J.; Nicoll, K.A.; Aplin, K.L.; Harrison, R.G. Recent advances in global electric circuit coupling between the space environment and the troposphere. J. Atmos. Sol.-Terr. Phys. 2012, 90-91, 198–211. [Google Scholar] [CrossRef] [Green Version]
- Torreson, O.W.; Parkinson, W.C.; Gish, O.H.; Wait, G.R. Ocean Atmospheric-Electric Results (Scientific Results of Cruise VII of the Carnegie during 1928–1929 Under Command of Captain J. P. Ault); Researches of the Department of Terrestrial Magnetism; Carnegie Institution of Washington: Washington, DC, USA, 1946; Volume 3. [Google Scholar]
- Israël, H. Atmospheric Electricity; Israel Program for Scientific Translations: Jerusalem, Israel, 1970; Volume 29. [Google Scholar]
- Rycroft, M.J.; Harrison, R.G.; Nicoll, K.A.; Mareev, E.A. An overview of Earth’s global electric circuit and atmospheric conductivity. Sp. Sci. Rev. 2008, 137, 83–105. [Google Scholar] [CrossRef]
- Harrison, R.G. The Carnegie Curve. Surv. Geophys. 2013, 34, 209–232. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.G. Fair weather atmospheric electricity. J. Phys. Conf. Ser. 2011, 301, 012001. [Google Scholar] [CrossRef]
- Kourtidis, K.; Szabóné André, K.; Karagioras, A.; Nita, I.A.; Sátori, G.; Bór, J.; Kastelis, N. The influence of circulation weather types on the exposure of the biosphere to atmospheric electric fields. Int. J. Biometeorol. 2021, 65, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Yaniv, R.; Yair, Y.; Price, C.; Katz, S. Local and global impacts on the fair-weather electric field in Israel. Atmos. Res. 2016, 172, 119–125. [Google Scholar] [CrossRef]
- Yaniv, R.; Yair, Y.; Price, C.; Mkrtchyan, H.; Lynn, B.; Reymers, A. Ground-based measurements of the vertical E-field in mountainous regions and the “Austausch” effect. Atmos. Res. 2017, 189, 127–133. [Google Scholar] [CrossRef]
- Karagioras, A.; Kourtidis, K. A Study of the Effects of Rain, Snow and Hail on the Atmospheric Electric Field near Ground. Atmosphere 2021, 12, 996. [Google Scholar] [CrossRef]
- Afreen, S.; Victor, N.J.; Nazir, S.; Siingh, D.; Bashir, G.; Ahmad, N.; Ahmad, S.J.; Singh, R.P. Fair-weather atmospheric electric field measurements at Gulmarg, India. J. Earth Syst. Sci. 2022, 131, 7. [Google Scholar] [CrossRef]
- Harrison, R.G.; Nicoll, K.A. Fair weather criteria for atmospheric electricity measurements. J. Atmos. Sol.-Terr. Phys. 2018, 179, 239–250. [Google Scholar] [CrossRef]
- Nicoll, K.A.; Harrison, R.G. Stratiform cloud electrification: Comparison of theory with multiple in-cloud measurements. Q. J. R. Meteorol. Soc. 2016, 142, 2679–2691. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, S.V.; Mareev, E.A.; Shikhova, N.M.; Sorokin, A.E.; Dimktriev, E.M. On the electro-dynamical characteristics of the fog. Atmos Res. 2005, 76, 16–28. [Google Scholar] [CrossRef]
- Elhalel, G.; Yair, Y.; Nicoll, K.; Price, C.; Reuveni, Y.; Harrison, R.G. Influence of short-term solar disturb-ances on the fair-weather conduction current. J. Space. Weath. Space Clim. 2014, 4, A26. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, E.; Price, C.; Yair, Y.; Haldoupis, C.; Chanrion, O.A.; Neubert, T. ELF/VLF signatures of sprite-producing lightning discharges observed during the 2005 EuroSprite campaign. J. Atmos. Sol.-Terr. Phys. 2009, 71, 1254–1266. [Google Scholar] [CrossRef]
- Nicoll, K.; Harrison, R.; Barta, V.; Bor, J.; Brugge, R.; Chillingarian, A.; Chum, J.; Georgoulias, A.; Guha, A.; Kourtidis, K.; et al. A global atmospheric electricity monitoring network for climate and geophysical research. J. Atmos. Sol.-Terr. Phys. 2019, 184, 18–29. [Google Scholar] [CrossRef]
