Research on the Influence of Weather Patterns on Ozone Concentration: A Case Study in Tianjin
<p>The national air quality monitoring station in Tianjin.</p> "> Figure 2
<p>(<b>a</b>) Air quality classification during monitoring (<b>b</b>) Hourly-mean O<sub>3</sub> concentration of Tianjin (average of the hourly concentration from all monitors at each hour) and the number of exceedances over the secondary standard (160 μg/m<sup>3</sup>) for each hour during monitoring.</p> "> Figure 3
<p>Correlation of O<sub>3</sub>-MDA8 with (<b>a</b>) maximum temperature, (<b>b</b>) average temperature, and (<b>c</b>) relative humidity.</p> "> Figure 4
<p>Meteorological parameters during different weather types: (<b>a</b>) case 1, (<b>b</b>) case 2, (<b>c</b>) case 3, and (<b>d</b>) case 4.</p> "> Figure 5
<p>(<b>a</b>) Surface weather map and (<b>b</b>) 500 hPa weather map at 08:00 on June 12. (<b>c</b>) Surface weather map and (<b>d</b>) 500 hPa weather map at 08:00 on June 24.</p> "> Figure 6
<p>Diurnal variation of pollutant concentration and meteorological element from (<b>a</b>) June 12 to 14 and (<b>b</b>) June 22 to 29.</p> "> Figure 7
<p>24-h backward air mass trajectory at 100 m, 500 m, and 1000 m altitudes during different research periods: (<b>a</b>) June 12th, (<b>b</b>) June 24th, and (<b>c</b>) June 16th.</p> "> Figure 8
<p>(<b>a</b>) Surface and (<b>b</b>) 500 hPa weather map at 08:00 on 16 June 2019.</p> "> Figure 9
<p>Diurnal variation of pollutant concentration and meteorological element from June 15 to 17.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Analytical Method
2.4. Backward Trajectory Model
3. Results and Discussion
3.1. O3 and Meteorological Parameters
3.2. The Relationship between Weather Type and O3
3.3. Analysis of Typical O3 Pollution Processes
3.3.1. Analysis of Typical Serious Pollution Processes
3.3.2. Analysis of Typical O3 Low-Value Processes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swackhamer, D.L. Rethinking the ozone problem in urban and regional air pollution. J. Aerosol Sci. 1991, 24, 977–978. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Xiang, Y.R.; Chan, L.Y.; Chan, C.Y.; Sang, X.F.; Wang, R.; Fu, H.X. Procuring the regional urbanization and industrialization effect on ozone pollution in Pearl River Delta of Guangdong, China—ScienceDirect. Atmos. Environ. 2011, 45, 4898–4906. [Google Scholar] [CrossRef]
- Schneidemesser, E.V.; Monks, P.S.; Allan, J.D.; Bruhwiler, L.; Forster, P.; Fowler, D.; Lauer, A.; Morgan, W.T.; Paasonen, P.; Righi, M. Chemistry and the Linkages between Air Quality and Climate Change. Chem. Rev. 2015, 115, 3856–3897. [Google Scholar] [CrossRef]
- Zelm, R.V.; Preiss, P.; Goethem, T.V.; Dingenen, R.V.; Huijbregts, M. Regionalized life cycle impact assessment of air pollution on the global scale: Damage to human health and vegetation. Atmos. Environ. 2016, 134, 129–137. [Google Scholar] [CrossRef]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Williams, M.L. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 2014, 14, 8889–8973. [Google Scholar] [CrossRef]
- Rai, R.; Agrawal, M. Impact of Tropospheric Ozone on Crop Plants. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2012, 82, 241–257. [Google Scholar] [CrossRef]
- Feng, Z.; Sun, J.; Wan, W.; Hu, E.; Calatayud, V. Evidence of widespread ozone-induced visible injury on plants in Beijing, China. Environ. Pollut. 2014, 193, 296–301. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, X.; Sayer, A.M.; Levy, R.; Liu, Y. Satellite-Based Spatiotemporal Trends in PM2.5 Concentrations: China, 2004–2013. Environ. Health Perspect. 2016, 124, 184–192. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Hopke, P.K.; Goudarzi, G.; Daryanoosh, S.M.; Jourvand, M.; Basiri, H. Cardiopulmonary mortality and COPD attributed to ambient ozone. Environ. Res. 2017, 152, 336–341. [Google Scholar] [CrossRef]
