Climate and the Radial Growth of Conifers in Borderland Natural Areas of Texas and Northern Mexico
<p>The locations of tree-ring chronologies from the borderland are numbered and plotted (red triangles). The three large protected natural areas in the Big Bend region of the Rio Brave are also mapped along with the international frontier and the municipal divisions in Chihuahua and Coahuila.</p> "> Figure 2
<p>Regional average ring-width index chronologies based on two collection sites per species are plotted for their common intervals. The Abies average is based on ABCTXABDU and MDCMXABDU (site codes defined in <a href="#atmosphere-13-01326-t001" class="html-table">Table 1</a>), which are correlated at r = 0.58 for 1905–2000 (<b>a</b>). The <span class="html-italic">P. arizonica</span> average is based on MDCMXPIAZ and SANMXPIAZ, correlated at r = 0.47 for 1860–2000 (<b>b</b>). The <span class="html-italic">P. menziesii</span> average is based on BIGTXPSME and MDCMXPSME, correlated at r = 0.42 from 1811–2000 (<b>c</b>). The <span class="html-italic">P. cembroides</span> average is based on ELEMXPICE and NAMMXPICE, correlated at r = 0.62 for 1725–2014 (<b>d</b>). The correlation matrix for these four species chronologies is presented in <a href="#atmosphere-13-01326-t004" class="html-table">Table 4</a>.</p> "> Figure 3
<p>The monthly climate response for the 12 conifer tree-ring chronologies from the borderlands region is plotted, based on the correlation between each chronology and the monthly precipitation totals (<b>a</b>) and mean temperature (<b>b</b>) for the study area from the prior August to the current August. The response of the <span class="html-italic">A. durangensis</span> chronologies is plotted in blue, <span class="html-italic">P. menziesii</span> in green, <span class="html-italic">P. arizonica</span> in black, and <span class="html-italic">P. cembroides</span> in red. The average monthly correlation for the 12 chronologies is also plotted (heavy black line) and with the significance thresholds (<span class="html-italic">p</span> < 0.05). The chronologies are listed in <a href="#atmosphere-13-01326-t001" class="html-table">Table 1</a> and correlation coefficients are presented for all chronologies, climate variables, and months in <a href="#atmosphere-13-01326-t005" class="html-table">Table 5</a>.</p> "> Figure 4
<p>PC1 of the Borderlands tree-ring chronologies correlated with monthly precipitation data, 1946–2000. The time series scores for the first principal component of tree growth for the 12 detrended and standardized ring-width chronologies are correlated with gridded monthly precipitation totals over North America. The precipitation data were obtained from the GPCC with a grid spacing of 0.5° [<a href="#B24-atmosphere-13-01326" class="html-bibr">24</a>], and the correlations were all based on the common period 1946–2000 when the tree ring and instrumental precipitation data are well replicated.</p> "> Figure 5
<p>PC1 of the Borderlands tree-ring chronologies correlated with monthly temperature data, 1946–2000. Same as <a href="#atmosphere-13-01326-f003" class="html-fig">Figure 3</a>, except PC1 of tree growth is correlated with the 0.5 grid of monthly mean temperature from the University of Delaware [<a href="#B25-atmosphere-13-01326" class="html-bibr">25</a>].</p> "> Figure 6
<p>The instrumental precipitation data were totaled monthly for each grid point and then averaged for the study area (28.5–30.5° N and 102–107° W) for 1901–2017. These regional precipitation data were then summed for the October–May cool season and correlated with the PC1 scores for the 12 conifer chronologies from the borderlands for the common period 1931–2000 ((<b>a</b>); PC1 in red). The correlation is r = 0.71 (<span class="html-italic">p</span> < 0.001). The monthly temperature data were also averaged for the study area and for the months of January–July (plotted for 1901–2017; (<b>b</b>)). The PC1 time series of tree growth was inverted and is plotted along with the regional temperature series. The correlation is r = −0.67 (<span class="html-italic">p</span> < 0.001), prior to inverting the PC1 time series. Regional precipitation for October–May has generally declined since the wet extremes in the 1980s and 1990s (<b>a</b>) while January–July temperatures have increased over the region (<b>b</b>). Some of the tree-ring chronologies unfortunately end in 2000, but the PC1 time series does follow the low-frequency changes in both seasonal precipitation and temperature over the borderlands region.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Study Area
2.2. Tree-Ring Chronology Development
2.3. Correlation of the Tree-Ring Chronologies with Regional Precipitation and Temperature
2.4. Principal Component Analysis
3. Results
3.1. The Borderlands Tree-Ring Chronologies
3.2. Co-Variability of the Borderlands Tree-Ring Chronologies
3.3. Climatic Response of the Borderlands Tree-Ring Chronologies
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ortega-Rubio, A.; Pinkus-Rendón, M.J.; Espitia-Moreno, I.C.; Las Áreas Naturales Protegidas y la Investigación Científica en México. Centro de Investigaciones Biológicas del Noroeste S.C., La Paz, B.C.S., Universidad Autónoma de Yucatán, Mérida, Yucatán y Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México. 2015. Available online: https://cobi.org.mx/wp-content/uploads/2016/01/2015_LIBRO-Las-%C3%A1reas-naturales-protegidas-y-la-investigaci%C3%B3n-cient%C3%ADfica-en-M%C3%A9xico.pdf (accessed on 12 July 2020).