- Yair, Y.; Katz, S.; Yaniv, R.; Ziv, B.; Price, C. An electrified dust storm over the Negev desert, Israel. Atmos. Res. 2016, 181, 63–71. [Google Scholar] [CrossRef]
- Baumgaertner, A.J.G.; Lucas, G.M.; Thayer, J.P.; Mallios, S.A. On the role of clouds in the fair weather part of the global electric circuit. Atmos. Chem. Phys. 2014, 14, 8599–8610. [Google Scholar] [CrossRef] [Green Version]
- Lucas, G.M.; Thayer, J.P.; Deierling, W. Statistical analysis of spatial and temporal variations in atmospheric electric fields from a regional array of field mills. J. Geophys. Res. Atmos. 2017, 122, 1158–1174. [Google Scholar] [CrossRef]
# | Date | Cloud Type | Mean Cloud Height [m] | Mean FW PG (V m−1) | Mean PG Diurnal (V m−1) | ∆PG from FW Values to Diurnal Mean (V m−1) | Comments * Superposition Effect (SP) | Aeronet Value vs. FW | Wind Speed vs. FW |
---|---|---|---|---|---|---|---|---|---|
1 | 15/02/2014 | Cumulus & Cirrostratus | 8600 | 165 | 158.96 | −6 | SP—low and high clouds | FW | High |
2 | 16/02/2014 | Cumulus & altocumulus | 3400 | 165 | 154.82 | −10.2 | SP—low and mid clouds | FW | High |
3 | 09/03/2014 | Stratocumulus & alto cumulus | 3250 | 169 | 151.51 | −17.5 | SP—low and mid clouds | N/A | FW |
4 | 13/04/2014 | Altostratus & cirrostratus | 7750 | 175 | 155.18 | −19.8 | SP—mid and high clouds | FW | FW |
5 | 15/04/2014 | Altocumulus | 7200 | 175 | 140.96 | −34 | High | FW | |
6 | 05/05/2014 | Altocumulus | 9900 | 183 | 137.61 | −45.4 | High | FW | |
7 | 13/05/2014 | Cumulus humilis & Cirrus fibratus | 5900 | 183 | 132.26 | −47.7 | SP—low and high clouds | FW | FW |
8 | 20/07/2014 | Stratocumulus | 1600 | 180 | 190.65 | 10.7 | FW | FW | |
9 | 19/11/2016 | Cirrus | 8000 | 182 | 112.44 | −69.6 | High | FW | |
10 | 22/11/2016 | Cirrocumulus | 11,400 | 182 | 129.85 | −52.5 | High | FW | |
11 | 29/11/2016 | Cirrus | 8400 | 182 | 121.76 | −60.2 | FW | FW | |
12 | 30/11/2016 | Cirrocumulus & alto cumulus | 9000 | 182 | 85.52 | −96.5 | SP—mid and high clouds | FW | FW |
13 | 14/12/2016 | Cumulus & alto cumulus | 1000 | 170 | 195.69 | 25.7 | SP—low and mid clouds | High | High |
14 | 23/12/2016 | Cumulus | 800 | 170 | 240.6 | 70.6 | N/A | FW | |
15 | 01/01/2018 | Stratocumulus | 500 | 150 | 200.4 | 50.4 | N/A | FW | |
16 | 04/01/2018 | Stratocumulus & alto cumulus | 3500 | 150 | 159.04 | 9.04 | SP—low and mid clouds | FW | FW |
17 | 17/01/2018 | Stratocumulus | 1000 | 155 | 162.23 | 7.23 | FW | FW | |
18 | 21/01/2018 | Cirrus | 12,500 | 160 | 130.15 | −29.9 | High | FW | |
19 | 29/01/2018 | Altocumulus | 4000 | 160 | 159.29 | −0.7 | FW | FW | |
20 | 06/02/2018 | Cirrostratus | 11,700 | 170 | 102.26 | −67.7 | High | FW | |
21 | 10/02/2018 | Cirrostratus | 11,600 | 170 | 134.88 | −35.1 | High | FW | |
22 | 12/02/2018 | Cirrus fibratus & stratus fractus | 5750 | 170 | 171.69 | 1.7 | SP—low and high clouds | High | FW |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaniv, R.; Yair, Y. Electric Field Variations Caused by Low, Middle and High-Altitude Clouds over the Negev Desert, Israel. Atmosphere 2022, 13, 1331. https://doi.org/10.3390/atmos13081331
Yaniv R, Yair Y. Electric Field Variations Caused by Low, Middle and High-Altitude Clouds over the Negev Desert, Israel. Atmosphere. 2022; 13(8):1331. https://doi.org/10.3390/atmos13081331
Chicago/Turabian StyleYaniv, Roy, and Yoav Yair. 2022. "Electric Field Variations Caused by Low, Middle and High-Altitude Clouds over the Negev Desert, Israel" Atmosphere 13, no. 8: 1331. https://doi.org/10.3390/atmos13081331
APA StyleYaniv, R., & Yair, Y. (2022). Electric Field Variations Caused by Low, Middle and High-Altitude Clouds over the Negev Desert, Israel. Atmosphere, 13(8), 1331. https://doi.org/10.3390/atmos13081331