- Ji, M.; Cohan, D.S.; Bell, M.L. Meta-analysis of the Association between Short-Term Exposure to Ambient Ozone and Respiratory Hospital Admissions. Env. Res. Lett. 2011, 6, 24006–24016. [Google Scholar] [CrossRef]
- Lehman, J.; Swinton, K.; Bortnick, S.; Hamilton, C.; Baldridge, E.; Eder, B.; Cox, B. Spatio-temporal characterization of tropospheric ozone across the eastern United States. Atmos. Environ. 2004, 38, 4357–4369. [Google Scholar] [CrossRef]
- The short-term effect of ambient ozone on mortality is modified by temperature in Guangzhou, China. Atmos. Environ. 2013, 76, 59–67. [CrossRef]
- Barletta, B.; Meinardi, S.; Rowland, F.S.; Chan, C.Y.; Wang, X.; Zou, S.; Chan, L.Y.; Blake, D.R. Volatile organic compounds in 43 Chinese cities. Atmos. Environ. 2005, 39, 5979–5990. [Google Scholar] [CrossRef]
- Xiao, L.; Hong, J.; Lin, Z.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Tao, W.; Gao, M.; Zhao, Y.; Zhang, Y. Severe Surface Ozone Pollution in China: A Global Perspective. Environ. Sci. Technol. 2018, 5, 487–494. [Google Scholar]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2016, 575, 1582–1596. [Google Scholar] [CrossRef]
- Zheng, X.Y.; Fu, Y.F.; Yang, Y.J.; Liu, G.S. Impact of atmospheric circulations on aerosol distributions in autumn over eastern China: Observational evidence. Atmos. Chem. Phys. 2015, 15, 3285–3325. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, H.; Jia, L.; Ge, S. Effect of particle water on ozone and secondary organic aerosol formation from benzene-NO2-NaCl irradiations. Atmos. Environ. 2016, 140, 386–394. [Google Scholar] [CrossRef]
- Liu, J.; Wu, D.; Fan, S.J.; Liao, Z.H.; Deng, T. Impacts of precursors and meteorological factors on ozone pollution in Pearl River Delta. Zhongguo Huanjing Kexue/China Environ. Sci. 2017, 37, 813–820. [Google Scholar]
- Xu, X.; Lin, W.; Wang, T.; Yan, P.; Tang, J.; Meng, Z.; Wang, Y. Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: Enhanced variability. Atmos. Chem. Phys. 2008, 8, 2595–2607. [Google Scholar] [CrossRef]
- Directory, U. Annals of the New York Academy of Science; New York Academy of Science: New York, NY, USA, 2017. [Google Scholar]
- Briffa, K.R.; Jones, P.D.; Kelly, P.M. Principal component analysis of the Lamb Catalogue of Daily Weather Types: Part 2, seasonal frequencies and update to 1987. Int. J. Climatol. 2010, 10, 147–157. [Google Scholar] [CrossRef]
- Pattison, I.; Lane, S.N. The relationship between Lamb weather types and long-term changes in flood frequency, River Eden, UK. Int. J. Climatol. 2011, 32, 1971–1989. [Google Scholar] [CrossRef]
- Cheng, G.; Hong, L. A typical weather pattern for ozone pollution events in North China. Atmos. Chem. Phys. 2019, 19, 13725–13740. [Google Scholar]
- Fang, X.; Xiao, H.; Sun, H.; Liu, C.; Zhang, Z.; Xie, Y.; Liang, Y.; Wang, F. Characteristics of Ground-Level Ozone from 2015 to 2018 in BTH Area, China. Atmosphere 2020, 11, 130. [Google Scholar] [CrossRef]
- Tang, G.; Li, X.; Wang, X.; Xin, J.; Hu, B.; Wang, L.; Ren, Y.; Wang, Y. Effects of Weather Patterns on Surface Ozone Pollution in Beijing. Environ. Sci. 2010, 31, 6. [Google Scholar]