- Adams, V.M.; Setterfield, S.A.; Douglas, M.M.; Kennard, M.J.; Ferdinands, K. Measuring benefits of protected area management: Trends across realms and research gaps for freshwater systems. Phil. Trans. R. Soc. B 2015, 370, 20140274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seager, R.; Ting, M.; Davis, M.; Cane, M.; Nike, M.; Nakumara, J.; Lie, C.; Cook, E.; Stahle, D.W. Mexican drought: An observational modeling and tree ring study of variability and climate change. Atmosfera 2009, 22, 1–31. [Google Scholar]
- Magaña, V.; Zermeño, D.; Neri, C. Climate change scenarios and potential impacts on water availability in northern Mexico. Clim. Res. 2012, 51, 171–184. [Google Scholar] [CrossRef]
- Allen, C.A.; Macalady, A.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.; Hogg, E.H.; Gonzalez, O.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Adams, H.A.; Barron-Gafford, G.A.; Minor, R.L.; Gardea, A.A.; Bentley, L.P.; Dorin, L.; Breshears, D.D.; McDowell, N.G.; Huxman, T.C. Temperature response surfaces for mortality risks of tree species with future drought. Environ. Res. Lett. 2017, 12, 115014. [Google Scholar] [CrossRef]
- Truettner, C.; Anderegg, R.L.; Biondi, F.; Koch, G.W.; Ogle, K.; Schwalm, C.; Livtak, M.E.; Shaw, J.D.; Ziaco, E. Conifer radial growth response to recent seasonal warming and droughts from the Southwestern USA. For. Ecol. Manag. 2018, 48, 55–62. [Google Scholar] [CrossRef]
- Marshet, N.G.; Fekadu, H.H. Review on effect of climate change on forest ecoystems. Environ. Sci. Nat. Resour. 2019, 17, 555968. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group, 1 to the Sixth Assessment Report of the Intergovernmental Panel of Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Muldavin, E.H.; Harper, G.; Neville, P.; Wood, S. A vegetation classification of the Sierra del Carmen, U.S.A. and México. In Proceedings of the Sixth Symposium on the Natural Resources of the Chihuahuan Desert Region; Hoyt, C.A., Karges, J., Eds.; Chihuahuan Desert Research Institute: Fort Davis, TX, USA, 2014; pp. 117–150. Available online: http://cdri.org/publications/proceedings-of-the-symposium-on-the-naturalresources-of-the-chihuahuan-desert-region/ (accessed on 14 June 2020).
- Munson, S.M.; Raiser, M.H. Chihuahuan Desert Plant Responses to Climate Change; Chihuahuan Desert Network I&M Program: Big Ben National Park, TX, USA, 2013. Available online: https://www.nps.gov/articles/chihuahuan-desert-plant-responses-to-climate-change.htm (accessed on 13 June 2020).
- Williams, A.P.; Allen, C.D.; Millar, C.I.; Swetnam, T.W.; Michaelsen, J.; Still, C.J.; Leavitt, S.W. Forest responses to increasing aridity and warmth in the southwestern United States. Proc. Natl. Acad. Sci. USA 2010, 107, 21289–21294. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, P.E.; Miranda, B.R.; Telewski, F.W. Shifts in climate-growth relationships of sky island pines. Forests 2019, 10, 1011. [Google Scholar] [CrossRef] [Green Version]
- Ferrusquia-Villafranca, I.; González-Guzman, L.I.; Cartron, J.E. Northern Mexico’s landscape, Part I: The physical setting and constraints on modeling biotic evolution. In Biodiversity, Ecosystems, and Conservation in Northern Mexico; Cartron, J.E., Ceballos, G., Felger, R.S., Eds.; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- National Park Service, U.S. Department of the Interior. Foundation Document, Big Bend National Park, Texas. 2016. Available online: http://www.npshistory.com/publications/foundation-documents/bibe-fd-2016.pdf (accessed on 12 July 2020).
- Poulos, H.M.; Gatewood, R.G.; Camp, A.E. Fire-regimes of the pinyon-juniper woodlands of Big Bend national park, and the Davis Mountains West Texas, USA. Can. J. For. Res. 2009, 39, 1236–1246. [Google Scholar] [CrossRef]
- Instituto Nacional de Ecología. Programa de Manejo del Área de Protección de Flora y Fauna Cañón de Santa Elena México. México, D.F., 1997. Available online: https://simec.conanp.gob.mx/pdf_libro_pm/144_libro_pm.pdf (accessed on 20 July 2020).
- Stokes, M.A.; Smiley, T.L. An Introduction to Tree-Ring Dating; University of Chicago Press: Chicago, IL, USA, 1968. [Google Scholar]
- Holmes, R.L. Computer-assisted quality in tree-ring dating and measurement. Tree-Ring Bull. 1983, 43, 69–78. Available online: https://repository.arizona.edu/handle/10150/261223 (accessed on 3 June 2020).
- Grissino-Mayer, H.D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res. 2001, 57, 205–221. [Google Scholar]
- Melvin, T.M.; Briffa, K.R. A “signal-free” approach to dendroclimatic standardization. Dendrochronologia 2008, 26, 71–86. [Google Scholar] [CrossRef]
- Cook, E.R.; Krusic, P.J.; Melvin, T.; Program RCSigFree. Tree-Ring Laboratory, Lamont Doherty Earth Observatory of Columbia University. 2014. Available online: https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software (accessed on 15 May 2020).
- Meko, D.; Cook, E.R.; Stahle, D.W.; Stockton, C.W.; Hughes, M.K. Spatial patterns of tree-growth anomalies in the United States and Southeastern Canada. J. Clim. 1993, 6, 1773–1786. [Google Scholar] [CrossRef] [Green Version]
- Stahle, D.W.; Cook, E.R.; Burnette, D.J.; Torbenson, M.C.; Howard, I.M.; Griffin, D.; Villanueva-Diaz, J.; Cook, B.I.; Willimas, A.P.; Watson, E.; et al. Dynamics, Variability, and Change in Seasonal Precipitation Reconstructions for North America. J. Clim. 2020, 33, 3173–3194. [Google Scholar] [CrossRef]
- Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U.; Ziese, M. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 2013, 5, 71–99. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Ziese, M. GPCC Full Data Monthly Product Version 2018 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historical Data. Glob. Precip. Climatol. Cent. 2018. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999); Version 1.02; Center for Climatic Research, Department of Geography, University of Delaware: Newark, DE, USA, 2001. [Google Scholar]
- Woodhouse, C.; Lukas, J. Drought, tree rings and water resource management in Colorado. Can. Water Resour. J. 2006, 31, 297–310. Available online: https://www.tandfonline.com/doi/pdf/10.4296/cwrj3104297 (accessed on 20 July 2020). [CrossRef]
- Constante, V.; Villanueva, J.; Cerano, J.; Cornejo, E.; Valencia, S. Dendrocronología de Pinus cembroides Zucc. y reconstrucción de precipitación estacional para el sureste de Coahuila. Rev. Cienc. For. Méx. 2009, 34, 17–39. Available online: http://cienciasforestales.inifap.gob.mx/editorial/index.php/forestales/article/view/685 (accessed on 15 June 2020).