- Lam, K.S.; Wang, T.J.; Wu, C.L.; Li, Y.S. Study on an ozone episode in hot season in Hong Kong and transboundary air pollution over Pearl River Delta region of China—ScienceDirect. Atmos. Environ. 2005, 39, 1967–1977. [Google Scholar] [CrossRef]
- Wang, L.T.; Wei, Z.; Yang, J.; Zhang, Y.; Zhang, F.F.; Su, J.; Meng, C.C.; Zhang, Q. The 2013 severe haze over southern Hebei, China: Model evaluation, source apportionment, and policy implications. Atmos. Chem. Phys. 2014, 14, 3151–3173. [Google Scholar] [CrossRef]
- Yassin, M.F.; Almutairi, S.K.; Ali, A.H. Dust storms backward Trajectories’ and source identification over Kuwait. Atmos. Res. 2018, 212, 158–171. [Google Scholar] [CrossRef]
- Szkop, A.; Pietruczuk, A. Analysis of aerosol transport over southern Poland in August 2015 based on a synergy of remote sensing and backward trajectory techniques. J. Appl. Remote Sens. 2017, 11, 016039. [Google Scholar] [CrossRef]
- Maldonado, P.G.; Campa, A.; Gonzalez-Castanedo, Y.; Castell, N.; Rosa, J.; Stein, A.; Chen, B. Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model. Atmos. Environ. 2013, 71, 234–244. [Google Scholar]
- Chen, Z.; Zhuang, Y.; Xie, X.; Chen, D.; Cheng, N.; Yang, L.; Li, R. understanding long-term variations of meteorological influences on ground ozone concentrations in beijing during 2006–2016. Environ. Pollut. 2019, 245, 29–37. [Google Scholar] [CrossRef]
- Zhao, W.; Gao, B.; Liu, M.; Qing, L.U.; She-Xia, M.A.; Sun, J.R.; Chen, L.G.; Fan, S.J. Impact of Meteorological Factors on the Ozone Pollution in Hong Kong. Environ. Sci. 2019, 40, 55–66. [Google Scholar]
- Zhao, W.; Chen, L.; Fan, S.; Gao, B.; Guo, H. Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000–2015 using quantile and multiple line regression models. Atmos. Environ. 2016, 144, 182–193. [Google Scholar] [CrossRef]
- Yuan, L.I.; Kong, J.; Hong, X.U.; Gao, J.; Wenkai, B.I.; Yang, N. Analysis of ozone pollution characteristic in Tianjin and its source apportionment. Environ. Pollut. Control 2019, 41, 647–651. [Google Scholar]
Scenario | Weather Types | Days (D) | Maximum Temperature (°C) | Average Temperature (°C) | Average Relative Humidity (%) | O3-MDA8 (μg/m3) | Exceeding Rate (%) | |
---|---|---|---|---|---|---|---|---|
Low-Altitude | High-Altitude | |||||||
case 1 | before low pressure-low pressure | before trough-trough | 23 | 34.2 | 29.3 | 52.0 | 206 | 87.0 |
case 2 | before high pressure-high pressure | after trough-before ridge | 29 | 30.1 | 26.3 | 57.1 | 128 | 13.8 |
case 3 | uniform pressure field | ridge-trough-flat(little pressure gradient) | 29 | 32.5 | 28.1 | 56.1 | 187 | 72.4 |
case 4 | typhoon | typhoon | 11 | 30.0 | 26.7 | 77.6 | 111 | 9.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, J.; Li, L.; Bai, Y.; Gao, J.; He, L.; Tang, M.; Yang, N. Research on the Influence of Weather Patterns on Ozone Concentration: A Case Study in Tianjin. Atmosphere 2022, 13, 1312. https://doi.org/10.3390/atmos13081312
Li Y, Wang J, Li L, Bai Y, Gao J, He L, Tang M, Yang N. Research on the Influence of Weather Patterns on Ozone Concentration: A Case Study in Tianjin. Atmosphere. 2022; 13(8):1312. https://doi.org/10.3390/atmos13081312
Chicago/Turabian StyleLi, Yuan, Jiguang Wang, Liwei Li, Yu Bai, Jingyun Gao, Lei He, Miao Tang, and Ning Yang. 2022. "Research on the Influence of Weather Patterns on Ozone Concentration: A Case Study in Tianjin" Atmosphere 13, no. 8: 1312. https://doi.org/10.3390/atmos13081312
APA StyleLi, Y., Wang, J., Li, L., Bai, Y., Gao, J., He, L., Tang, M., & Yang, N. (2022). Research on the Influence of Weather Patterns on Ozone Concentration: A Case Study in Tianjin. Atmosphere, 13(8), 1312. https://doi.org/10.3390/atmos13081312