- Dettinger, M.D.; Cayan, D.R.; Diaz, H.F.; Meko, D.M. North-South precipitation patterns in Western North America on interannual-to-decadal timescales. J. Clim. 1998, 11, 3095–3111. [Google Scholar] [CrossRef]
- Pederson, N.; Bell, A.R.; Knight, K.N.; Leland, C.; Malcomb, N.; Anchukaitis, K.J.; Tackett, K.; Scheff, J.; Brice, A.; Carton, B.; et al. A long-term perspective on a modern drought in the American Southeast. Environ. Res. Lett. 2012, 7, 014034. [Google Scholar] [CrossRef]
- Wilder, M.; Garfin, G.; Ganster, P.; Eakin, H.; Romero-Lankao, P.; Lara-Valencia, F.; Cortez-Lara, A.A.; Mumme, S.; Neri, C.; Muñoz-Arriola, F. Climate Change and U.S.-Mexico Border Communities. In Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Maxwell, J.T.; Grant, G.L.; Matheusa, Y.J. Dendroclimatic reconstructions from multiple co-occurring species: A case study from an old growth deciduous forest in Indiana, USA. Int. J. Climatol. 2015, 35, 860–870. [Google Scholar] [CrossRef]
- Poulos, H.M.; Camp, A.E. Vegetation-Environmental Relations of the Chisos Mountains, Big Bend National Park, Texas. USDA Forest Service Proceedings RMRS-P-36. 2005. Available online: https://www.fs.fed.us/rm/pubs/rmrs_p036/rmrs_p036_539_544.pdf (accessed on 10 January 2022).
- Cook, E.R.; Seager, R.; Heim, R.; Vose, R.S.; Herweijer, C.; Woodhouse, C. Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci. 2010, 25, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Mendez, M.; Magaña, V. Regional aspects of meteorological droughts over Mexico and Central America. J. Clim. 2010, 23, 1175–1188. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.K. Dendroclimatology in High-Resolution Paleoclimatology. In Dendroclimatology; Developments in Paleoenvironmental Research; Hughes, M., Swetnam, T., Diaz, H., Eds.; Springer: Dordrecht, The Netherlands, 2011; Volume 11. [Google Scholar] [CrossRef]
- Torbenson, M.C.; Stahle, D.W.; Howard, I.M.; Burnette, D.J.; Villanueva-Diaz, J.; Cook, E.R.; Griffin, D. Multidecadal modulation of the ENSO teleconnection to precipitation and tree growth over subtropical North America. Paleoceanogr. Paleoclimatol. 2019, 34, 886–900. [Google Scholar] [CrossRef]
- Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.; Meko, D.M.; Swetnam, T.W.; Rausscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potential driver of regional forest drought stress and tree mortality. Nat. Clim. Change 2013, 3, 292–297. [Google Scholar] [CrossRef]
- Thorne, J.H.; Choe, H.; Stine, P.A.; Chambers, J.C.; Holguin, A.; Kerr, A.C.; Schwartz, M.W. Climate change vulnerability assessment of forests in the Southwest USA. Clim. Change 2018, 148, 387–402. [Google Scholar] [CrossRef] [Green Version]
- Stefanidis, S.; Alexandridis, V. Precipitation and potential evapotranspiration temporal variability and their relationship in two forest ecosystems in Greece. Hydrology 2021, 8, 160. [Google Scholar] [CrossRef]
- Brand, R.; Srur, A.M.; Villalba, R. Contrasting growth trends in Nothofagus pumilio upper-elevation forests induced by climate warming in the Southern Andes. Agric. For. Meteorol. 2022, 323, 109083. [Google Scholar] [CrossRef]
- Proutsos, N.; Tigkas, D. Growth response of endemic black pine trees to meteorological variations and drought episodes in a mediterranean region. Atmosphere 2020, 11, 554. [Google Scholar] [CrossRef]
- Archer, S.R.; Predick, K.I. Climate change and ecosystems of the Southwestern United States. Rangelands 2008, 30, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Pavek, D.S. Pinus cembroides. Fire Effects Information System ; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer), 1994. Available online: https://www.fs.fed.us/database/feis/plants/tree/pincem/all.html (accessed on 28 February 2021).
- CONANP. Programa de Manejo Área de Protección de Flora y Fauna Maderas del Carmen. Secretaría de Medio Ambiente y Recursos Naturales. México, D.F., 2013; p. 151. Available online: https://simec.conanp.gob.mx/pdf_libro_pm/158_libro_pm.pdf (accessed on 15 July 2020).
- Garfin, G.; Jardine, A.; Merideth, R.; Black, M.; LeRoy, S. Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment; A Report by the Southwest Climate Alliance; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Kolb, T.E. A new drought tipping point for conifer mortality. Environ. Res. Lett. 2018, 10, 0311002. [Google Scholar] [CrossRef]
- Waring, K.M.; Reboletti, D.M.; Mork, L.A.; Huang, E.H.; Hofstetter, R.W.; Garcia, A.M.; Fulé, P.Z.; Davis, T.S. Modeling the impacts of two bark beetle species under a warming climate in the Southwestern USA: Ecological and economic consequences. Environ. Manag. 2009, 44, 824–835. [Google Scholar] [CrossRef] [PubMed]
- McDowell, N.; Allen, C.D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 2015, 5, 669–672. [Google Scholar] [CrossRef]
- Langdon, G.R.; Lawler, J.J. Assessing the impacts of projected climate change on biodiversity in the protected areas of western North America. Ecosphere 2015, 6, 87. [Google Scholar] [CrossRef]
- Stahle, D.W.; Cook, E.R.; Villanueva-Diaz, J.; Fye, F.K.; Burnett, D.J.; Griffin, R.D.; Acuña-Soto, R.; Seager, R.; Heim, R.R., Jr. Early 21st-century drought in Mexico. Eos 2009, 90, 89–90. [Google Scholar] [CrossRef]
- Florescano, E.; Swan, S.; Menegus, M.; Galindo, I. Breve Historia de la Sequía en Mexico; Universidad Veracruzana: Veracruz, Mexico, 1995. [Google Scholar]
- Liverman, D.M. Vulnerability and adaptation to drought in Mexico. Nat. Resour. J. 1999, 39, 99. Available online: https://digitalrepository.unm.edu/nrj/vol39/iss1/7 (accessed on 15 December 2021).
- Endfield, G.H.; Fernández-Tejedo, I. Decades of drought years of hunger: Archival investigations of multiple year droughts in late colonial Chihuahua. Clim. Change 2006, 75, 391–419. [Google Scholar] [CrossRef]
- Nace, R.L.; Pluhowski, E.J. Drought of the 1950’s with Special Reference to the Midcontinent; Geological Survey Wayer Supply Paper 1804; United States Government Printing Office: Washington. DC, USA, 1965. Available online: https://pubs.usgs.gov/wsp/1804/report.pdf (accessed on 15 December 2021).
- Gutzler, D.S. Drought in New Mexico: History, Causes, and Future Prospects. 2003. Available online: https://digitalrepository.unm.edu/eps-fsp/3 (accessed on 12 January 2022).
- Cook, B.I.; Cook, E.R.; Smerdon, J.E.; Seager, R.; Parks, W.A.; Coats, S.; Stahle, D.W.; Villanueva-Diaz, J. North American megadroughts in the Common Era: Reconstructions and simulations. Wiley Interdiscip. Rev. Clim. Change 2016, 7, 411–432. [Google Scholar] [CrossRef] [Green Version]
Site Name | Site Code | Species | Dated Series | Dating |
---|---|---|---|---|
1 Big Bend | BIGTXPSME | P. menziesii | 101 | 1473–2014 |
ABCTXABDU | A. durangensis | 17 | 1903–2004 | |
Maderas del Carmen | MDCMXPSME | P. menziesii | 30 | 1807–2004 |
MDCMXPIAZ | P. arizonica | 24 | 1810–2001 | |
MDCMXPICE | P. cembroides | 34 | 1827–2004 | |
MDCMXABDU | A. durangensis | 17 | 1797–2003 | |
Santa Elena | ELEMXPICE | P. cembroides | 14 | 1725–2014 |
Serrania del Burro | SBUMXPIAZ | P. arizonica | 46 | 1798–2015 |
Sierra Rica | SRIMXPICE | P. cembroides | 53 | 1670–2015 |
Pajaritos | PAJMXPICE | P. cembroides | 13 | 1850–2014 |
Santa Elena | ELEMXPICE | P. cembropides | 14 | 1725–2014 |
Sandillal de San Marcos | SANMXPIAZ | P. arizonica | 18 | 1810–2014 |
Namiquiapa | NAMMXPICE | P. cembroides | 18 | 1627–2014 |
Comp | Eigen | PropVar | Cumvar |
---|---|---|---|
PC1 | 6.717 | 0.56 | 0.56 |
PC2 | 1.166 | 0.097 | 0.657 |
PC3 | 0.963 | 0.08 | 0.737 |
PC4 | 0.779 | 0.065 | 0.802 |
PC5 | 0.598 | 0.05 | 0.852 |
PC6 | 0.433 | 0.036 | 0.888 |
PC7 | 0.391 | 0.033 | 0.921 |
PC8 | 0.322 | 0.027 | 0.947 |
PC9 | 0.193 | 0.016 | 0.963 |
PC10 | 0.173 | 0.014 | 0.978 |
PC11 | 0.158 | 0.013 | 0.991 |
PC12 | 0.109 | 0.09 | 1.000 |
Chronology | PC1 | PC2 | PC3 |
---|---|---|---|
ABCTXABDU | −0.299 | −0.212 | 0.242 |
BIGTXPSME | −0.271 | 0.372 | 0.171 |
ELEMXPICE | −0.277 | 0.232 | −0.078 |
MDCMXABDU | −0.321 | −0.198 | 0.357 |
MDCMXPIAZ | −0.284 | 0.349 | 0.324 |
MDCMXPICE | −0.321 | −0.329 | 0.077 |
MDCMXPSME | −0.329 | −0.296 | 0.164 |
NAMMXPICE | −0.284 | 0.349 | −0.324 |
PAJMXPICE | −0.244 | 0.516 | −0.181 |
SANMXPIAZ | −0.31 | 0.22 | −0.575 |
SBUMXPIAZ | −0.228 | −0.141 | −0.575 |
SRIMXPICE | −0.28 | −0.091 | −0.502 |
1 Species | ABDU | PSME | PIAZ | PICE |
---|---|---|---|---|
ABDU | 1.0 | |||
PSME | 0.727 | 1.0 | ||
PIAZ | 0.607 | 0.738 | 1.0 | |
PICE | 0.567 | 0.731 | 0.729 | 1.0 |
Tree Ring Series | Precipitation | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pAug | pSep | pOct | pNov | pDic | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | |
ABCTXABDU | 0.19 | 0.31 | 0.34 | 0.28 | 0.29 | 0.29 | 0.35 | 0.07 | 0.46 | 0.56 | 0.24 | 0.20 | 0.02 |
BIGTXPSME | 0.29 | 0.25 | 0.20 | 0.50 | 0.42 | 0.34 | 0.33 | 0.12 | 0.28 | 0.30 | 0.02 | 0.42 | −0.09 |
ELEMXPICE | 0.31 | 0.18 | 0.36 | 0.46 | 0.22 | 0.25 | −0.03 | 0.04 | 0.21 | 0.08 | 0.32 | 0.10 | 0.12 |
MDCMXABDU | 0.11 | 0.29 | 0.32 | 0.45 | 0.33 | 0.33 | 0.30 | 0.08 | 0.43 | 0.39 | 0.31 | 0.15 | −0.02 |
MDCMXPIAZ | 0.42 | 0.46 | 0.34 | 0.26 | 0.13 | 0.29 | 0.32 | 0.14 | 0.26 | 0.28 | 0.03 | 0.24 | 0.25 |
MDCMXPICE | 0.26 | 0.35 | 0.41 | 0.33 | 0.24 | 0.32 | 0.30 | 0.14 | 0.32 | 0.39 | 0.17 | 0.28 | 0.09 |
MDCMXPSME | 0.22 | 0.32 | 0.31 | 0.44 | 0.30 | 0.25 | 0.34 | 0.05 | 0.31 | 0.39 | 0.29 | 0.17 | −0.01 |
NAMMXPICE | 0.22 | 0.23 | 0.14 | 0.58 | 0.41 | 0.20 | 0.32 | 0.20 | 0.25 | 0.27 | 0.07 | 0.35 | −0.07 |
PAJMXPICE | 0.26 | 0.21 | 0.32 | 0.51 | 0.25 | 0.01 | 0.17 | −0.01 | 0.19 | 0.27 | 0.21 | 0.34 | 0.05 |
SANMXPIAZ | 0.32 | 0.35 | 0.34 | 0.52 | 0.43 | 0.22 | 0.21 | −0.07 | 0.35 | 0.38 | 0.30 | 0.32 | 0.07 |
SRUMXPIAZ | 0.24 | 0.28 | 0.39 | 0.20 | 0.16 | 0.36 | 0.06 | 0.09 | 0.29 | 0.17 | 0.18 | 0.30 | −0.01 |
SRIMXPICE | 0.50 | 0.49 | 0.45 | 0.47 | 0.17 | 0.18 | 0.31 | 0.02 | 0.27 | 0.16 | 0.19 | 0.44 | 0.10 |
Temperature | |||||||||||||
ABCTXABDU | −0.14 | −0.28 | −0.28 | −0.08 | 0.06 | −0.38 | −0.06 | −0.36 | −0.31 | −0.40 | −0.50 | −0.29 | 0.02 |
BIGTXPSME | −0.13 | −0.19 | −0.25 | −0.41 | 0.02 | −0.34 | −0.22 | −0.40 | −0.33 | −0.44 | −0.26 | −0.25 | −0.02 |
ELEMXPICE | −0.16 | −0.06 | −0.29 | 0.11 | −0.22 | −0.49 | −0.36 | −0.10 | 0.03 | −0.07 | −0.47 | −0.23 | −0.19 |
MDCMXABDU | −0.12 | −0.24 | −0.26 | −0.19 | 0.05 | −0.36 | −0.05 | −0.37 | −0.30 | −0.36 | −0.56 | −0.28 | 0.00 |
MDCMXPIAZ | −0.29 | −0.29 | −0.53 | −0.14 | 0.00 | −0.30 | −0.12 | −0.27 | −0.25 | −0.26 | −0.29 | −0.26 | −0.47 |
MDCMXPICE | −0.18 | −0.14 | −0.35 | −0.07 | 0.00 | −0.39 | −0.20 | −0.24 | −0.24 | −0.24 | −0.43 | −0.39 | −0.25 |
MDCMXPSME | −0.16 | −0.24 | −0.34 | −0.05 | −0.06 | −0.46 | −0.14 | −0.36 | −0.31 | −0.28 | −0.52 | −0.33 | −0.04 |
NAMMXPICE | −0.05 | −0.16 | −0.33 | −0.39 | −0.10 | −0.33 | −0.25 | −0.44 | −0.30 | −0.40 | −0.38 | −0.32 | −0.10 |
PAJMXPICE | −0.14 | −0.12 | −0.14 | 0.01 | −0.24 | −0.39 | −0.16 | −0.24 | 0.10 | −0.08 | −0.45 | −0.40 | −0.06 |
SANMXPIAZ | −0.37 | −0.31 | −0.32 | −0.10 | −0.21 | −0.41 | −0.24 | −0.33 | −0.18 | −0.37 | −0.62 | −0.39 | −0.19 |
SRUMXPIAZ | −0.10 | −0.20 | −0.24 | −0.15 | 0.05 | −0.37 | 0.03 | −0.16 | 0.03 | −0.34 | −0.31 | −0.48 | −0.21 |
SRIMXPICE | −0.47 | −0.43 | −0.39 | −0.04 | 0.00 | −0.36 | −0.33 | −0.13 | −0.22 | −0.33 | −0.57 | −0.55 | −0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villanueva-Díaz, J.; Stahle, D.W.; Poulos, H.M.; Therrell, M.D.; Howard, I.; Martínez-Sifuentes, A.R.; Hermosillo-Rojas, D.; Cerano-Paredes, J.; Estrada-Ávalos, J. Climate and the Radial Growth of Conifers in Borderland Natural Areas of Texas and Northern Mexico. Atmosphere 2022, 13, 1326. https://doi.org/10.3390/atmos13081326
Villanueva-Díaz J, Stahle DW, Poulos HM, Therrell MD, Howard I, Martínez-Sifuentes AR, Hermosillo-Rojas D, Cerano-Paredes J, Estrada-Ávalos J. Climate and the Radial Growth of Conifers in Borderland Natural Areas of Texas and Northern Mexico. Atmosphere. 2022; 13(8):1326. https://doi.org/10.3390/atmos13081326
Chicago/Turabian StyleVillanueva-Díaz, José, David W. Stahle, Helen Mills Poulos, Matthew D. Therrell, Ian Howard, Aldo Rafael Martínez-Sifuentes, David Hermosillo-Rojas, Julián Cerano-Paredes, and Juan Estrada-Ávalos. 2022. "Climate and the Radial Growth of Conifers in Borderland Natural Areas of Texas and Northern Mexico" Atmosphere 13, no. 8: 1326. https://doi.org/10.3390/atmos13081326
APA StyleVillanueva-Díaz, J., Stahle, D. W., Poulos, H. M., Therrell, M. D., Howard, I., Martínez-Sifuentes, A. R., Hermosillo-Rojas, D., Cerano-Paredes, J., & Estrada-Ávalos, J. (2022). Climate and the Radial Growth of Conifers in Borderland Natural Areas of Texas and Northern Mexico. Atmosphere, 13(8), 1326. https://doi.org/10.3390/atmos13081326